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Abstract 19 

By averaging in time and/or space, models predict less variable light patterns under tree canopies 20 

than in reality. We measured light every minute in 24 positions in a grid under different chestnut 21 

orchards, for several clear and overcast days. We also modelled this light with a purposely created 22 

3D, spatially explicit, ray-tracing light interception model, where canopy porosity was calibrated to 23 

match measured daily light. Finally, we used both the measured and modeled light patterns 24 

transmitted under the tree canopies to estimate the daily net photosynthesis (An) and radiation use 25 

efficiency (RUE) of an understory wheat leaf. As expected, modeled light was more uniform than 26 

measured light, even at equal daily light. This resulted in large overestimation of daily An and RUE 27 

of the understory leaf. Averaging light in time increased the overestimations even further. A 28 

sensitivity analysis showed that this overestimation remained substantial over the range of realistic 29 

values for leaf photosynthetic parameters (i.e. Vc,max, Jmax, Rd) of the understory crop.  30 
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 33 

1. Introduction 34 

Agroforestry systems (AFS) are increasingly recognized for their potential contribution towards 35 

sustainable intensification (Doré et al., 2011). Alley cropping (i.e. silvoarable, crops grown in the 36 

alleys between lines of trees), is one of the agroforestry practices most studied and developed in 37 

temperate regions (Palma et al., 2007; Liagre et al. 2009) because of its potential to increase yield 38 

and income while providing environmental benefits and allowing modern mechanization (Dupraz 39 

2005; Garrity et al., 2010; Luedeling et al., 2011; Cardinael et al. 2015). Field experiments in AFS 40 

are time-consuming and expensive because of the long-term nature of trees and the many possible 41 

combinations of trees and crops (Knörzer et al., 2011; Lovell et al., 2017). Modeling becomes 42 

indispensable as an initial test of the many possible field designs and management strategies, 43 

improving our understanding of the complex interaction in AFS (Chimonyo et al., 2015). In 44 

particular, process-based models are considered particularly suitable (Bayala et al., 2015; Luedeling 45 

et al., 2016).  46 

Light is often the most limiting factor in crop growth in AFS (e.g. Friday and Fownes 2002; 47 

Jose et al. 2004; Zamora et al. 2009), therefore a proper representation of light distribution between 48 

trees and crops becomes essential for effective modeling (Dufour et al., 2013). Light distribution 49 

under trees has been addressed with different levels of complexity in different models (for a review, 50 

see Malézieux et al., 2009). Initial models considered trees and crops with a single one-dimensional 51 

canopy representation, with strong limitations. Two-dimensional models improved upon this, but 52 

only three-dimensional (3D), spatially explicit models are suited to represent the highly variable 53 

light distribution when combining trees and crops (Chazdon and Pearcy, 1986; Knapp and Smith, 54 

1987). 55 

Only models that reproduce the exact architecture of trees, at the individual shoot or leaf 56 

level (e.g. Dauzat et al. 2001; Mialet-Serra et al. 2001; Casella and Sinoquet 2007; Lamanda et al. 57 

2008) can predict the exact light pattern available under the trees in both time and space. While 58 
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possible, this approach is computationally demanding, making it impossible on a large scale. 59 

Therefore, the most common 3D models of AFS approximate light interception by tree canopies 60 

using: 61 

1) a fixed geometric shape for the canopy (e.g. cylinder, ellipsoid) 62 

2) a homogeneous canopy of a fixed porosity to light 63 

3) averaging the position of the sun over time 64 

These simplifications result in predictions of light patterns under the trees that are always averaged 65 

at some level of time and space, not representing the actual variability. 66 

For a given total light interception, photosynthesis is reduced under variable light compared to 67 

more uniform light (Külheim et al., 2002; Poorter et al., 2016; Kromdijk et al., 2016; Vialet-68 

Chabrand et al., 2017). This is because the photosynthetic response of a leaf to light is curvilinear: 69 

at high irradiance, net photosynthetic assimilation (An) tends to saturate, reducing the radiation use 70 

efficiency (RUE). At very low light, the apparent quantum yield is highest, but RUE decreases due 71 

to leaf respiration. RUE is zero at the light compensation point and becomes negative at lower 72 

irradiance (Hirose and Bazzaz, 1998; Rosati and DeJong, 2003). Therefore, two minutes at average 73 

irradiance can result in greater An than one minute at high and one at low irradiance.  74 

Work on sunflecks and shadeflecks supports the idea that accounting for the effects of 75 

variable light is important not only in understory plants (Pearcy et al., 1996; Way and Pearcy, 2012) 76 

but also in common crops (Lawson et al., 2012; Carmo-Silva et al., 2015, Kromdijk et al., 2016), 77 

where most of the leaves are still exposed to variable light levels due to self-shading (Pearcy et al., 78 

1990; Rosati et al., 2004). Accounting for the variability in the patterns of incident light is 79 

especially important for understory crops in AFS, where the incident light is filtered through tree 80 

canopies. Variability in light patterns in AFS is caused by both large gaps between trees and small 81 

gaps within tree canopies (Chazdon and Pearcy, 1986; Knapp and Smith, 1987). For an equal total 82 

incident radiation transmitted below the trees, different light patterns likely result in different An and 83 

RUE.  84 
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Here, we hypothesize that averaging of sub-tree canopy light patterns in time and space 85 

overestimates An and RUE of understory crops in AFS.  86 

 87 

2. Materials and Methods 88 

First, we built a 3D, spatially explicit, ray tracing light interception model with a minutely 89 

resolution. While ray-tracing models are commonly used in biophysical modeling, most do not have 90 

a minutely resolution. We also measured minutely light transmitted during several days to 24 points 91 

in a grid under several chestnut (Castanea mollissima Blume) orchards of different ages and 92 

spacings. Then, we compared measured and modeled values of light transmitted to the understory 93 

crop. Finally, we modeled An of a wheat leaf in each of the 24 positions as exposed to (1) the actual 94 

(i.e. measured every minute) light pattern transmitted under the trees, (2) temporal averages (half-95 

hourly, hourly, and daily) of the measured light, and (3) modeled (minutely, half-hourly, hourly, 96 

and daily) light when approximating the tree crowns to ellipsoids or cylinders. A sensitivity analysis 97 

was also performed by changing the photosynthetic parameters of the understory crop to simulate 98 

variation in leaf physiology.  99 

 100 

2.1 Measuring light under tree canopies in the field 101 

We measured the photosynthetically active radiation (PAR) transmitted under the canopies of four 102 

adjacent trees in two mature and two young chestnut orchards differing in age, spacing, and row 103 

orientation (Table 1). The orchards were located at the Horticulture and Agroforestry Research 104 

Center of the University of Missouri, in New Franklin, MO, USA. The mature orchards were 20 105 

years old, and the young orchards were five years old. Tree characteristics (i.e. trunk circumference, 106 

bole height, tree height, within-row canopy radius, and between-row canopy radius) were measured 107 

on each of the 16 trees (four per orchard) under which PAR was measured (Table S1). Canopy 108 

volumes were then calculated approximating the canopy shape to either an ellipsoid or a cylinder. 109 

The trees in the mature orchards were heterogeneous in size, with canopy volumes ranging from 56 110 

Final published version available at https://doi.org/10.1016/j.agrformet.2019.107892
© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



 5 

to 135 m3 in mature orchard A and from 56 to 285 m3 in mature orchard B. In the young orchards, 111 

tree canopy ranged from 8 to 25 m3 in young orchard A and from 12 to 29 m3 young orchard B.  112 

In each orchard, 24 PAR sensors (GaAsP photosensors, Hamamatsu, Japan), previously 113 

calibrated with a quantum sensor (LI-190; LI-COR Inc., Lincoln, NE, USA) and connected to a 114 

datalogger (GP2, Delta-T Devices Ltd, Cambridge, UK), were placed in a grid in the rectangular 115 

area between the four adjacent trees. The grid was designed with regular spacing to be 116 

representative of the whole area. Measurements were made in September and October 2016, over 117 

two-five days in each orchard (Table 1), measuring PAR every minute. Daily PAR incident on each 118 

orchard was then computed by summing the minutely values for the whole daylight period. 119 

Measurement days included clear, partly overcast, and heavily overcast days, as indicated by the 120 

total daily incident PAR measured outside the orchard with a PAR sensor (LI-190; LI-COR Inc., 121 

Lincoln, NE, USA) connected to a datalogger recording PAR every minute (Table 1).  122 

 123 

2.2 Light interception model 124 

Most 3D canopy light interception models do not run on a minutely time scale. Therefore, to 125 

compare PAR measured every minute with modeled PAR, we built a model capable of modeling 126 

light at any time scale. The model is built using the R statistical computing software version 3.5.1 127 

(R Core Team, 2018). The model utilizes a horizontal scene, onto which trees can be placed, and a 128 

hemispherical sky discretized into one-degree by one-degree grid cells. The location of the sun and 129 

the proportions of direct and diffuse radiation are first calculated using the solaR package 130 

(Perpiñán, 2012) using a supplied date, time, and latitude. The proportions of direct and diffuse 131 

radiation are calculated following the method of Collares-Pereira and Rabl (1979). Direct radiation 132 

is allocated to the sky cell where the sun is located, and diffuse radiation is allocated uniformly 133 

across the entire sky. If a day is deemed completely overcast (two days in this study), then both 134 

direct and diffuse radiation are allocated uniformly across the entire sky. 135 
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Tree canopies are placed onto the scene using an x and y location, upper and lower heights 136 

of the crown, a uniform canopy porosity (Table 1), and crown radii: two independent radii for an 137 

ellipsoid or one uniform radius (i.e. the average of the radii measured in two directions) for a 138 

cylinder (Table S1). For a given point of interest on the scene floor, a line is drawn between each 139 

sky grid cell and the point. The radiation transmitted to the point is the sum of the radiation of all 140 

sky grid cells, with the radiation from a given sky cell reduced by the canopy porosity if its line 141 

intersects a tree canopy. Tree canopies are assumed to reduce radiation uniformly regardless of the 142 

path length of a radiation ray through the canopy. The effect of tree trunks was assumed negligible 143 

during the months of the experiment, as all trees had full foliage (Dupraz et al. 2018). Sensors in the 144 

field were placed in a grid within the rectangle between four adjacent trees, avoiding the border of 145 

the orchard, to avoid edge effects. Similarly, the model for each orchard included two additional 146 

rows of trees in all directions; the dimensions of additional trees in each orchard were taken as the 147 

mean of the four primary trees in that orchard. 148 

The purpose of the study was not to assess whether the model could correctly estimate total 149 

daily PAR transmitted under the trees, but rather to investigate whether the intra-daily variability of 150 

the PAR pattern affects estimation of daily An and RUE of an understory crop leaf. Therefore, we 151 

set the canopy porosity for each orchard and canopy shape that provided the best match of measured 152 

and modeled daily PAR averaged across the 24 sensors (Fig. 1; Table 1). By matching measured 153 

and modeled daily PAR, any difference in estimated daily An can be attributed to different daily 154 

patterns of PAR transmitted under the canopy. The model and the data files are available on 155 

GitHub: https://github.com/kevinwolz/Rosati_etal_2019. 156 

 157 

2.3 Modeling daily An with measured and modeled light 158 

The daily An for an understory crop leaf was estimated by using the Farquhar model 159 

(Farquhar et al., 1980) with parameters for winter wheat (Triticum aestivum; Guo et al., 2015). 160 

Wheat was selected because it is the most common crop grown in temperate alley cropping 161 
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experiments to date (Wolz and DeLucia, 2018). Instantaneous An was estimated from instantaneous 162 

PAR via eight different approaches: using measured or modeled data, each as measured each 163 

minute, or averaged over half-hour, hour, or all daylight hours. Daily An for each sensor was then 164 

obtained for each calculation approach by summing instantaneous An over each day (for further 165 

details on this approach see Rosati et al., 2003; 2004). The daily An obtained with measured 166 

minutely PAR was assumed to be the most realistic, thus all other approaches were compared to this 167 

An. Daily RUE was then calculated by dividing daily An, obtained with the different PAR data, by 168 

its respective daily incident PAR.  169 

 170 

2.4 Sensitivity analysis 171 

To ensure that results were relevant beyond the specific leaf physiology of winter wheat 172 

measured in Guo et al. (2015), a sensitivity analysis of the overestimation of daily An in the 173 

understory crop to the Farquhar et al. (1980) photosynthesis model parameters was performed. This 174 

was done by estimating daily An using a range of values for the three key Farquhar et al. (1980) 175 

model parameters: (1) Vc,max, the maximum RuBP saturated rate of carboxylation (Pmol m-2 s-1), (2) 176 

Jmax, the maximum rate of electron transport used in the regeneration of RuBP (Pmol m-2 s-1), and 177 

(3) Rd, the mitochondrial respiration rate in the day (Pmol m-2 s-1). The ranges explored for Vc,max 178 

and Rd were taken from the ranges measured in winter wheat by Sun et al. (2015). Since Vc,max and 179 

Jmax are known to be highly correlated across plant species and plant functional types (Wullschleger 180 

1993, Walker et al. 2014), the values explored for Jmax were calculated from the Vc,max values and 181 

the relationship demonstrated by Walker et al. (2014). 182 

 183 

3. Results 184 

Even though we set the canopy porosity so that total daily modeled and measured PAR below the 185 

orchard were matched (Fig. 1), the difference in the daily patterns between measured and modeled 186 

minutely data was dramatic.  187 
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 188 

Fig. 1 Average modeled vs. measured daily PAR incident on the understory crop across the 189 

orchard floor after calibration of the canopy porosity in each orchard. Point shapes represent the 190 

different orchards, and point color represent the two modeled canopy geometries (ellipsoid: black; 191 

cylinder: grey). 192 

 193 

While generally following the same trends, measured data was much more variable, whereas 194 

modeled data maintained smooth curves since the modeled light is passing through unrealistically 195 

homogeneous canopies (Fig. 2). Since the results were nearly identical when modeling canopy 196 

shape as a cylinder or as an ellipsoid, the rest of results are shown only for one shape (i.e. ellipsoid). 197 
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 198 

Fig. 2 Representative example time series of measured and modeled minutely PAR from one 199 

sensor under the canopy in the Young A orchard on a clear day. The shaded area shows the PAR 200 

incident on the orchard above the tree canopy. Modeled data is shown for (a) ellipsoidal and (b) 201 

cylindrical tree canopies. 202 

 203 

 204 

An always increased with daily incident PAR, both when estimated with measured or with 205 

modeled PAR, and when estimated using the minutely PAR data, or the half-hour, hour and daily 206 

PAR averages (Fig. 3). However, An was always greater at any PAR value when estimated with 207 

modeled PAR, both for minutely PAR and at any time averaging level except for daily averages, 208 
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where it was the same by default design of the modeling (i.e. when using a single PAR value for a 209 

day, there is no difference in daily pattern between modeled and measured data, and the response 210 

curve takes the shape of the instantaneous response curve). Daily An estimated with modeled PAR 211 

was also less variable at any given daily PAR. Daily RUE was similarly overestimated with 212 

modeled data and more scattered with measured data (Fig. 4).  213 

  214 
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 215 

 216 

Fig. 3 Measured and modeled daily An as a function of daily incident PAR. Modeled data is for 217 

ellipsoidal tree canopies. Each point represents one of the 24 sensor locations for one of the 11 218 

orchard-date combinations measured in the field. Daily An is calculated using incident PAR 219 

averaged at the (a) minutely, (b) half-hourly, (c) hourly, and (d) daily level.  220 
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 221 

 222 

Fig. 4 Measured and modeled daily RUE as a function of daily incident PAR. Modeled data is for 223 

ellipsoidal tree canopies. Each point represents one of the 24 sensor locations for one of the 11 224 

orchard-date combinations measured in the field. Daily RUE is calculated using incident PAR 225 

averaged at the (a) minutely, (b) half-hourly, (c) hourly, and (d) daily level. 226 
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Compared to daily An estimated using the actual (i.e. measured minutely) PAR, modeled 227 

minutely PAR overestimated daily An by an average of 26% across all orchards (top right panel; 228 

Fig. 5). When temporally averaging the light as well, in addition to the spatial averaging of light 229 

inherent in the model (i.e. uniform canopy porosity), the overestimation increased: Half-hourly 230 

(28%) and hourly (29%) approaches were only marginally worse, but calculating daily An using 231 

mean daily modeled PAR resulted in overestimation by 46%. Using temporal averages of measured 232 

PAR overestimated daily An less than with the corresponding modeled PAR, except for daily 233 

averages, with daily An overestimations of 7%, 11% and 49% respectively for half-hourly hourly 234 

and daily averages (Fig. 5).  235 
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 236 

Fig. 5 Comparison between daily An calculated from measured minutely PAR (x-axis) and daily An 237 

calculated from measured/modeled PAR in each temporal averaging window. Each point 238 

represents the mean of the 24 sensor locations for one of the 11 orchard-date combinations 239 

measured in the field.  240 

The overestimations of daily An resulted in similar overestimations of daily RUE (Fig. 6).  241 
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 242 

Fig. 6 Comparison between daily RUE calculated from measured minutely PAR (x-axis) and daily 243 

RUE calculated from measured/modeled PAR in each temporal averaging window. Each point 244 

represents the mean of the 24 sensor locations for one of the 11 orchard-date combinations 245 

measured in the field. 246 

The sensitivity analysis (i.e. estimating An with a range of photosynthetic model parameter 247 

values for the understory crop) showed that modeling and averaging PAR resulted in large 248 
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overestimation of An for any realistic values of the Farquhar et al. (1980) model parameters (i.e. 249 

Vc,max, Jmax and Rd: Fig. 7).  250 

  251 
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A B 

  

 252 

Fig. 7 Sensitivity analysis of the overestimation of daily An (A) and RUE (B) in the understory crop 253 

calculated as in figure 5 and 6, but at varying Vc,max, Jmax and Rd parameters of the Farquhar et al. 254 

(1980) photosynthesis model. The vertical dotted line represents the parameter values used in all 255 

other figures.  256 
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 257 

4. Discussion 258 

Our hypothesis was that, by averaging the PAR transmitted under the tree canopy in space (i.e. by 259 

approximating canopy shapes and assuming uniform canopy porosity) and time, crop models 260 

overestimate An and RUE of understory crops. The results fully supported the hypothesis. Daily An 261 

estimated with measured minutely PAR was always lower than the An estimated using the modeled 262 

PAR, even when modeling PAR for every minute (Fig. 3). Averaging in time further increased the 263 

overestimation, both for modeled and measured PAR. By comparing daily An estimated with 264 

measured and modeled PAR at the different time resolutions, the overestimations were shown to be 265 

large (Fig. 5). This resulted in similar overestimation of RUE (Fig. 4 and  6). The sensitivity 266 

analysis showed that this overestimation remained substantial across realistic values of the Farquhar 267 

et al. (1980) photosynthesis model parameters for the understory crop (Fig.7). 268 

It has long been known that averaging of light in space and/or time overestimates An (Sinclair 269 

et al., 1976; Spitters, 1986). In previous work (Rosati et al., 2003), we also found that averaging 270 

measured PAR over one hour resulted in overestimation of daily An of different leaves within a tree 271 

canopy. However, in a tree or indeed any overstory canopy, most of the photosynthesis is 272 

contributed by the outer-canopy, better-exposed leaves, which receive a more uniform irradiance. 273 

Understory crops are instead exposed to more variable light patterns even on their outer-canopy 274 

leaves. Therefore, quantifying the overestimation of An with averaging of light is likely more 275 

important. This is the first time that the overestimation is quantified for an understory crop exposed 276 

to the PAR transmitted by the overstory canopy, a typical agroforestry situation.  277 

Additionally, our data allowed us to analyze the overestimation due to time and space 278 

averaging. Figure 5 shows that daily An was overestimated by about 7% when averaging measured 279 

PAR data to half-hour intervals, by 11% when averaging hourly, and by 49% when averaging over 280 

the entire daylight period. Therefore, time averaging, even at intervals as short as half-hour, results 281 

in important overestimations of daily An. However, the overestimation was much greater at any time 282 
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averaging step, when using modeled PAR (i.e. approximating tree canopies to regular shape and 283 

assuming uniform canopy porosity). When using the modeled PAR at minutely time steps, the 284 

overestimation was 26%, more than two or three times the overestimation observed with hourly or 285 

half-hourly averages of measured data, respectively.  286 

Given that the overestimation results from averaging variable PAR, these results suggest that, 287 

at least under the conditions of this experiment, approximating tree canopies to regular shape and 288 

assuming uniform canopy porosity results in averaging PAR to a larger extent than hourly time 289 

averaging. In fact, it appears clearly that modeled PAR remains at almost constant values for up to 290 

three hours, while measured PAR is much more variable (Fig. 2). This suggests that approximating 291 

tree canopies to a regular shape and assuming uniform canopy porosity results in greater model bias 292 

than setting half-hourly or hourly time steps to save computational effort. This could be due, at least 293 

in part, to the fact that our model assumed a regular canopy shape and a uniform canopy porosity, 294 

neglecting both clumping (and gaps), and the actual canopy depth crossed by light rays, which 295 

depends on where the ray passes (i.e. canopy center or margins). Simple geometrical shapes are 296 

very rough approximations of real tree shapes, and leaves are clustered within shoots (Cohen et al. 297 

1995; Falster and Welstoby, 2003). Finer geometry descriptions have divided the canopy either in 298 

sub-volumes (Mariscal et al. 2000) or voxels (Knyazikhin et al. 1996; Sinoquet et al. 2005). Leaf 299 

area distribution within sub-volumes may be considered uniform or described by statistical 300 

functions (Wang and Jarvis 1990; Cescatti 1997). Finer canopy descriptions result in dramatic 301 

increases in computation time (Mialet-Serra et al. 2001; Roupsard et al. 2008) and, while improving 302 

model predictions (Sinoquet et al. 2005), light patterns are still averaged at some levels of space and 303 

time. Based on the present results, averaging, even at the scale of relatively short time and/or space 304 

intervals, results in important overestimations of daily An.  305 

For instance, Zhao et al. (2003) accounted for some of these aspects in their model and found 306 

the modeled and measured light to be very similar when averaged over half-hour. In this model the 307 

actual canopy thickness crossed by each ray was considered, and gaps in the canopy where 308 
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accounted for by calculating the statistical probability of a ray to pass through the canopy without 309 

intercepting a leaf (based on hemispherical photographs). However, this did not yield the actual 310 

light available on a given point and time, but rather the “expected average radiation flux on the 311 

point”. Therefore, while variations in canopy porosity and gap probability were considered, light 312 

was still averaged compared to reality. Additionally, canopy shape was still approximated to a 313 

regular geometric shape and leaf orientation was assumed to be spherical. Therefore, while better 314 

representation of canopy porosity is noteworthy, it probably did not allow measured and modeled 315 

transmitted light to match at the instantaneous time scale. Unfortunately, data were presented only 316 

as half-hourly averages. At this scale, our results show An as overestimated by 7% when using 317 

measured PAR, and by 26% when using modeled PAR. 318 

Talbot and Dupraz (2012) also attempted to consider non-uniform canopy porosity, by 319 

accounting for clamping with a clumping coefficient, but concluded that this did not improve model 320 

predictions of transmitted light. However, this resulted from the fact that the clumping coefficient 321 

was too dependent on the canopy volume adjustments procedure. They concluded that their model 322 

was not suited to account for the effects of architectural specificities of individual trees. Their 323 

results, therefore, do not suggest that more realistic modeling of light transmittance through the 324 

canopy is not important, but only that other limitations, particularly the approximation of canopy 325 

shape to regular geometric shapes, override possible improvements via other approaches.  326 

Some light models use an explicit stand description at scale of shoot or leaf (Dauzat et al. 327 

2001; Mialet-Serra et al. 2001; Casella and Sinoquet 2007; Lamanda et al. 2008). Models that 328 

account for individual leaves are the most likely to predict light patterns under the tree canopy that 329 

closely match the actual patterns, but these models are very demanding in terms of the number of 330 

parameters needed and computational effort. Consequently, they are not suitable for field 331 

agroforestry simulations (many trees), over long time scales. 332 

When using modeled PAR, estimated daily An was not only higher but also less variable 333 

than when using measured PAR, resulting in a narrower range of An values at any daily PAR (Fig. 334 
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3). This trend is also evident for RUE (Fig. 4). In other words, for a given daily incident PAR, 335 

measured light results in more variable daily An and RUE than for modeled light. This is because a 336 

given daily PAR can be obtained with long exposure at uniformly low irradiance or with short 337 

alternating exposure at high and low irradiance. In the first case, daily An and RUE are higher, while 338 

in the second case they are lower, despite having the same daily PAR, because fluctuating 339 

irradiance negatively impact time-integrated photosynthesis at equal total irradiance (Külheim et al., 340 

2002; Poorter et al., 2016; Kromdijk et al., 2016; Vialet-Chabrand et al., 2017). By averaging in 341 

space and time, modeling PAR reduces the difference in variability in the incident PAR (i.e. more 342 

variable light is more affected by averaging than less variable light, which is already closer to an 343 

average value), thus not only overestimating daily An and RUE but also reducing their variability at 344 

any given daily PAR.  345 

No current models used in agroforestry account for this variation in An and RUE with 346 

different sub-canopy light patterns, because all models do some averaging of light in space and/or 347 

time. The present results suggest that the light estimation approach used by these models is likely to 348 

result in overestimation of An and RUE for understory crops. Some models, however, do not use 349 

mechanistic approaches (e.g. Farquhar et al. 2018) to estimate An in the understory crop, but rather 350 

convert daily incident PAR into biomass growth using empirical RUE coefficients. These RUE 351 

coefficients are typically measured under field conditions or modeled, calibrated, and validated with 352 

field measurements. However, our results show that RUE varies greatly not only with daily PAR, 353 

but also with the daily PAR pattern, which, as discussed above, results in quite variable daily An 354 

and RUE even at equal daily PAR (Fig. 4). The variation of RUE with daily PAR is well 355 

established, and the shape of the RUE response curve to daily PAR (Fig. 4) closely resembles the 356 

one we previously published (Rosati et al. 2004) or the one often used in modeling (e.g. STICS 357 

component in the Hi-SAFe agroforestry model; Brisson et al. 2009, Dupraz et al. 2019). However, 358 

in these models, the RUE of the crop is calibrated under full-sun conditions, with a more uniform 359 

PAR pattern compared to that experienced under tree canopies. The present work suggests that, 360 
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when such calibrations in open fields are used in the crop component of agroforestry models, they 361 

are likely to overestimate the An and RUE of the crop under the trees. In this work, with chestnut 362 

orchards with different tree ages and spacing, An of the understory crop was overestimated by 26-363 

46% (Fig. 5), and RUE by 22-38% (Fig. 6).  364 

The impact of these results on global biophysical models is difficult to predict. Most crop-365 

only models are applied only in full-sun situations, and most forest models do not model 366 

photosynthesis directly. Nevertheless, considering that agroforestry is practiced on almost half of all 367 

agricultural area worldwide (Nair et al. 2009), and there is increasing interest in mixed tree-crop 368 

land uses, it will be critical to consider these results to correctly develop global biophysical 369 

agroforestry models. 370 

 371 

5. Conclusions 372 

The current results suggest that modeling understory crop An and RUE is quite challenging for 373 

several reasons. First, the daily PAR incident over the understory canopy varies from place to place 374 

during the same day, therefore the modeling must be done separately for different positions, 375 

receiving different daily PAR. Some models account for this by estimating the PAR incident under 376 

the trees at various space scales, then using this PAR to run the crop sub-model for each area unit 377 

(e.g. STICS crop model in the Hi-sAFe agroforestry model, Dupraz et al., 2019). However, the 378 

daily PAR transmitted in each area under the trees estimated by the models is not realistic, being 379 

more uniform than in reality, thus probably resulting in overestimated crop RUE.  380 

Ideally, therefore, crop RUE should be calculated under real agroforestry situations, using 381 

experimental agroforestry setups. While possible, this complicates model calibration, especially 382 

considering, as discussed above, that different agroforestry situations result in different light 383 

patterns of daily PAR, resulting in substantially different possible RUE values for a given daily 384 

PAR (i.e. high variability of RUE for any daily PAR value, Fig. 4). With varying whether 385 

conditions (i.e. frequency of sunny and overcast days), seasons (i.e. duration and intensity of 386 
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radiation), tree age (i.e. canopy size) and relative shade patterns, and position under the trees, the 387 

transmitted PAR pattern under the trees can vary greatly even for an equal daily total PAR, 388 

resulting in variable RUE values. Therefore, estimating the correct RUE in agroforestry models 389 

might be more challenging than previously thought. Possible solutions to overcome these modeling 390 

challenges are desirable. 391 
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 595 

Table 1. Tree spacing, row orientation, daily incident PAR in the different measuring days, and 596 

calibrated tree porosity for the four chestnut orchards used to measure the transmitted PAR on 24 597 

positions under the canopies, during several days per orchard. 598 

Orchard 

Tree spacing (m) Row 
orientation 
(˚E of N) 

Daily incident PAR 
above orchard canopy 
(mol m-2) 

Calibr.tree canopy porosity 
Within 
rows 

Between 
rows Ellipsoid Cylinder 

Mature 
A 9.3 8.2 168 36.5, 38.6 0.48 0.38 

Mature 
B 8 8 131 31.6, 23.7, 27.3, 30.8, 

30.9, 8.3 0.60 0.51 

Young A 4 6.5 0 36.4, 37.2 0.47 0.47 

Young B 4 6.5 0 9.3, 14.4, 31.6, 34.0, 
34.4 0.54 0.49 
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Table S1 Tree parameters for the 16 trees used in each of the four orchards. 600 

Orchard 

Trunk 
Circumfer. 

(cm) 

Bole  
Height  

(m) 

Canopy  
Height 

(m) 

Canopy 
Diameter 

(m) 

Canopy  
Volume 

(m3) 
  Cylin Ellips Cylin Ellips Y X Cylin Ellip 

Mature A 
62 2.2 1.7 7.0 8.0 4.6 5.0 86.8 75.8 
72 1.8 1.3 5.0 6.0 6.3 6.2 98.1 96.1 
67 1.8 1.3 7.0 8.0 5.5 6.0 135.0 115.7 
63 2.5 2.0 5.0 6.0 5.1 5.6 56.2 59.8 

 

Mature B 
63 2.5 2.0 5.0 6.0 5.1 5.6 56.2 59.8 

113 2.5 2.0 8.5 9.5 8.3 6.8 268.5 221.5 
78 1.9 1.4 7.5 8.5 6.0 6.8 180.1 151.6 

111 2.3 1.8 7.5 8.5 8.5 8.2 284.6 244.4 
 

Young A 
30 1.5 1.0 3.5 4.5 2.5 2.1 8.3 9.6 
34 1.0 0.5 3.5 4.5 2.5 3.0 14.8 15.7 
30 1.0 0.5 3.5 4.5 2.5 2.5 12.3 13.1 
31 0.8 0.3 3.5 4.5 3.3 3.6 25.2 26.1 

 

Young B 
30 1.0 0.5 3.5 4.5 2.5 2.5 12.3 13.1 
31 0.8 0.3 3.5 4.5 3.3 3.6 25.2 26.1 
38 1.0 0.5 3.5 4.5 4.0 3.7 29.1 31.0 
29 1.0 0.5 3.5 4.5 2.5 2.4 11.8 12.6 
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