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REMOTE SENSING FOR MONITORING AND MAPPING LAND PRODUCTIVITY IN ITALY
A rapid assessment methodology

M. Sciortino, M. De Felice, L. De Cecco, F. Borfecchia

Riassunto

Presentiamo una metodologia basata sul telerilevamento per una rapida valutazione dello stato e delle
tendenze della produttività del territorio (LP) a livello nazionale e subnazionale. Questa metodologia
mira a sostenere le politiche ambientali nazionali e internazionali per raggiungere l'obiettivo di Land
Degradation Neutrality nel quadro dell'Agenda 2030 delle Nazioni Unite e degli Obiettivi di sviluppo
sostenibile. Il lavoro è stato eseguito utilizzando l'indice NDVI (Normalized Difference Vegetation
Index) della NASA-MODIS come indicatore proxy dello stato e della tendenza di LP. Lo stato LP è
stato identificato dalla media e dalla deviazione standard dei valori annuali LP 2000-2015. I trend di
LP delle serie annuali sono state calcolate utilizzando i test Mann-Kendall (MK) e Contextual Mann-
Kendal (CMK). La quantità di terreno con trend crescenti e decrescenti è stata valutata assumendo il
livello di significatività del 95% nelle aree ove la qualità del dati NDVI è affidabile. L'area di trend LP
crescenti e decrescenti è stimata per il territorio nazionale e per diverse coperture del suolo. Le varia-
zioni di LP positive osservate sono sicumente correlate alla progressiva rinaturalizzazione del territorio
in seguito alla diminuzione delle attività agricole e all'aumento delle precipitazioni nella stagione in-
vernale nel periodo di riferimento. La diminuzione di LP ha interessato aree molto limitate correlate a
variazioni delle precipitazioni stagionali e/o delle attività umane. I comuni maggiormente interessati
dal declino o dall'aumento di LP vengono identificati allo scopo di individuare le aree ove possibilmente
effettuare specifiche attività di monitoraggio e convalida future.

Abstract

We present a remote sensing-based methodology for rapid assessment of status and trends of Land
Productivity (LP) at national and sub-national scales. This methodology aims at supporting environ-
mental national and international policies to achieve the Land Degradation Neutrality target in the
framework of the UN Agenda 2030 and the Sustainable Development Goals. The work was performed
in Italy using the NASA-MODIS Normalized Difference Vegetation Index (NDVI) as proxy indicator of
LP status and trend. LP status was identified by mean and standard deviation of 2000-2015 yearly LP
values. LP trends of the yearly time series were computed using Mann-Kendall (MK) and Contextual
MK (CMK) tests. The amount of land with valid increasing and decreasing trends is estimated assuming
the 95% significance level of trends in the areas with good pixel reliability. The area of increasing and
decreasing LP are estimated for the national territory and for different land covers. The widespread
observed positive LP variations were correlated to the progressive renaturalization of lands subsequent
to the decrease of agricultural activities and increasing precipitation trends in the winter season. LP
decrease affected very limited areas and hot spots were correlated to changes of seasonal precipita-
tion and human activities. The municipalities most affected by LP decline or increase are identified for
future monitoring and validation activities.

Keywords: Remote sensing, NDVI, Land Productivity.
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1. Introduction 

 

Land degradation and desertification are considered global threats to the sustainable development of many 

countries. This is the message that international policy makers agreed to stress at the RIO+20 United Nation 

Conference on Sustainable Development in June 2012, recommending countries and the international 

community to identify urgent actions to reverse the current land degradation trend.  

 

In September 2015, the United Nations General Assembly adopted “The 2030 Agenda for Sustainable 

Development”, including 17 Sustainable Development Goals (SDG) and 169 targets. The target 15.3 

introduced the concept of Land Degradation Neutrality (LDN) aiming to protect, restore and promote 

sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and 

reverse land degradation. The indicator adopted by governments to measure the achievement of LDN is the 

“Proportion of land that is degraded over total land area”. 

The United Nations Convention to Combat Desertification (UNCCD) endorsed the concept of LDN as a 

strong vehicle for driving the implementation of the Convention inviting all its country Parties to formulate 

voluntary national targets. UNCCD also suggested the countries to measure the progress in the 

implementation of their activities by three principal indicators, land cover and land cover change, land 

productivity and carbon stocks above and below ground in order to identify degraded, degrading and 

improving areas. 

The Land Productivity (LP) indicator was intended to measure the total above ground Net Primary 

Productivity (NPP). This indicator, specifically addressed in this work, seems suitable for policy making 

support because of the availability of data and methods for its quantification. The spatial and temporal 

resolution of remote sensed data may provide continuous and synoptic information to identify the impacts of 

natural and anthropic pressures on the status and trends of vegetation cover. 

The policy demand on LP monitoring and assessment can be satisfied by integrating remote sensing data, 

land cover data and other geographic data introducing a quantitative and statistically based approach in the 

desertification policy context. 

Remote sensing data are recognized as the main resource for an extensive monitoring and mapping of LP and 

the Normalized Difference Vegetation Index (NDVI) is considered a suitable proxy for LP  because is 

related to net primary productivity (NPP) (Seaquist et al., 2003, Scheftic et al., 2014) and to many 

biophysical parameters that control land-atmosphere fluxes and vegetation productivity (i.e. leaf-area index, 

fraction of photo-synthetically active radiation absorbed by vegetation, etc.) (Asrar et al., 1984, Myneni et 

al., 1995). Previous studies and projects addressed how to measure desertification and land degradation on 

the basis of spectral vegetation indices at national level (Del Barrio et al., 2010, , Eckert et al., 2015, Gaitàn 

et al., 2015). On a regional scale the European Space Agency launched in 2004 the DesertWatch project to 

develop an information system based on remote sensing for monitoring land degradation trends over time, 

focusing on Mediterranean countries (Portugal Italy and Turkey) (DesertWatch, 2012) using the satellite 
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MERIS data. Global and continental land degradation studies were based mainly on NOAA AVHRR data 

(Hellden et al., 1988, Bai et al., 2008) made available by the Global Inventory Modelling and Mapping 

Studies (GIMMS). Different methodological and statistical approaches have been applied to analyse NDVI 

data with spatial resolutions ranging respectively from 1 to 8 Km. The time frame from 1981 to 2003 of 

GIMMS data has been extended to 2010 for the European Region (Cherlet et al., 2013) by integrating the 

observational records with data from the SPOT Vegetation sensor. Despite the scientific understanding and 

data made available by international institutions, a gap between the policy demand of operational indicators 

and the availability of a user-oriented methodology is still open. The countries affected by desertification are 

requested by UNCCD to implement policies and actions over their territory and monitor the evolution of 

processes at national and sub national scales. Remote sensing is still insufficiently adopted by countries to 

detect trends for the identification of improving and degrading areas because of the insufficient 

communication between policy makers and science and technology institutions. The main issue addressed in 

this work is the demonstration of the usefulness of using remote sensing data, statistical modelling and 

Geographic Information System (GIS)  for an updated quantitative reliable methodology for the monitoring 

of the LP status and trends, as well as the identification of the areas affected by land degradation at country 

level. The assessment methodology we present, aims to make progress toward this direction and support 

policy makers for the identification of policies and actions requested for the implementation of UNCCD and 

SDG’s targets.  
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2. Data and Methods  

 

Satellite data 

 

The NASA MODIS archive (https://lpdaac.usgs.gov/data_access/data_pool) provides global data for spatial 

and temporal evaluations of vegetation status and changes. Global NDVI data from the Terra and Aqua 

platforms are provided every 16 days as gridded Maximum Value Composite (MVC) at 250 meter spatial 

resolution (Holben 1986).  

The 1,472 MVC tiles for the years from 2000 to 2015, covering the Italian territory (spanning over 4 tiles), 

were downloaded, re-projected and mosaicked using the implemented ‘ModisDownload’ function in R and 

the MODIS Reproject Tool (MRT) software. 

 

Precipitation data 

 

Precipitation monitoring station data in Italy are collected by a number of national and regional services for 

meteorological, hydrological, agro-meteorological purposes. Harmonization and standardization of the data 

of different networks was made for climate change studies (Desiato et al., 2007; Desiato et al., 2011). 

Although the station data are made available by regional monitoring services through their web sites the only 

data storage and retrieval service at national scale is organized and provided by SCIA (National System of 

collection, elaboration and distribution of Climate data: http://www.scia.isprambiente.it) as station and 5 km 

gridded monthly data archive. The yearly and the monthly cumulated precipitation values for the years 2000-

2015 have been downloaded and analysed for the detection of trends and to be correlated with LP changes. 

The analysis of annual cumulated precipitation, standard deviation and annual and seasonal trends are shown 

in the supplementary section S1.  

 

Land cover 

 

The Corine 2012 land cover data (CLC2012), distributed by the Istituto Superiore per la Protezione e la 

Ricerca Ambientale (ISPRA) and by the European Environment Agency (EEA), having an accuracy greater 

than 100 m and a minimum mapping unit of 25 ha, represent the best available option for the land cover 

mapping in Italy. The geographic distribution of the land cover classes, cropland, forestland and grassland, 

obtained aggregating the CCL2012 data according to the IPCC land categories (IPCC 2006), represents the 

91% of the national land cover (Table 1). 

 

 

 

 

https://lpdaac.usgs.gov/tools/modis_reprojection_tool
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 Cropland Forestland Grassland 

 km
2
 % km

2
 % km

2
 % 

North 53,833 45 35,603 29 15,213 12 

Centre 38,285 51 23,935 32 7,278 9 

South 65,294 60 20,028 18 16,722 15 

Italy 157,412 52 79,565 26 39,212 13 

 

Table 1. Extension of cropland, forestland and grassland in the three Italian macro regions. 

 

Cropland is the dominant class found mainly on plains, coasts and islands of southern regions. The more 

‘‘natural’’ land-use/land-cover classes (e.g., forestland and grassland) is found mostly in the mountain areas 

of central and northern regions. The extension of cropland in southern regions is greater  than in other 

regions while forestland is the prevalent in the central and northern regions. Other land cover classes 

(settlements, wetlands, other land and bare land), representing 9% of the national territory, are not included 

in this study because vegetation cover density might be insufficient for the interpretation of changes of LP on 

the basis of remote sensed indices. Changes in land cover are also important indicators in their own as they 

provide an indication of the soil sealing due to the expansion of settlements that is considered one of the 

most relevant of land degradation processes in Italy. Using the CLC data the changes of the IPCC land cover 

classes, cropland, forestland, grassland, settlements, wetlands and other lands, have been estimated. From the 

year 2000 to 2012 urban areas increased by 813.6 km
2
 and forestland cropland decreased respectively by 442 

and 730 km
2
. The land cover layers of forestlands, croplands and grasslands in 2012 have been used to 

stratify the LP data and therefore the analysis of the changed areas are excluded from this study. 

 

Data processing 

 

For each year, 23 MVC layers were stacked into a single annual multilayer file in order to generate the 16 

years’ time series of NDVI annual mean for the Italian territory. The pixel reliability information provided 

by NASA for all NDVI files has been used for computing the reliability index and identifying the areas with 

good data for the detection of LP trends. 

The methodology and the results of the reliability analysis are described in the supplementary section S2. 

The trend sign and significance for each individual pixel in domain is first estimated using the Mann-Kendall 

(MK) non parametric tests (Kendal 1962), assuming that data values full fill the condition of independence 

between observations with no tied data values (Douglas, 2000). The MK test has been applied also to annual 

and seasonal precipitation data.  

Because of possible temporal and spatial autocorrelation of data, the MK result may overestimate the real 

number of valid trends pre-processing of data and Contextual Mann-Kendall (CMK) are used (Neeti et al., 

2011). The temporal auto correlation may be induced by a random perturbation affecting the annual mean 

value and its influence may persists for an unknown length of time. The annual mean values may be 

influenced by its past history by processes such as recovery from the sudden impact of a forest fire that is 
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expected to take several years. Prewhitening is used to eliminate the influence of temporal auto correlation 

on the test of trends. The process of prewhitening involves the computation of the serial correlation 

coefficient (ρ) and the application of an iterative process until the coefficient is below the prescribed 

threshold (ρ <0.05) (Neeti et al., 2011).  

Spatial cross-correlation may also affect the detection of valid trends under the case of spatial dependence 

between neighbouring pixels leading to the identification of statistically significant trends while it is not true. 

NDVI data may be subject to perturbations causing isolated pixels with significant trends. However, the 

absence of similar trends at immediately neighbouring pixels reduces one’s expectations that such isolated 

trends are something other than chance occurrences. In addition, if the sample size of the time series is small, 

then there are chances of having trends that are only marginally significant even if immediate neighbouring 

pixels exhibit similar trends. In such cases, one’s expectation of similar behaviour between neighbours 

would lend greater confidence in the presence of a trend. The occurrence of isolated trend may be removed 

applying the Contextual Mann-Kendall (CMK) test evaluating the trends comprised in the region of 3 by 3 

neighbourhood around each pixel and adjusting the variance during significant trend testing. (Neeti, et al., 

2011).  

In order to test the impact of temporal and spatial autocorrelation on the number of valid positive and 

negative trends three tests have been applied in this study: 

1) MK tests without any pre-processing of time series data,  

2) CMK test after removing the effect of temporal auto correlation.  

The two statistical tests, described in the supplementary section S3, provide a range of values for the areas 

with positive and negative trends that will require validation field studies.  

Autocorrelation and cross correlation of precipitation data is not considered in this study because the data 

utilized are not station data but interpolation of station data on a regular grid. 

Data processing for trend and mapping is made using the R statistical package (version 2.14.1; http://www.r-

project.org/) and IDRISI Earth Trend Modeler (https://clarklabs.org/terrset/earth-trends-modeler/). 

 

3 Results 

 

3.1 Land Productivity baseline 

 

LP baseline, based on the estimation of the LP temporal mean (LPav) and standard deviation (LPsd) of the 

16 years annual NDVI observations, reflects the temporal and spatial variability of land conditions due to 

natural and anthropic effect on vegetation cover.  

The geographic distribution of LPav and LPsd values is determined by many factors including climate, land 

morphology and land cover. High, medium high, medium low and low LP areas have been identified using 

the 25°, 50° and 75° percentile thresholds of LPav and LPsd cumulated distributions for cropland, forestland 

and grassland (Figure 1).  

http://www.r-project.org/
http://www.r-project.org/
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Figure 1. Maps of Mean and Standard Deviation of the Land Productivity Index  

 

  
The patterns of the two maps clearly highlight: croplands characterized by large mono-cultures, intensely 

ploughed before seeding and after harvest with little strip of vegetation left in-between, having limited 

average standing biomass and high peak values during a relatively short growing period. The low LPav 

cropland areas, especially in the South (Sicily, Sardinia, Puglie) show medium high LPsd, which points to a 

relatively high inter annual variability of LPav, which could perhaps also be caused to crop rotation and/or 

impact of climate variability. A field validation would be necessary to identify where the signal of instability 

can qualify for a critical LP status.  

The areas turned before the year 2000 practically to barren land, strongly dominated by urban and artificial 

structures, are associated to low LPav and low LPsd. 

The north western regions, where rice cultivation is made with seed setting in the water, which results in low 

NDVI even in the early growth period show “low LPav” and quite stable yields , which results in “low 

LPsd” . 

The protected forest or semi-natural areas characterized by high LPav and low LPsd, (e.g. the protected 

evergreen forest in the Gargano park in Puglia, or in the Calabrian Aspromonte and forest in the Apennine 

mountains). 
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The alpine region in with low LPav and high LPsd where the presence of seasonal snow and frequent cloudy 

conditions significantly affect the vegetation index reliability as shown in the supplementary data S2. 

 

The variables of LPav and LPsd seem to be meaningful and promising to measure LP actual conditions of 

specific land cover areas and/or within administrative and geographic boundaries The LPav LPsd indices 

may be a useful proxy to detect the different land conditions within the same land cover class and can 

provide a large scale measure of land conditions. They are based on the detection of land greenness and may 

represent a quantitative measure of land properties that can be used as elements for the evaluation of the time 

change of the yearly LP in respect to long term baseline.  

 

                         
  

Figure 2. Land Productivity Index year anomalies in Italy for cropland, forestland and grasslands 

 

 

The LP yearly anomalies for the three layers show a marked positive trend in all three land covers 

providing a first qualitative evaluation of the changes at national scale. The positive anomaly 

change at national scale indicate that all three land covers, increased their greenness due to a 

combination of factors that will be discussed in the following paragraph. Yearly LP anomalies 

might be used for geographic or administrative subnational boundaries to check the occurrence of 

sub national anomalies to be validated with field studies.  
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3.2  Land Productivity trends 

 

Setting the LP baseline, as described in the previous paragraph, is a stock-taking exercise where a 

snapshot of the current land-based natural capital is taken; it does not provide any information on 

the current land productivity change in the individual spatial units. A retrospective assessment of 

LP trends (LPtr) is an essential step in terms of understanding current conditions of land 

productivity, revealing anomalies and possible degrading areas at the spatial resolution of the 

available data. Trends assessment, within the limits of the sensitivity of the non-parametric tests 

(Wessels et al., 2012), aims to provide an informed evidence base for setting sound policy targets, 

making decisions about potential interventions and prioritizing efforts in areas where land 

productivity change is taking place. 

The quantitative estimation of the area affected by LP change is made for croplands, forestlands and 

grasslands as identified by the CORINE 2012 database.  

The areas with significant trends (p<0.05) according to the different statistical tests applied is 

(Table 2). 
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Table 2. Areas of significant (p<0.05) Land Productivity trends of annual mean NDVI using Mann-Kendall (MK) and Contextual 

Mann-Kendall  (CMK) with adjustment of temporal autocorrelation. 

 

The significant trends (positive and negative) with MK test at pixel level without pre-processing of 

time series are 28% of the total while the significant trends with CMK test after pre-processing for 

removing the effect of temporal autocorrelation are 38%. 

The number of significant trends with the CMK tests, after data pre-processing, increased by 10% 

decreasing the number of negative trends (-82%) and increasing the number of positive trends 

(+44%). 

The CMK significance test for removing the spatial autocorrelation, decreases the number of 

negative trends occurring in isolated pixels in areas with no neighbouring significant trends and to 

increases the number of positive trends occurring in areas were marginally significant trend become 

significant because of the adjustment. This change reflects the expectation that similar behaviour 

between neighbours, although marginally significant, may give greater confidence in the presence 

of a significant trend. The CMK test is conservative for the identification of the negative trends that 

are the primary concern of land degradation but, although the less conservative, MK tests identifies 

the same areas with clustered negative trends. 

 

 

MK test  

 

 

CMK test  

 

 

 

Positive 

 

 

Negative 

 

Positive 

 

Negative 

 

Cropland 

(km
2
) 

 

 

 

45,739 

 

 

 

2,789 

 

 

 

66,699 

 

 

 

377 

 

 

Forestland 

(km
2
) 

 

 

 

13,802 

 

 

 

1,821 

 

 

 

20,760 

 

 

 

414 

 

 

Grassland 

(km
2
) 

 

 

13,332 

 

 

 

177 

 

 

 

17285 

 

 

 

27 

 

 

Total 

(km
2
) 

 

72,873 

 

 

 

4,787 

 

 

 

 

104,744 

 

 

 

818 
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            Figure 3. Geographic distribution of the valid LP trends, by region (A) and by land cover (B). 

 

The geographic distribution of the valid LP trends, according the CMK test shows that the positive 

trends prevail in southern regions and negative trends prevail in northern regions (Figure 3a) and 

that the norther and central forests are the most affected land cover by negative trends (Figure 3b). 

The areas with LP decline and LP increase above the selected thresholds aggregated at municipality 

level (Figure 4) are used to identify hot spots over the national territory. 
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               Figure 4. Geographic distribution of LP trends hot spots. 

 

Although croplands show general positive LP trend across the southern Italian regions (Figure 3b), 

the decreasing LP-hot spots in southern regions affect croplands. The causes of the LP negative hot 

spot in the municipalities in the Calabria region may be attributed to seasonal (April-May-June) 

precipitation decline (Supplementary S1). The ”hot spots” of LP decrease in Sicily, Campania and 

Lazio croplands might be explained by crop changes or by other anthropogenic causes to be 

identified. The LP negative trends hot spots in Tuscany, Liguria and Piedmont regions affect 

forestlands and climatic forcing emerged from the analysis of precipitation data in the time frame of 

this study. 
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Although the quantity of land affected by negative trend areas is limited the methodology may 

provide indication to land managers and policy makers on ongoing process and support monitoring 

activities to be conducted locally. 

 

3.3  Are precipitation changes a cause of LP changes? 

 

Precipitation trends for seasonal and annual cumulated precipitation for the years from 2000 to 2015 

have been computed according to the MK test. The statistically significant (p<0.05) annual and 

seasonal trends show increasing rainfall in winter and spring months and no evidence of negative 

trends in the 16 years data records (Supplementary material S1). The positive trends of annual and 

seasonal (DJF) precipitation provide a first qualitative correlation between the prevalent greening of 

vegetation and the concomitant climate conditions.  

The statistical correlation test is made using the multiple linear regression model. The linear 

regression equation best fitting LP temporal records: 

 

𝐿𝑃 = 𝑘1 ∗  𝑇 + 𝑘2 ∗  𝑃 + 𝑘3 ∗ 𝑓(𝑇, 𝑃) + 𝑘4  

 

where T is the time (year), P the annual cumulated precipitation, 𝑓(𝑇, 𝑃) a function of time and 

precipitation, is used to identify the pixels where the correlation between LP and the predictors is 

significant (p<0.05) on the basis of the Akaike Information Criterion (Akaike Information Criterion, 

Wilks, 2011). The predictors, time, precipitation and their combination are significant respectively 

in 28%, 18%,15% of the national territory. No significant correlation of LP with the predictors is 

found 38% of the territory (Figure 5). 
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        Figure 5. Geographic distribution of significant NDVI correlations. 

 

The multiple linear regression methodology results identified larger areas of significant correlation 

in respect to the Pearson methodology. This result could be improved at regional and local scale by 

using station data records collected from regional meteorological services. In conclusion only 18% 

of the annual LP changes seems to be correlated to precipitation changes and 28% of the changes 

can be attributed to progressive changes correlated to anthropic activities, especially land use 

change and land abandonment. The seasonal or monthly scale analysis should be also addressed in 

future studies to take in account process the cannot be identified at annual scale. 

 

4.  Discussion 

 

The estimation of trend of annual mean values is critically dependent on the spatial resolution and 

the applied statistical method. The analysis of 16 years of NASA-MODIS data represent a progress 

in respect of previous results based on NOAA-AVHRR data because of the improved spatial 

resolution. Previous studies mainly addressed the detection of trends at global (Bai, 2008) and 

continental scale (Cherlet, 2013). Comparing this study results with results of previous works is 

impossible because of the different spatial and temporal frames. 

Previous studies of monitoring and assessment of land degradation in Italy (Salvati et al. 2016) 

using the Environmental Sensitive Area (ESA) methodology identified critical areas and the 

progressive increase of the ESA index over the Italian territory. The ESA most sensitive areas (i.e. 

southern Italy, Sicily and Sardinia, Po valley and other areas on the east cost of Italy in their Figure 
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1) correspond to the low annual mean LP areas in Figure 1 of this paper. The ESA vulnerable areas, 

defined as a desertification hotspot remained stable from 1960 to 2010, because of locally 

increasing climate quality and land-use changes mitigating desertification processes such as natural 

forestation and decreasing population pressure(Salvati et al. 2016). This result is supported by the 

LP trend results reported in this study that show a general increasing trend. On the contrary, the 

sensitivity of previously ESA ‘non-affected’ areas (mainly concentrated in northern and central 

Italy) is identified by Salvati as rapidly increasing during the investigated time period, suggesting 

that important variations have occurred in climate and socioeconomic conditions in this region. 

Salvati also claims that sensitivity of land degradation in northern Italy will be higher in future than 

in the past. The results shown in figure 4 support similar conclusions regarding the LP improving 

condition limited to central and southern regions. 

 

The results presented in this paper using a remote sensing based diagnostic methodology confirm 

some previous findings such as the improved vegetation condition of Italian southern regions and 

islands and decreasing trend of LP in northern regions. 

 

The methodology adopted in this work is not entirely new but there is an innovative approach based 

on near real time remote sensing data, statistical confidence thresholds, reliability indices and use of 

open source tools that might significantly improve the contribution of science to desertification 

policy.  

 

The map of LP status baseline developed in this study, enabled to identify the geographic 

distribution of high, medium, low productivity areas and the annual anomalies of LP mean values 

between year 2000 and 2015, in Italian croplands, forestlands and grasslands. The LP trends, 

assumed as proxy indicator of increasing and decreasing “Land Productivity” associated to quantity 

of biomass and the quantity of carbon stored in the vegetation, provide a range of values of the 

areas interested by significant positive and negative changes. The results obtained from trend 

analysis and from annual mean anomalies confirmed that that Land Productivity was by large the 

prevailing change identified in this study as also diagnosed by the last national forestry (INFC, 

2015) and agriculture (ISTAT, 2013) inventories.  
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5.  Conclusions 

 

The Normalized Difference Vegetation Index, has been widely criticized because of its sensitivity 

to a wide range of perturbing effects unrelated to plants (e.g. atmospheric composition, soil 

moisture, surface anisotropy and non-optimal relations to vegetation properties) and for its 

limitations in densely vegetated regions, because of saturation effects (Myneni et al., 1995) that 

may, in certain vegetation types, cause NDVI not fully follow the photosynthetic cycle. Therefore, 

the results presented in this study should be interpreted with appropriate caution, although the 

interpretation of NDVI annual mean long-term trends can be expected to largely alleviate these 

concerns. 

The LP assessment methodology represents, especially in desertification affected country parties of 

UNCCD, a promising tool that can be implemented to develop national monitoring capacities 

through appropriate initiatives and scientific cooperation. The availability of a science-based 

approach providing a quantitative methodology for the rapid assessment of LP status and trends at 

national and sub national scale might respond to the policy makers demand of a low cost diagnostic 

tool to be used for the monitoring of the evolution of terrestrial ecosystems. Remote sensing is a 

monitoring tool still insufficiently used to support national and international land degradation and 

desertification policies.  

The use of remote sensing data does not replace field studies for the assessment of land degradation 

because LP decrease or increase cannot be directly associated to degradation or improvement of 

land. National and local circumstances such as land abandonment or land use change, bush and tree 

encroachment, identified by positive LP trends, may represent for local stakeholders a loss of 

natural capital or biodiversity, therefore local validation studies and stakeholders participation 

activities should be made before any consideration of possible adaptation policies and actions. In 

Italy the reported continuing increase of LP, due to the progressive reduction of agro pastoral 

activities and the abandonment of marginal agricultural areas where a massive re-naturalization 

process is taking place is the dominant change. The LP decline, although of limited extension, 

should be considered an early warning of land degradation and stimulate local studies with higher 

resolution data for the identification of appropriate policy advice and actions.  
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Supplementary material on precipitation trends in Italy (S1)  

In Italy, the very complex topography and its geographical position make the precipitation analysis 

difficult; the long term changes of precipitation in Italy have been investigated using 111 series 

from 1865 to 2003 (whereof 75 covering at least 120 years) (Brunetti et al.,2006) and using time 

series from 1961 to 2006 (Toreti et al., 2009) investigating annual and seasonal precipitation trends 

over Italy. 

from a set of stations homogeneously distributed over the Italian territory, belonging to the Air 

Force Weather Service and to a few regional environmental protection agencies (ARPA). 

Precipitation trends in this study do not aim to address climate change but the possible correlation 

with vegetation trends as identified from remote sensing Vegetation Indexes. Precipitation trends 

are computed from monthly cumulated precipitation values of stations interpolated on a 5 by 5 km 

grid by kriging. The interpolated data have been downloaded from the  SCIA (National System of 

collection, elaboration and distribution of Climate data(Desiato et al., 2007).) dedicated we site 

http://www.scia.isprambiente.it).  The station utilized to produce the interpolated data come from 

different national and regional meteorological networks and their number is 2426 in January 2000 

but subject to variations according to the changing availability of station data from the year 2000 to 

2015.Data were collected and controlled through SCIA before their interpolation and availability 

for downloading.The analisys of the annual and seasonal trends of cumulated precipitation values 

are estimated using the Mann-Kendall (MK) tests. The MK non parametric test (Kendal 1962) is 

used to identify for each individual pixel annual mean cumulated precipitation  time series the trend 

sign and statistical significance. Assuming that data values full fill the condition of independence 

between observations with no tied data values  the results shown in figure S1 and S2 are based on 

the the number of valid trends at 95% significance level for the annual and seasonal precipitation. 

The areas with annual cumulated precipitation  positive trends are identified in 11% of the national 

territory. No negative trend is identified in for annual cumulated values in the 2000-2015 time 

frame. 

The seasonal cumulated precipitation might highlight patterns of trends that could be relevant for 

the interpretation of vegetation changes more than annual cumulated trends. The seasonal 

cumulated precipitation (Figure S2) shows increasing trends in  January, February, March (GFM) 

and April, May, June (AMG). The areas with negative trends in southern Italy in AMG  are the only 

of possible interest. The spatial correlation of AMG seasonal negative hot spots will be addressed 

using the Pearson and the multiple linear coefficient model. The small negative hot spot in other 

http://www.scia.isprambiente.it/
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seasons although not significant at national scale should be addressed using regional or local 

studies. 

 

              

               Figure S1, Annual cumulated precipitation trends from the year 2000 to 2015, according to MK significance test (p-

value<0.05) 
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Figure S2. Seasonal cumulated precipitation  trends from the year 2000 to 2015, according to MK significance test (p-value<0.05) 
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Supplementary material on data reliability analysis (S2) 

Terra and Aqua MODIS NDVI form an important part of a long continuing record (Huete et al., 

2011, Huete et al., 2002) begun with the Advanced Very High Resolution Radiometer, (AVHRR) 

and European Space Agency SPOT satellite and expected to continue with Copernicus Sentinel 

constellation satellites. 

The data utilized in this work consists of data products derived from the Terra and Aqua MODIS 

sensors having 250 meters spatial resolution and 16 days frequency obtained by Maximum Value 

Composite (MVC) technique. The Terra and Aqua MODIS MVC data products are provided with 

two Quality Assessment (QA) layers:  

250 m 16 days pixel Quality  

250 m 16 days Pixel Reliability QA 

The first layer contains pixel-level QA information and the second layer  provides a summary pixel 

reliability QA. The Pixel Reliability layer provides simple ranks that capture the overall pixel 

quality. The pixel reliability data rank for each layer is: 

 

Pixel Reliability 

Rank 

(PRR) 

Summary QA Description 

0 Good data Use with confidence 

1 Marginal data Useful, but look at 

other QA information 

2 Snow/Ice Target covered with 

snow/ice 

3 Cloudy Target not visible, 

covered with cloud 

 

The pixel Reliability data ranks available for the 368 (16 days) layers can been used directly to 

interpret data reliability unlike the per-pixel Quality layer that requires detailed post-processing and 

interpretation. The 368 Reliability layers have been summed to compute and map a Pixel Reliability 

Index (PRI) for the entire study observation time frame. 

The frequency of occurrence the different classes of Pixel Reliability Index over the Italian territory 

is: 
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PRI range counts 

0 5 15,141 

5 50 966,777 

50 100 1,588,117 

100 150 1,060,462 

150 200 377,769 

200 250 284,701 

250 300 164,709 

300 1000 366,444 

 

The pixels in the PRI map (Figure S1) are classified in the unreliable data class when include 

records with snow/ice (PRR=2), clouds (PRR=3) and areas with marginal reliability (PRR=1) 

occurring more than 184 times in the pixel time record.  

The good data quality class includes all PRR=0 and the PRR=1 if the Pixel Reliability Index is less 

than 184. 

The area with unreliable data for the study of trends is 24,014 km
2
  mainly located in the mountain 

areas but also including some coastal areas and also croplands where land is flooded for rice 

cultivation.  
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                                               Figure S2. The area of unreliable pixel data (24,000 km
2
) not included   

                                               in the computation of land productivity trends. 
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Supplementary material on methodology for trend estimation (S3) 

 

Mann-Kendall test 

 

The Mann-Kendall trend test examines the slopes between all pair-wise combinations of samples. In 

the Mann-Kendall test, the data are ranked with reference to time and each data point is treated as 

the reference for the data points in successive time periods. Kendall’s S (Kendall 1962) is defined 

as: 

 

𝑆 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑗  )

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

and 

𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑥𝑗  ) = {

+1 𝑖𝑓 𝑥𝑖 − 𝑥𝑗 > 0

   0  𝑖𝑓 𝑥𝑖 − 𝑥𝑗 = 0

−1  𝑖𝑓 𝑥𝑖 − 𝑥𝑗 < 0

 

where n is the length of the time series data set and xi and xj are the observations at times i and j, 

respectively. The Mann-Kendall statistic is non-parametric and robust against outliers. However, it 

should be noted that it is actually a test for the presence of a monotonic trend and not strictly a 

linear trend. 

According to Mann (1945) and Kendall (1975), the statistic S is approximately 

normal when n ≥ 8. When there is no tie between data values then the mean and variance is given 

by: 

𝐸(𝑆) = 0 

 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
= 𝜎2 

 

where σ is the standard deviation. 

The standardized Z test statistic is computed by: 

 

𝑍 =

{
 
 

 
 
(𝑆 − 1)

√𝑉𝑎𝑟(𝑆)
2

    𝑓𝑜𝑟 𝑆 > 0

0  𝑓𝑜𝑟 𝑆 = 0
(𝑆 + 1)

√𝑉𝑎𝑟(𝑆)
2

    𝑓𝑜𝑟 𝑆 < 0

 



                   34 

 

 

The Z statistic follows the standard normal distribution with zero mean and unit 

variance under the null hypothesis of no trend. A positive Z value indicates an upward trend 

whereas a negative value indicates a downward trend. The p value of an MK statistic S can then be 

determined using the normal cumulative distribution function (Yue and Wang 2002): 

𝑝 = 0.5 − 𝜙(|𝑍|) 

where ϕ denotes the cumulative distribution function of a standard normal variate: 

𝜙(|𝑍|) =
1

√2𝜋
2 ∫ 𝑒−

𝑡2

2

|𝑍|

0

 𝑑𝑡 

If the p value is small enough, the trend is quite unlikely to be caused by random sampling. At the 

significance level of 0.05, if p ≤ 0.05, then the existing trend is assessed to be statistically 

significant. 

 

Contextual Mann-Kendall test 

 

Isolated pixels exhibiting significant trends and the absence of similar trends at immediately 

neighboring pixels reduces one’s expectations that such isolated trends may be due to chance 

occurrences. One of the most fundamental principles of Geography is that neighboring locations 

tend to exhibit similar characteristics also commonly known as Tobler’s First Law of Geography; 

Tobler 1970). In addition, if the sample size of the time series is small, then there are chances of 

having trends that are only marginally significant even if immediate neighboring pixels exhibit 

similar trends. In such cases, one’s expectation of similar behavior between neighbors would lend 

greater confidence in the presence of a trend. The modified version of the Mann-Kendall test could 

make use of spatial autocorrelation as a line of evidence. 

This leads to a modification in the MK test to include geographical contextual information, and is 

referred here as the Contextual Mann-Kendall (CMK) test. 

The CMK test evaluates the trend in the area comprised of the 3 by 3 neighborhood around each 

pixel computing the areal average by: 

 

𝑆𝑚 = 
1

𝑚
∑𝑆𝑗

𝑚

𝑖=1

 

 

where Sj is Kendall’s S for the jth neighbor and m = 9 pixels which includes eight 
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neighbors with the central pixel. The mean and variance of (Sm) for iid (independent and identically 

distributed) time series records of length n and without ties are given by: 

𝐸(𝑆𝑚) = 0 

 

𝑉𝑎𝑟(𝑆𝑚) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18𝑚
=
𝜎2

𝑚
 

 

According to the central limit theorem, Sm is normally distributed for large m if calculated from iid 

data. Hence, Zm can be expressed as: 

 

𝑍𝑚 =
𝑆𝑚   − 𝐸(𝑆𝑚)

𝜎

√𝑚

   

However, because of cross-correlation, the inclusion of neighbors tends to reduce the variance in 

the significance testing leading to increased detection of false significant trends (Yue and Wang 

2002). Therefore, bias in significance testing due to inclusion of neighbors needs is corrected by: 

 

 

𝑉𝑎𝑟(𝑆𝑚) =
1

𝑚2
 [  ∑𝑉𝑎𝑟(𝑆𝑗) + 2

𝑚

𝑗=1

∑ ∑𝐶𝑜𝑣(𝑆𝑗 ,

𝑚−𝑗

𝑙=1

𝑚−1

𝑗=1

𝑆𝑗+𝑙  )] 

 

Where 𝐶𝑜𝑣(𝑆𝑗 , 𝑆𝑗+𝑙) is the covariance between neighbors j and j + l and the pm value of the CMK 

statistic Sm can then be determined using the normal cumulative distribution function: 

𝑝𝑚 = 0.5 − 𝜙(|𝑍𝑚|) 
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