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Abstract 
 
Uncertainty in energy and environmental statistics is a major issue in decision support to policy making. 
The need for timely and reliable statistics boosts the search for methods that reduce error in estima-
tion. In this work, a method for estimating the uncertainty of energy and environmental statistics co-
ming from different statistical sources is outlined, using as a framework a discussion on nature of 
uncertainty and the Black Swan problem is also outlined. The proposed method is then applied to an 
environmental problem using the concept of anti-fragility, to improve the decision support systems in 
energy policy analysis. 
 
 
Key words: Official Statistics, Unpredictability, Black Swans, Anti-fragility. 
 
 
Riassunto 
 
L'incertezza nelle statistiche energetiche e ambientali è un fattore critico nel supporto decisionale 
nelle politiche energetiche. In questo lavoro è proposto un metodo per la stima di dati provenienti da 
diverse fonti statistiche a partire da una discussione sul la natura dell'incertezza e il problema del cigno 
nero. Il metodo proposto viene poi applicato ad un problema ambientale utilizzando il concetto di 
anti-fragilità, per migliorare i sistemi di supporto alle decisioni nell'analisi di politica energetica.  
 
 
Parole chiave: Statistiche ufficiali, Impredicibilità, Cigni neri, Anti-fragilità. 
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1. Introduction 

 

Economic growth, energy security, energy efficiency, and climate 

change, represents major global challenges in the agenda of the world's 

governments: these issues are related among them by strong correlations. 

For example, the dilemma between economic growth and climate change 

mitigation well shows [1,2], the increasing attention on social and 

economic costs of disasters due to extreme events from climate change 

[3,4]. In this work, we consider one of the crucial elements required to give 

decision support to policymaking: the statistics: furthermore, a special 

focus on the "making of" in data estimation is proposed. 

The focus of this work is on energy and environmental statistics, one of 

the fundamental tools in energy policymaking [5]. The problem of the 

uncertainty of the statistics on emissions of PM2.5 is considered, using as 

a starting point of the analysis a previous work by one of the authors in this 

field [6]. The goal is to assess a particular concept of uncertainty, using as 

a case-study  the estimation of residential wood combustion (RWC) in Italy 

from residential fireplaces and woodstoves, one of the main sources of 

PM2.5 emissions, a truly serious threat to human health [7,14].  

About the statistic chosen, it can be recall that wood burning is a major 

contributor to the uncertainty in air quality forecasting [15,16], and it is 

featured by high uncertainty [17,18]; furthermore, RWC is underestimated 

[19]. This situation leads to an improvement in RWC estimation to reduce 

the gap between measured and predicted organic aerosol in CTMs 

(Chemical Transport Models) that will also influence source-receptor 

matrices and modeled source apportionment [17,20,21,22].  

 Starting from [6], the present work aims to show a new methodology, 

being the used method just the simplest case of a more general one. 

Subsequently, an anti-fragile approach to estimation is recommended as 

the optimal approach to implement the method. 
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2. Data and methods 

2.1 The used methodology 

After the review performed in the previous sections now we deal with a 

different kind of aggregation, moving from the concept of “reliability”. 

Indeed, here we focus on the same basic concepts of section 2.3: in 

particular, we try to address the key issues coming from the presence of 

the Black Swan, since we analyze the problem of reliability of different sets 

of available statistics, produced by any type of data collection (like a 

survey) or resulting from real or simulated experiment. 

It is truly relevant to note that, since we deal, in the real world, with 

every type of unpredictability (intrinsic, black swans, extrinsic), we are 

forced to find an all-conditions answer, a methodology enough general 

and powerful to consider any type of problems that can occur. 

The path to the answer is set starting with simple question: the answer 

led us to the concept of anti-fragility as the optimal case of an intuitive but 

reasonable methodology, entirely based on the information available at the 

time of prediction.  

The question is: how can we deal with different data sources to 

estimate the "real" or the “better” approximate value for an observed 

phenomenon? For example, let us suppose that we have a set of N data 

about some variable, coming from two distinct statistical surveys. So, we 

will have a pair of values for each considered variable that we must 

estimate.  

The first hypothesis here is to assume each value of such a pair, as the 

central moment of a certain probability distributions associated to the 

considered variable.  

Each statistical survey produces data intrinsically subject to uncertainty. 

An in-depth analysis of the several types of uncertainty related to the data 

could be used to identify the most appropriate probability distribution 
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model for the considered phenomena: for the sake of simplicity, here the 

Normal Distribution was used. 

In the follows, a method to consider the resulted uncertainty is outlined 

by considering each of the N available values from the two different 

statistical sources as a certain moment of a probability distribution, 

assuming that the "true" value of the variables could be in a range 

between such reference values, and that any value between these 

extremes has a certain probability to occur. 

Let us consider data coming from two distinct statistical surveys, A and 

B (we know that mean of A is equal to 701 and mean of B is equal to 110: 

we suppose that both A and B have the same variance, equal to 7). Now 

let us apply what we have said before to identify the new reference 

distribution, called E: see figure 1. 

 

 

Figure 1 - Graphic representation of the proposed estimation method in a case 

of data coming from two statistical sources (hypothesis: Normal Distribution) – 

imaginary data 

 
1 This is a pure arbitrary example, so let us suppose that the measure unit is PJ for energy consumption. 
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The mean of the new Distribution E is located exactly between the 

mean of the A and B distributions (this is just a possibility). 

Why should we do this? 

The experiment started from the results of two separate experiments 

(surveys, sample measurements, etc.). We have supposed the existence 

of a probability distribution model for the data (in fact, it could exist or not, 

or could be unknown, since we must deal with every kind of 

unpredictability). Subsequently, among the considered distributions, we 

hypothesize the existence of a further statistical distribution, which follows 

the same model of the existing ones. The key assumption is that the 

central moment of this last distribution is located among the existing ones.  

Why the proposed approach should be interesting? It would be perfectly 

possible to believe that the results of one of the statistical sources 

considered is more reliable than the others. In the choice between various 

sources, several arguments could be leads to a certain one: for example, 

the statistical quality of the data, and so on. In such cases, it is possible to 

choose the “better” statistical source just basing on a thorough analysis of 

the available information, according to certain criteria.  

The fact is, that it is also possible that we would prefer a certain source 

for some reasons, and another source for other reasons. 

For example, a certain survey could be characterized by a high quality 

of data applied to the entire national territory of a given country; another, 

could present a higher quality than the previous about some specific 

region of the country itself. There are many examples in which there are 

good reasons to consider data from multiple sources, so a method to 

address such situations is required. 

Let us start to define more specifically our approach. 

Basically, basing on the initial information available about the 

investigated phenomena, and basing on the statistical methodology of 
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data collection and/or estimation, as a first step, we define a certain model 

of the probability distribution for data. For example, in the survey on the 

household's wood consumption of a given territory, the data of physical 

consumption could be associated with a Normal model rather than a 

Continuous Uniform model, based on the knowledge of consumption 

patterns, of historical data and of any other relevant information known at 

the time of the survey. 

So, it is possible to define a specification for available data, like in table 

1: 

 

Statistical Units 
Sourc

e 1 

Probability 

Distribution 

Model 1 

Sourc

e 2 

Probability 

Distribution 

model 2 

Region 1 x1 
Continuous 

Uniform 
y1 

Continuous 

Uniform 

... ... ... ... ... 

Region i xi Gaussian yi Gaussian 

... ... ... ... ... 

Region 12 xN 
Continuous 

Uniform 
yN 

Continuous 

Uniform 

 

Table 1 - Tabular representation of basic data of two statistical sources 

according to the proposed method (imaginary data from two statistical surveys 

about energy consumption in the regions of a country) 

 

As a second step, each data is considered as the central moment of its 

distribution.  

As already shown in an intuitively way in Figure 1, it is possible to build 

a new distribution E, in which its central moment is located between the 

central moments of A and B. The choice of a certain moment (like 

arithmetic mean) should be arbitrary. 
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This step sounds remarkably familiar with the Confucius Doctrine of the 

Mean, but here are required some further explanations by using an 

example. 

Let us assume that a large-scale statistical survey on the national 

territory has estimated a certain level of firewood consumption x for each X 

region of the country. Furthermore, another specific survey carried out by 

some other statistical source in a certain number of regions has made a 

different estimate, indicated with y. The data x was obtained through a 

telephone interview: the data y, by physically reaching the households in 

their homes. To decide between the two statistical sources considered, 

many other structural and specific aspects could be important. For 

example, there may be differences in the statistical methodologies used; 

the samples analyzed could have been built using different methods; the 

investigations could refer to different moments in time, in which certain 

relevant events could occur, and so on. If, however, we start from the 

assumption that all the used methodologies are reliable, and that the 

investigations have been correctly performed, we could think that source A 

have a comparable data quality respect source B. 

Let us recall the estimation performed in [6]: data from two separate 

statistical surveys were used as input to the analysis. The used surveys 

referred to the consumption of firewood by Italian households: 

consumption data were used to feed the model represented by equation 1. 

1. Ei,p = ∑ ∑ Acti,km Efi,k,m,p ∗ xi,k,m,pk       

Where, p and j represent the pollutant type and biomass burning type, 

respectively; E is annual emission of a particular type of pollutant 

(ton/year); m is the annual mass of dry matter burned (ton/year); finally, EF 

is the average emission factor (g/kg fuel). This model will be used in the 

follows for the results of a cost-effectiveness analysis reported at the end 

of this section. 
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 So, we could use a simulation technique (like a bootstrap simulation 

[23-25] to estimate the parameters of the equation 1 and, subsequently, 

the emissions, expressed in PJ basing to reference survey's data [26,27]. 

In [6] the sample was built by generating 30 pseudo-random numbers 

distributed according to a uniform continuous variable between these 

extremes. 

This kind of estimation can present some critical issues. In our example, 

it leads to consider as a reference value the mean of the central moments 

of two different surveys, which could lead to underestimation of 

consumption and the emissions (the exact opposite is also possible, but 

we consider only the adverse case).  

The first consideration that can be made about it, is that such a problem 

can be compensated by modulating appropriately the variance of E 

distribution, as Figure 2 illustrates.  

 

 

 

 

figure 2a 
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figure 2b 

Figure 2a and 2b - Considering tails of distribution A and distribution B via 

variance modification of distribution E 

 

This kind of procedure could be use different weights for each source, 

as shown in figure 3: 

 

 

Figure 3 - Considering the tails of distribution A and distribution B via weighted 

mean modification of distribution E 
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What the main strengths by using this method? 

First, let us remember that one of the basic assumptions is that the 

different statistical sources considered, all comply with a minimum level of 

data quality. So, we must search for methods that make it possible to 

exploit all available information, effectively (in terms of accuracy of 

estimates) and efficiently (in terms of computational and economic costs). 

In this context, the proposed approach is characterized by a certain 

caution (following the same distribution model estimated for the 

phenomenon, making the new estimates within the limits of the existent 

models and data), but, however, go beyond the results obtained by the 

surveys. Furthermore, the modularity of the approach is guaranteed by the 

possibility to choose the most appropriate models and parameters to 

manage the starting data. 

Well, what is the connection between the proposed method and the 

concept of anti-fragility? 

The first (and main) observation that can be made is that using an 

"interposed" distribution, among those of the statistical sources 

considered, is equivalent to not consider any of them as "true", and, 

moreover, "safe".  

Searching a metaphor in Taleb's work, we could use the comparison 

between the two brothers, the employee and the taxi driver, whose gains 

seem respectively "safe" and "uncertain". In fact, we know that the safety 

of the first brother could quickly be eliminated by a sudden dismissal and 

that the taxi driver is less subject to uncertainty on income than it appears, 

being more robust to any sudden "black swan". 

 

Let us look at a visual representation of some concepts to better 

understand.  
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Now we look at what Taleb says in Appendix 1 of [28], about the 

graphics of the concepts above expressed.  

We recall that, in this work, the focus is on PM2.5 emissions from 

firewood combustion by households: so, we must deal with some events 

(energy consumption by households) and with exposure to events 

dependent from the first ones (emissions). 

We are talking about the barbell transformation, which can be quickly 

recall through Figure 4. 

  

Figure 4 - Convex (or "barbell") transformation 

The first consequence of adopting the anti-fragile approach implies the 

need to keep in mind the worst-case scenario: in this case, the distribution 

centered on the higher energy consumption value becomes the reference 

of any emission management policy and the distribution E of the previous 

figures changes as shown in figure 5. 
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Figure 5 - Application of convex (or "barbell") transformation to the estimation 

of E distribution 

 

The anti-fragile approach to estimation is revealed, in the context of this 

study, as one of the possible configurations of the proposed method. 

Furthermore, in fact, it is to be considered as the most effective and 

efficient configuration of estimation among the available options. 

About the effectiveness, the proof is simple: just assuming that the 

worst possible case is (by definition) possible and you must be prepared 

accordingly: this means make energy policies according to the worst 

situation (in this case, the highest possible level of firewood consumption). 

About efficiency, the problem is more complex, for two reasons. First, 

each policy has a cost: secondly, every policy has complex interactions 

with other different ones (energy policies are linked to economic and 

environmental policies, for example). To address such issues, we present 

the results of a simple simulation based on data and methodology of Rao 

et al [20] integrated by the presented method. 
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3 Results 

 

At this point, further methodological development is introduced, using a 

Markov model [29,30] in a simple decision problem. 

Let us assume we want to choose between two policies, A and B. In 

policy A, characterized as "fragile", we give equal weight to the data 

coming from the two surveys, the A, and the B. Its characteristic probability 

distribution is, therefore, the one reported in figure 1. 

Policy B, defined as "anti-fragile", is, however, obviously associated 

with the distribution E of Figure 5. 

Let us suppose now to consider the effects in terms of cost and 

effectiveness. The cost assigned to the two policies is an imaginary 

number, in this case, we hypothesize that the anti-fragile policy, the B, 

costs double than A (2000 USD per year versus 1000 USD per year). 

The effectiveness of the two policies is expressed in terms of avoided 

PM2.5, calculated using equation 1 on the average consumption values of 

distributions A and distribution B. The average consumption values and 

the resulting particulate values are modeled as Normal distributions with 

an average of , respectively 70 and 110 with a same variance, 7 (arbitrary 

values according to the ones used in figure 1). 

The calculation of emissions is restricted to a particular case, i.e., it is 

assumed to be equal to the consumption value multiplied by the emission 

factor of the wood burned in an open fireplace, in the absence of control 

technologies. Average consumption data are expressed in PJ. 

At this point, we introduce two further hypotheses. 

We assume that the situation is perfectly symmetric for the estimates 

coming from both the A and B surveys, each of them have a probability of 

50% of being true. 
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Therefore, let us add another hypothesis: that there is a critical 

threshold not to be exceeded in emissions due to its environmental 

consequences on the health of households in the considered area. What 

follows reports data, decision tree and cost-effectiveness results of the 

simulation. 

 

Name Description Definition 

cost_A Cost of Policy A 1000 

cost_B Cost of Policy B 2000 

pEff_A Probability of success for Policy A 0.5 

pEff_B Probability of success for Policy B 1 

pCons_A 

Probability of data consumption are from 

Distribution A 0.5 

pCons_B 

Probability of data consumption are from 

Distribution B 0.5 

Eff_A PM2.5 avoided ((70)*487*(69,23/100))/1000000 

Eff_B PM2.5 avoided ((110)*487*(69,23/100))/1000000 

 

Table 2 - Variable properties of Markov model used in simulation 

 

 

Figure 6 - Markov model decision tree 
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Figure 7 - Cost-effectiveness Analysis in comparison of Policy A and Policy B. 

 

The cost of the policies (expressed in thousands of U.S. Dollars) is 

reported in the y-axis, while the x-axis reports the effectiveness, expressed 

in terms of thousands of tons of PM2.5 avoided. 
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settled. Furthermore, the cost formulas should be considering scenario-

shift (if emissions exceed their critical levels, the cost data should also be 

updated to take account of the economic impact on human health). 

Finally, we observe that in our hypothesis, we have made the anti-

fragile policy as the most expensive one (twice the other policy): a strong 

hypothesis, which of course does not have to be intended, as necessary. 

 

Conclusions and Discussions 

The proposed methodology comes from considerations on the role of 

the unpredictability in the statistics production and on the use of such a 

statistic in decision support for energy policymaking. Our case study 

concerns the consumption of firewood by combustion from households 

and the consequent production of PM2.5. Estimating the emission 

uncertainty represents an ongoing area of research [22]: in an attempt of 

improving the methodology to better rely on available data and models, 

the proposed method uses the data and the related probability models (if 

known) to elaborate a new probability distribution of the same type, placed 

between the central moments of the starting distributions, according to the 

confidence in the likelihood of the data and models used. 

In the proposed methodology, we do not focus on identifying the type of 

uncertainty related to the observed phenomenon. Instead, we use an anti-

fragile approach to obtain the best possible answer to any type of 

unpredictability in a context of cost-effectiveness analysis. 

Instead of focusing on the aspects of analysis that lead to the 

estimation of unpredictability, we set the worst case as the basis of the 

policy to be adopted. The cost-effectiveness analysis shows that even a 

single additional choice criterion can make this strategy successful, also in 

terms of economic costs. 

The best possible configuration of the proposed method in terms of 

effectiveness is the so-called "barbell transformation" proposed by Taleb 
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[28], which can make a policy anti-fragile. The estimates obtained from the 

resulting model are in fact focused on the worst possible case, the event 

with the maximum negative impact on the system. 

An anti-fragile policy like can involves increasing costs: so, as we said, 

this leads us to a cost-effectiveness analysis, here performed using a 

basic Markov model to compare a hypothetical anti-fragile policy with a 

fragile one. 

The first simple case in which the superiority of the anti-fragile policy is 

clear is that in which there is an unacceptable (known) threshold of 

damage: in our case study, we hypothesized that there may exist a critical 

limit in PM2.5 particulate emissions not to be exceeded to protect human 

health. 

About the cases in which emissions remain below the critical threshold, 

we can use the Incremental Cost-Effectiveness Ratio (ICER), with the 

possible addition of additional criteria, such as availability to pay (in this 

case, the willingness of the citizens to finance emission control policies by 

taxation, for example). 

The proposed method starts with the use of the probability model 

related to the considered variables and move towards the decision theory 

to select the best policy option, increasing the quantity and quality of the 

data available in the decision-making process. Further in-depth could be 

dedicated to the analysis of the criteria to be used in the evaluation. 
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