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LIDAR DETECTION OF CARBON DIOXIDE AS A PRECURSOR TO VOLCANIC ERUPTIONS:
FIRST RESULTS OF THE CAMPAIGN AT MOUNT ETNA   

S. Parracino, S. Santoro, E. Di Ferdinando, G. Maio, M. Nuvoli, A. Aiuppa, L. Fiorani

Abstract

Thanks to the innovative, laser-based, remote sensing system, named BILLI – Bridge Volcanic LIDAR,
developed at ENEA (RC of Frascati) by FSN-TECFIS-DIM research group, it has been possible to carry
out an experimental campaign at the Mount Etna volcano (CT), from the 28th of July to the 1st of Au-
gust, 2016. The main goal was to detect the exceedance of in-plume CO2 concentration, for early
warning of volcanic eruptions.
The research is funded by the ERC project BRIDGE – Bridging the gap between gas emissions and
geophysical observations at active volcanoes.

Keywords: Volcanic hazard, Gas detection, Laser remote sensing, Differential absorption lidar

Riassunto

Grazie al nuovo sistema di telerilevamento ambientale BILLI – Bridge Volcanic LIDAR, messo a punto
dal gruppo di ricerca FSN-TECFIS-DIM dell’ENEA (CR Frascati), è stato possibile condurre una cam-
pagna sperimentale presso l’Etna (CT) – dal 28 Luglio al 1 Agosto 2016, allo scopo di rilevare la con-
centrazione di CO2 presente in eccesso all’interno del plume vulcanico, per fornire un’allerta precoce
in caso di eruzione. 
Tale ricerca rientra nel progetto BRIDGE - Bridging the gap between gas emissions and geophysical
observations at active volcanoes (progetto patrocinato dall’European Research Council).

Parole chiave: Rischio vulcanico, Rivelazione di gas, Telerilevamento laser, Lidar ad assorbimento
differenziale
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1. Introduction 

Millions of people currently live in the proximity of active or quiescent volcanoes and, therefore, are 

potentially exposed to the deleterious effects of their eruptions. In fact, volcanic eruptions can determine an 

increasing of air pollution levels; they are able to influence climate changes [1] and, in some circumstances, 

to kill large number of humans, destroying the adjacent environment and causing serious damages to 

national/international economies. 

Mitigation of these effects requires careful assessment of volcano behavior and activity state, which can be 

accomplished via instrument-based volcano monitoring. Accurate knowledge of gas composition in volcanic 

plumes gives information on the geophysical processes, taking place inside volcanoes, and provides alert on 

possible eruptions [2]. 

Until recently, coupled gas-geophysical studies were sparse, due to the difference in their sampling 

frequency (low for gas data). This explains the interest of earth scientists in new techniques of gas detection, 

in particular for CO2, the second most abundant gas in volcanic fluids and the most directly linked to “pre-

eruptive” degassing processes [2]. 

In the last 30 years, several ground based optical sensing systems have been developed [3] for sounding 

volcanic particulate in the troposphere [4], in the stratosphere [5], for monitoring fluxes of aerosol [6], SO2 

[7,8] and H2O [9] in volcanic plumes. However, the scarcity of volcanic CO2 flux data in the geological 

literature (see Burton et al. 2013 [10] for a recent review) is a direct consequence of the technical challenges 

in resolving the volcanic CO2 signal from the large atmospheric background (≈ 400 ppmv) [11].  

In order to fill this gap, a new Differential Absorption Lidar (DIAL), designed to measure the volcanic CO2 

flux, was developed as part of the ERC Starting Grant Project “BRIDGE”. The BrIdge voLcanic Lidar 

(BILLI), recently assembled at ENEA Research Center of Frascati, successfully retrieved three-dimensional 

tomographies of volcanic CO2 in the plumes, at Italian volcanoes Pozzuoli Solfatara (Naples, Italy) 

[12,13,14], and Stromboli volcano (Sicily, Italy) [11,15,16]. To our knowledge, this was the first time that a 

lidar system retrieved range-resolved measures of both CO2 concentration and flux in a volcanic plume.  

BILLI has opened unprecedented possibilities in measuring volcanic CO2: an excess of a few tens of ppm 

could be clearly resolved beyond 3 Km of distance, with spatial resolution of 5 m and temporal resolution of 

10 s [15]. 

Quantifying the CO2 output from Pozzuoli Solfatara and Stromboli was vital to interpreting – and possibly 

predicting – the future evolution of the volcanic system, with huge benefit of the population living nearby. 

These examples show the huge social values of lidar systems in monitoring gas emissions. Observations at 

densely populated volcanic regions will have a high societal impact throughout Europe. 

The final experimental campaign, to test our system performance, has been carried out between the July and 

the August of 2016 at the Mount Etna (CT), the largest and most important volcano in Italy and one of the 

most active volcanoes in the world [17]. In this regard, both the setup of the system and the data processing 

routine have been maintained. Furthermore, thanks to a better wavelength setting, due to the implementation 

of a photo-acoustic cell, and an appropriate laser-telescope alignment, the measurement error has been 
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reduced. As it will be showed in the following, these facts have slightly improved the accuracy of our 

measurements. 

Similarly to the previous campaigns, the main goal of this latter one was to measure the exceedance of in-

plume CO2 concentration, so as to provide useful information to volcanology research, for a precocious alert 

to population in case of eruptions. 

For these reasons, this report has to be considered as an extension of the previous works [15,16]. In fact, here 

the attention will be primarily focused on successful results, concerning CO2 plume retrieved beyond 4 Km, 

the longest optical path ever reached by our system. 

A brief description of BILLI system and the newly designed BRIDGE DIAL data processing technique will 

be shown, respectively, in Section 2.1 and 2.2. Moreover, an overview about the experimental setup of the 

system and the meteorological conditions, during the measurement sessions, will be reported in Section 3. 

Finally, a fully comprehensive analysis of the field operations and, in particular, of CO2 profiles and 

dispersion maps, achieved by Matlab routines, will be discussed in Section 4. 

 

 

2. Materials and methods 

 

2.1 The BILLI system 

 

BILLI [15] is a complex DIAL system for environmental remote sensing that provides ground based and 

range resolved remote measurements.  

It is mounted in a truck, usually positioned far from the volcanic plume and probes it with its laser beam. 

Thanks to two large elliptical mirrors the instrument field of view – FOV can be aimed to any direction. 

With such configuration, and scanning the plume in both horizontal and vertical planes, the CO2 

concentration outside and inside the volcanic plume is measured. These measurements, once carried out over 

a significant part of the plume, and upon scaling to the transport rate (as derived from the wind speed at the 

plume altitude), allow one to retrieve the carbon dioxide flux. More details about this procedure are reported 

in Ref. 11, 14 and 15.  

The system is composed of a transmitter and receiver equipment (visible in Fig. 1a). Instead, a particular of 

the telescope mirrors are visible in Fig. 1b.  
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It is well known that CO2 absorbs in the 15, 4.2, 2.1 and 1.6 μm bands (in order of decreasing strength) [13]. 

Unfortunately, in the first two bands viable lasers are not available and atmospheric backscattering is rather 

low, so the 2.1 band has been chosen for its detection [15]. Nevertheless, the DIAL measurement of CO2 

remains a difficult task because the absorption lines are narrow and weak [13]. Furthermore, with respect to 

Pozzuoli Solfatara field campaign [12,13,14], the operative wavelengths have been slightly changed (see 

Table 1). In order to reduce the differential absorption cross section of carbon dioxide (Δσ), thus allowing the 

laser beam to reach longer ranges. 

Summarizing, the main characteristics of the BILLI DIAL system are the following: 

 the system is able to explore the atmosphere in both vertical and horizontal directions;  

 each lidar profile is obtained averaging 50 shots ON and OFF (interlaced between them with tshift  = 

0.1 s); 

 the temporal resolution between laser shots (Δt) is equal to 10 ns, corresponding to ΔR of 1.5 m; 

 a concentration profile is obtained (≈ 40 s) by a couple of lidar signals (ON and OFF) using the 

newly designed mathematical technique explicitly developed for this application; 

 starting from lidar signals of the same scan it is possible to retrieve the dispersion map of in-plume 

CO2 concentration [ppm] in the investigated area; 

 knowing the (estimated) plume speed it is possible to obtain the CO2 flux [Kg/s]; 

 starting from lidar profiles acquired successively, it is possible to track, as rapidly as possible, the 

motion of discrete atmospheric particles emitted by the volcanic crater. This allows one to estimate 

also the wind speed [18].   

 

 

2.2 The BRIDGE DIAL technique 

 

From the literature [18,19,20], the optical power returned to the lidar receiver at any time t is produced by 

back-scattering of the laser beam by an atmospheric layer at distance R (range) from the source, where R = 

ct/2 and c is the speed of light. As such, the lidar offers range-resolved information on atmospheric structure 

and properties (aerosols, particles and gas molecules) along the laser beam, in the form of intensity vs. range 

plot. 

Generally, raw data are normalized to the laser energy, and the flat baseline of each return, which is 

proportional to the intensity of background noise, is subtracted. Background noise here is defined as an 

average of data points sampled at the far end of the signal trace (see Fig. 2a). 

Upon its atmospheric propagation, the beam intensity decreases approximately: exponentially, due to 

atmospheric extinction, according to Lambert-Beer law and as 1/R2, because the solid angle subtended by the 

receiver is A/R2, where A is the telescope effective area. For these reasons, it is a common practice to use the 

Range Corrected Signal – RCS for lidar data processing (see Fig. 2b). To improve the signal-to-noise ratio 

(SNR), 100 laser shots were averaged for each lidar return and a Savitzky-Golay filter [21] algorithm with 13 

points was employed (Fig. 2c). 
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The transmitted wavelengths have been changed (ON: 2009.537 nm, OFF: 2008.484 nm) in order to reduce 

Δσ, the differential absorption cross section of carbon dioxide, thus allowing the laser beam to reach longer 

ranges. 

Then, we have processed each acquired atmospheric profile using a Matlab analysis routine, with the aim of 

calculating the CO2 concentrations in the atmospheric background, and in the volcanic plume. The data 

processing routine consists of the following steps, all based on the Lambert-Beer law relation: 

a) Initially, the CO2 concentration in the natural background atmosphere, C0, is calculated as: 

 

1

1

1

, 0,
0

, 0,

ln 2
P OFF OFF

P
P ON ON

I I
C R

I I


 
  

  
                                                  (1) 

 

where: IP1,ON (IP1,OFF) stands for intensity of the ON (OFF) lidar signal caused by reflection of the laser 

beam off the surface of the first wall-rock of the Mount Etna (1600 m<RP1<1700 m, see Fig. 2a); I0,ON 

(I0,OFF) is the intensity of the ON (OFF) lidar peak, caused by laboratory scattering of the laser pulse (see 

Fig. 2a) and Δσ is  the CO2 differential absorption cross section; 

b) Secondly, ΔC, the average excess CO2 concentration in the volcanic plume cross-section between the 

first and second rockface of the Etna, is derived from: 

 

    2 1

2 1

2 1

, ,
0

, ,

ln 2
P OFF P OFF
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P ON P ON

I I
C C R R

I I


 
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  
                                         (2) 

 

where: IP2,ON (IP2,OFF) is the peak intensity of the ON (OFF) lidar signal caused by reflection of the laser 

beam off the surface of the second rock wall of the Etna (2050 m<RP2<2450 m see Fig. 2a); 

c) Thirdly, CCO2,i, the excess of CO2 concentration, corresponding to each i-th ADC channel of the lidar 

profile, is calculated from: 

 

 ii SkC   (3) 

 

where:  

− 
 2 1P P

i
i

C R R
k

R S

 


 
  is the multiplication factor; 

− 2
,ln( )i i OFF iS I R  is the Range Corrected Signal;  

− ΔR is the range interval corresponding to an ADC channel;  

− Ii,OFF is the OFF signal of the i-th ADC channel (the OFF signal has been chosen because of its 

signal-to-noise ratio is higher); 

− Ri is the the range of the i-th ADC channel. 
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d) the zero level of Ci has been calculated outside the volcanic plume. 

e) Finally, the two main error sources, that affected our measurements, have been evaluated: 

i. systematic error of the CO2 concentration measurement – Taking into account of the experience 

[11,14] the systematic error of  our system is dominated by imprecision in wavelength setting 

[12], leading to inaccuracy in differential absorption cross section and thus in gas concentration. 

To minimize this error, we implemented a photo-acoustic cell filled with pure CO2 at 

atmospheric pressure and temperature, close to the laser exit, in order to control the transmitted 

wavelength before each atmospheric measurement. This procedure allows to set the ON/OFF 

wavelengths with better accuracy than the laser linewidth [15]. Assuming that the error in the 

wavelength setting is ±0.02 cm-1 (half laser linewidth), in the wavelength region used in this 

study, the systematic error of the CO2 concentration measurement is 5.5% [11]. 

ii. statistical error of the CO2 concentration measurement - The statistical error has been calculated 

by standard error propagation techniques [22] from the standard deviation of the lidar signal at 

each ADC channel. In the distance range between the first and the second rockface, representing 

a mean measurement range, and at typical atmospheric and plume conditions encountered during 

this study, the statistical error of the CO2 concentration measurement was about 0.61%. 

Assuming that each error source is statistically independent, we can quadratic sum all the errors and 

obtain a cumulative error of ~ 6.1% (dominated by the systematic error), a lower value than the previous 

campaign. In fact, at Stromboli the quadratic sum of same error contributions was about 8% [11]. 

As already stressed, the repetition rate was 10 Hz and each CO2 profile was obtained averaging only 100 

lidar returns (50 at ON and 50 at OFF), corresponding to an integration time of about 40 s. Plume scans were 

acquired only along the vertical path and retrieved combining more than 30 profiles, in less than 18 minutes. 

Typically, 50 scans (or more) at different elevations were repeated, for each measurement day, obtaining 

three-dimensional tomographies of the volcanic plume. 

 

 

3. Overview of the experimental campaign 

 

3.1 Experimental setup 

 

The area chosen for our experiments was the summit crater of the Mount Etna volcano (3329 m above the 

sea level – ASL), that is placed between the province of Messina and Catania, in Sicily (Fig. 3a). This hostile 

and inhabited region hosts one of the most active volcano in the world. It is characterized by extremes of 

temperature, high humidity and rates of rainfall, the presence of acid vapors, re-suspended dust and particles, 

which are toxic for humans and dangerous for the instrumentation [17].  

Notwithstanding the harsh environment, BILLI operated practically continuously for nearly a week (from 

July 28-31, to the 1st of August 2016, including an initial instrumental setup phase), thanks to good weather 

conditions (see Section 3.2).  
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4. Results
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and developed in both vertical and horizontal direction, covering a wide area, after a complete random 

dispersion, as in Figures 9b,c, 10, 11a,b,c or remaining rather confined as in Figures 8, 9a, 11d. 

Obviously, both spatio-temporal and intensity variations of CO2 concentration, shown in the previous 

figures, were strictly linked to the variations of emitted particles and ash during the current volcanic activity.   

Plume fluctuations in free atmosphere were also probably due to a combination of the thermal updraft, from 

the main degassing vents on the volcano’s summit, and on a smaller scale, to the presence of North-West 

wind blowing during the measurement session. 

Furthermore, differences between subsequent maps were also probably due to rapid, local and random 

fluctuations of particles and gases emitted by volcano. 

In conclusion, the great novelty, respect to the previous works [15,16], is that our measurements allowed us 

to locate and track volcanic plumes, beyond 4 Km of distance from the system location. The detected values 

in excess of CO2 concentrations were in good agreement both with conventional measurements, carried out 

in the same time interval, and with the previous lidar ones acquired during the Stromboli campaign [15].  

The preliminary results reported in this work can be considered to be extremely promising to validate the 

reliability and accuracy of the system developed at ENEA. Furthermore, they could represent a further step 

forward in the ground-based volcano monitoring and volcanology research field. 

 

 

5. Conclusions 

 

In this work, the results of the experimental campaign carried out between the 28th of  July and the 1st of 

August 2016, at the Mount Etna volcano have been reported. The main goal was to detect and analyze 

volcanic plumes, in order to measure the exceedance of in-plume CO2 concentration. This gas is extremely 

important since, according to volcanologists, it is a precursor of eruptions. For this purpose, BILLI, a DIAL 

system recently developed at ENEA under the ERC BRIDGE project, was used. 

The great novelty/advantage of the measurements reported here is that BILLI allowed measurements to be 

taken continuously, remotely (more than 4 Km) and, therefore, from a safer location free from risks to which 

operators are exposed during direct sampling, with much higher temporal (40 s) and spatial (5 m) resolution 

(the plume was scanned in few minutes rather than over several hours). These performances are adequate to 

follow the spatiotemporal dynamics of the volcanic plume and can provide, quickly and continuously, 

reliable data on a key precursor of volcanic eruptions. 

In conclusion, the BILLI DIAL system was used to retrieve 3D tomographies of volcanic plumes at Etna 

volcano. CO2 excess of a few tens of ppm has been clearly detected remotely and in a few minutes scan. 

Furthermore, a complete time-resolved plume evolution has been detected in several measurement sessions; 

this fact could also be useful for the measurement of wind speed. 

The lidar measurements of CO2 were in good agreement with results obtained with conventional techniques, 

yet based on completely independent and significantly different approaches. This has proven the goodness 

and the reliability of the system developed by the ENEA. 



24 

To our knowledge, this is the first time that a CO2 peak is retrieved by lidar in a volcanic plume, at a distance 

that exceeds the 4 Km. This fact demonstrates the high potential of laser remote sensing in volcanological 

research. 

In the near future, it will be desirable to deploy a such established laser-based system, to eruptions 

forecasting, for prolonged periods. This will allow us to provide useful information to volcanologists, 

concerning the time evolution of volcanic gases in hazardous regions, working remotely and safely.  
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