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ABSTRACT: Nuclear magnetic resonance (NMR) profiling, sample georeferentiaton, and geostatistics are applied to evaluate the
spatial variability of metabolic expression of durum wheat in fields managed by precision agriculture. Durum wheat at three different
vegetation stages, grown in two different places of the Basilicata region, in Italy, is analyzed by NMR. The spatial variability, within
each field, of metabolites, quantified by NMR, is evidenced by appropriate geostatistic tools through the definition of a suitable
metabolic index. Metabolic maps are compared to highlight the effects of soil and farming strategies.
KEYWORDS: NMR, precision agriculture, profiling, GIS, metabolic index

■ INTRODUCTION
Pedoclimatic conditions strongly affect the metabolome of the
plant, actually giving the imprint of the territorial origin to the
chemical profile of many foods.
During the past 2 decades, a significant correlation between

the metabolic content of a food and its geographic origin has
been established by chemical profiling and, in particular,
nuclear magnetic resonance (NMR). Many studies involving
several foods and locations have been published using both
targeted and untargeted NMR analysis assisted by multivariate
statistics.1−10 In those studies, the relation between the
metabolome and territorial origin were settled, by appropriate
machine learning algorithms, according to the concentration of
a set of metabolites. However, geographic information is in the
process only marginally through the a priori definition of the
territorial classes. These classes are quite arbitrarily identified
according to administrative borders, cultural regions, hydro-
geological networks, roads or railways, or statistical aggrega-
tion,11 and geographic differences inside those regions are
simply ignored. Unfortunately, the class boundaries, thus
defined, may or may not correspond to the positions of
changes of the target variables.
The identification of territorial origin by multivariate

statistical analysis of metabolic profiles is actually based on
the hypothesis that geographic classes are spatially uncorre-
lated, while samples within a class are fully correlated.
This hypothesis is sustained by the observation that very far

locations had different pedoclimatic histories that influenced
the metabolic expression of plants in an uncorrelated way. On
the other hand, we expect that the average pedoclimatic
conditions of nearby locations belonging to the same class are
very similar, making the metabolic profile of plants grown in
that region strongly correlated. The long distance among the
classes, with respect to interclass dimensions, is then crucial to
disentangle pedoclimatic oscillations. With these assumptions,
we expect that the differences of mean metabolic profiles
among the classes are greater than the varibility within each

class. These differences, when really present in the metabolic
profiles of the analyzed foods, are evidenced by multivatiate
statistical analysis.
There are however cases in which the above-mentioned

conditions are not completely fulfilled.
In particular, when the spacing between classes is

comparable to the distances among interclass samples,
pedoclimatic oscillations cannot be disentangled by distance
and samples belonging to different regions may have felt
similar conditions; thus, the multivariate appoach might no
longer be suitable, and the spatial sample correlation has to be
taken into account. Actually, in this case, the possibility that
target variable spatial changes might not coincide with the a
priori identified class boundaries becomes a serious source of
error.
Georeferentiation of the sample, that is the assignment of

coordinates to each sample, and geostatistics may be used to
identify and solve this issue.
Actually, in a previuos paper, we have used georeferenced

olive oil samples and geostatistics to identify, according to
spatial variability of NMR profiles, the boundaries of
homogeneous quality adjacent regions, which can be used
next as geographic classes in successive multivariate statistical
approaches.12

When dimensions are smaller, at level of a single field, then
spatial inhomogeneities are dominated by pedologic con-
ditions, while climate effects mainly influence temporal
behavior. Actually, the variability of both soils and climatic
conditions involves different spatial and temporal scales.
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Precision farming exploits the knowledge of soil spatial
variability to adapt agromonic pactices to provide water and
nutrients in those field areas where they are needed more, with
obvious advantages in terms of resource savings and improved
productivity.
Monitoring the effects of soil variability and the precision

farming technique on the metabolic expression of plants in
different field positions is extremely important because the soil
structure and composition change within and among the fields.
In fact, several factors contribute to soil spatial variability:
parental material relief, organisms, climate, time, previous
managements, and crops.
To evaluate soil spatial variability, several approaches are

used combining proximal and remote sensing. Apparent
electrical conductivity, vegetation indices by reflectance of
radiation in several spectral bands, and other properties, such
as crop yields and soil properties and composition, are some of
the variables considered to assess field spatial variability.
However, to our knowledge, a plant metabolic profiling

approach has never been attempted.
In this work, we analized by NMR profiling the metabolic

expression of durum wheat at three different vegetation stages
and in two different fields of the Basilicata region in the south
of Italy conducted by precision farming techniques.13 The use
of georeferenced samples and geostatistics allowed for the
evaluation of the spatial variability of the metabolome at each
development stage.

■ MATERIALS AND METHODS
Sampling. Samples of main and secondary wheat shoots (13

weeks from sowing) and fully ripe ears were collected in a Genzano di
Lucania (Potenza) field (latitude, 40.82° N; longitude, 16.08° E) in
2019, while spikes in full bloom and ripe ears were collected in a field
near Matera (latitude, 40.71° N; longitude, 16.65° E) in 2020.

A few shoots or ears were collected from a region approximately 2
m wide in different georeferenced positions of the fields (panels b and
c of Figure 1) and freezed at −20 °C within a few hours.
Wheat shoots were lyophilized and stored in dark and dry

conditions until analysis.
Data collection was georeferenced by the Global Positioning

System (GPS, Garmin GPSMAP 64S) with an error of 3 m.
Both fields were characterized and conducted by the University of

Basilicata, in the framework of the same research project, according to
a precision farming protocol. Cultivation details and characterization
of both fields are described in detail by Denora et al.13

Sample Preparation. Lyophilized green material (shoots and
flowering ears) were ground in an IKA ULTRA-TURRAX
homogenizer with 20 steal balls at 4000 rpm for 2 min. About 30
mg of powder was then dissolved into 1.4 mL of a mixture of 50% (v/
v) CDCl3 and 180 mM D2O phosphate buffer at pH 6.8. The buffer
was prepared by dissolving 1.508 g of sodium phosphate monobasic
dihydrate (NaH2PO4·2H2O) and 1.180 g of sodium phosphate
dibasic (Na2HPO4) in 100 mL of D2O.
After threshing of the ripe ears by a laboratory machine, grain was

ground into a micro mill (Molina, Komo). Wheat flour was extracted
in D2O phosphate buffer a pH 6.8. About 30 mg of wheat flour was
dissolved in 700 μL of D2O phosphate buffer, vortexed for 10 min,
and then shaken at 450 rpm for 10 min. After centrifugation at 12000g
for 10 min, 500 μL of supernatant was transferred into a 5 mm outer
diameter NMR tube with 50 μL of a 1 mM D2O solution of 2,2-
dimethyl-2-silapentane-5-sulfonic acid (DSS) and 25 μL of a D2O
solution of 80 mM NaN3.
Deuterated chloroform (99.96%) was purchased by Merk, while

deuterium oxide (99.96%) came from Cambridge Isotope Labo-
ratories, Inc.
NMR. 1H NMR spectra were acquired on a Bruker 600 Avance

spectrometer at a proton frequency of 600.13 MHz and temperature
of 298 K, with a 45° pulse of 5.63 μs, relaxation delay of 2 s, and 1024
scans. The strong residual HOD signal was suppressed by
presaturation during the relaxation delay. Each free induction decay
(FID) was Fourier-transformed with exponential apodization
corresponding to a 0.3 Hz line width. Spectra were phase- and
baseline-corrected and calibrated to the signal of DSS at 0.015 ppm.

Figure 1. Analyzed field positions and an example of sampling distributions.
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Peak annotation was performed by literature data,14 and ambiguous
assignments were confirmed by correlation spectroscopy (COSY),
heteronuclear single quantum correlation (HSQC), and J-resolved
spectroscopy (JRES).
Representative spectra with peak annotation are reported in Figure

2.

Metabolite quantification was made by resonance deconvolution
with an appropriate line shape, as summarized in Table 1, where
quantified compounds, the chemical shift of the corresponding
deconvoluted resonance, and the line shape used are reported for the
three vegetation stages analyzed.

Figure 2. 1H NMR spectra of wheat in the three vegetation stages.
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Spectra processing [fast Fourier transform (FFT) and phase
correction] was made by Bruker Topspin version 3.6 software, while
baseline correction, annotation, and line deconvolution where
accomplished by the tNMR program.15 Data were then stored into
a HDF5 database file containing line integrals and annotations
together with some metadata, such as the sample geographic
information system (GIS) coordinates.
Statistical Analysis. Statistical analysis was performed in a

Python script. Data read from the HDF5 files were transformed into a
GeoPandas16 data frame. Sample positions detected in degrees were
transformed to Universal Transverse Mercator coordinates in meters
(WGS84/UTM zone 34N; datum, WGS84; EPSG, 32634) before
analysis.
Metabolic Index Calculation. The mean metabolic indexes

MImean were evaluated by averaging all metabolite concentrations,

after standard scaling, at each field position by the GeoPandas built-in
function.
The coefficient of variation (CoV) of MI was calculated according

to the following equation:

= =IMI
CoV

CoV
where CoV

j

j

j j
j j

j

j
CoV

(1)

with j spanning over all quantified metabolites and μj and σj being the
mean and standard deviation of the jth metabolite over all of the
sampling positions.
For MIPCA, the first principal component was considered. Principal

component analysis (PCA) was calculated by the scikit-learn17

Python library in a pipline in which both standard data scaling and
PCA were estimated in a single process.
Geostatistics. Moran’s index was estimated by the PySal library18

moran(...) function with spatial weights based on the kernel triangular
function, with Euclideian distance and nearest point bandwidth with k
= 7 [weights.distance.Kernel.from_dataframe(...) method].
Histograms with kernel distribution functions were produced by

the Seaborn Python library19 [histplot(...) and kdeplot(...),
respectively].
Quantile−quantile (Q−Q) plots were made by the qqplot(...)

method of the statsmodels library.20

Statistical interpolation was accomplished in the GSTools library21

by ordinary kriging [krige.Ordinary(...)] with an exponential model of
the data-estimated variagram [vario_estimate(...)] with 20 standard
bins.
Deterministic interpolation was performed by the radial basis

function in the SciPy library.22

■ RESULTS AND DISCUSSION
From NMR spectra of plant aqueous extracts, different
metabolites have been identified and quantified in each of
the three analyzed vegetation stages, as summarized in Table 1.
Each plant stage had a peculiar metabolic profile, as shown

by NMR spectra (Figure 2) and metabolite mean values
reported in Figure s1 of the Supporting Information.
In this work, we are mainly interested in the spatial

distribution of the metabolic content that is in the variation of
the metabolome among the different field positions.
To understand the metabolic variability within each field,

some statistics (mean, standard deviation, histogram, Q−Q
plot, semivariogram, and spatial interpolation) have been
estimated for each quantified metabolite.
As an example, in Figures 3 and 4, the histogram, quantile

plot, semivariogram, and kriging interpolation map are
reported, respectively, for two significant metabolites,
quantified from extracts of main and secondary wheat shoots,
namely, acetic acid and unknown polysaccharide PS3, being
chosed for having the shortest and longest correlation lengths.
In Figures 3d and 4d, dots represent the value of

experimental data in the position where samples were
collected. The NMR-estimated concentration of the corre-
sponding metabolite is represented by a color map whose scale
is reported in the color bar. Kriging interpolation was used to
determine the color of the map points between the
experimental points. Kriging, which belongs to the statistical
interplation class, actually exploits the information relative to
the spatial correlation given by the semivariogram (Figures 3c
and 4c) to estimate the value of a variable between
experimental points.12 Also, deterministic interpolation algo-
ritms are available, and an example based on radial basis
functions is reported in Figure s2 of the Supporting
Information for the two metabolites.

Table 1. Quantified Signals

(a) wheat shoots of Genzano (b) blooming spikes of Matera

compound σ line shape compound σ line shape

Val 0.9958 d Val 0.9946 d
Ile 1.0139 d Ile 1.0132 d
U1 1.1119 s U1 1.1100 s
U2 1.2528 s U2 1.2515 s
Thr 1.3356 d Thr 1.3335 d
Ala 1.4850 d Ala 1.4828 d
GABA 1.9073 5m GABA 1.9073 5m
acetic acid 1.9230 s acetic acid 1.9202 s
Asn 2.8734 dd succinate 2.4090 s
U5 3.2063 s malate 2.6770 dd
U6 3.2694 s Asn 2.8682 dd
U7 3.4551 s U5 3.2052 s
b-glucose 4.6511 d U6 3.2683 s
a-glucose 5.2388 d b-glucose 4.6613 d
PS1 5.3860 d a-glucose 5.2373 d
PS2 5.3944 d PS1 5.3840 d
PS3 5.4064 d PS4 5.4094 d
PS4 5.4100 d sucrose 5.4168 d
sucrose 5.4181 d PS6 5.4367 d
PS5 5.4378 d formate 8.4584 s
formate 8.4586 s

(c) wheat flour

compound σ line shape (d) abbreviations

Val 0.9946 d Val valine
Ile 1.0132 d Ile isoleucine
U1 1.1100 s U unassigned
U2 1.2515 s Thr threonine
Ala 1.4828 d Ala alanine
acetic acid 1.9202 s GABA γ-aminobutyric acid
succinate 2.4090 s Asn asparagine
Asn 2.8682 dd a-glucose α-glucose
U5 3.2052 s b-glucose β-glucose
U6 3.2683 s PS polysaccharide
b-glucose 4.6613 d Trp tryptophan
melibiose 5.0000 d s Lorentzian
a-glucose 5.2373 d d doublet
PS4 5.4094 d dd double doublet
sucrose 5.4168 d 5m quintuplet
PS5 5.4332 d
PS6 5.4367 d
PS7 5.4510 d
fumarate 6.5200 s
Trp 7.5452 d
formate 8.4584 s
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In the case of acetic acid, the distribution (Figure 3a) is
markedly bimodal, with values centered at about −0.5 and 2.0,
with the left peak containing more samples than the other
peak.
As shown in Figure 3d, the samples relative to the left peak

are strongly spatially correlated and mainly clustered in the
large blue region. On the other hand, the points belonging to
the right peak are grouped in smaller regions, as also evidenced
by the semivarigram in Figure 3c, where the correlation length
is nearly 15 m. The Q−Q plot has the typical sigma shape of a
bimodal distribution.
In the case of PS3, bimodality is less evident. The two peaks

are evidenced only by distribution estimation and are large and
convoluted. Also, in this case, the left peak comprised the

major part of the samples, as also evidenced by the prevalence
of blue tones in Figure 3d. The patches of different colors are
greater than those of acetic acid, in agrement with the
semivariogram, which indicates a correlation length of 112 m.
The Q−Q plot shows a close to Gaussian behavior, except for
small deviations from the red line as a result of the slightly
bimodal character of the data.
The behavior of the two compounds, taken as an example, is

really different (Figures 3 and 4) and this is also the case for all
of the other quantified metabolites (data not shown) as, in
turn, indicated by the significat correlation length variability
among the metabolites (see Tables s1−s4 of the Supporting
Information).

Figure 3. (a) Histogram, (b) Q−Q plot, (c) semivariogram, and (d) heat map of interpolated values by kriging of acetic acid. The variable was
previously standardized. Dots in panel d represent, in a false color scale, the experimental values at the sampling positions. The red line in panel b
represents the normal distribution.
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It is evident that a single metabolite does not represent the
overall metabolic field variability. Actually, considering the
different behaviors of the quantified metabolites, the question
arises if some spatial patterns should persist when the entire
metabolome spatial variability is considered.
To answer this question, a global variable or, actually, a

metabiolic index (MI) needs to be defined for summarizing all
of the metabolic information.
A linear combination of the metabolite concentrations, MI =

∑jwjIj, is the simplest choice for a metabolic index. However,
different coefficient options will produce distinct alternative
MIs. In Table 2, three possible MI definitions are reported.23

In particular, the mean calculation gives all of the variables the
same relevance, while the coefficient of variation emphasizes

the variables with a high variability. Finally, the first principal
component will emphasize the variance among samples.
Naturally, before MI calculation, an appropriate variable

scaling is needed.
Because each of the quantified metabolites have a different

content of spatial variability, as shown by Moran’s index

Figure 4. (a) Histogram, (b) Q−Q plot, (c) semivariogram, and (d) heat map of interpolated values by kriging of PS3. The variable was previously
standardized. Dots in panel d represent, in a false color scale, the experimental values at the sampling positions. The red line in panel b represents
the normal distribution.

Table 2. Algorithms for Metabolic Index Calculation

MI wj

mean 1/N all variables have the same relevance
CoV CoVj/∑jCoVj with

CoV = σ/μ
gives importance to variables with high
variability

PCA PC1 emphasizes variance among sampling
points
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reported in Figure s3 of the Supporting Information, in
principle, the sum-defining MI can be resticted only to those
variables with a high geographic content.12 Actually, from
Moran’s index, it appears that all of the analyzed variables have
a significant spatial correlation. Thus, as a result of the
difficulty of defining a suitable threshold for the geographic
content, all of the quantified metabolites were used to calculate
the MI by PCA.
Figure 5 shows the maps of the PCA metabolic index for the

different plant growth stages and locations (maps of MImean
and MICoV are shown in Figures s4 and s5 of the Supporting
Information, respectively). Each map is the deterministic
interpolation, by radial basis functions, of the experimental
data represented in the figure by dots.
The wheat shoot MI for the Genzano field, reported in

Figure 5a, shows a significant spatial correlation, with positive
values clustered in the northwest region and negative values
grouped in the southeast region. On the other hand, the MI of
grain produced in the same field (Figure 5b) displays a more
random distribution among the different field locations,
probably as a result of precision agriculture practices perfomed
on the field or climatic conditions, which may level field
characteristics. The spatial correlation seen in the early plant

stage and the quite random distribution of the MI values in the
grain metabolome are confirmed by Local Indicators of Spatial
Association (LISA) analysis24 reported in Figure s6 of the
Supporting Information.
A similar behavior is observable in the Matera field, where

again spatial correlation is evident in the blooming spike
metabolome (Figure 5c) contrary to the grain (Figure 5d),
where a more uniform distribution is observable, except for
central part of the field, where uniform fertilization was
applied. However, from LISA analysis, it emerges that the
spatial correlation in the Matera grain map is not significant
and the uniform fertilization zone cannot be significantly
identified by the map. The spatial distribution is so
uncorrelated that the variogram is completely flat and kriging
interpolation is impossible. That is why in Figure 4
deterministic interpolation was preferred over kriging.
PC1 loadings, which are related to the weights used to

calculate the MI, are shown in Figure 6.
From Figure 6a, it appears that Val, U1, U2, Thr, Ala,

GABA, acetate, U5, U6, β-glucose, α-glucose, sucrose, PS5,
and formate are overexpressed in the northwest region (in red
in Figure 5), while the southeast region (blue in Figure 5) is
characterized by a greater concentration of polysaccarides

Figure 5. Deterministic interpolation by radial basis functions.
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(PS1, PS2, PS3, and PS4). A similar behavior is observed for
blooming spikes in the Matera field where the red regions in
the map correspond to a higher concentration of Val, Ile, U1,
Thr, Ala, GABA, succinate, U5, and formate, while the map
blue regions are characterized by β-glucose, α-glucose, PS1,
PS4, sucrose, and PS6. On the other hand, the loadings of
wheat flour of both fields show that the major part of the
metabolites is positively correlated to MI.
In summary, metabolic profiling is demonstrated as an

additional valuable tool to analyze spatial variability of farm
land. Sample georeferentiation, geostatistics, and NMR
profiling permit establishment of a relation between the
metabolic expression of plants, in particular, durum wheat, and
morphological inhomogeneities of agricultural fields. In
addition, any external forcing on plant biology, such as climate
events, pathogen infections, farming practices, etc., can be

monitored in space and time, becoming a valuable help to
precision farming strategies. This approach, despite not being
at the moment applicable to routine field characterization, is
important to validate other euristic and more fast field
characterization tools, making a direct connection between
spatial variability of soils and plant metabolic expression and
eventually crop quality. In addition, a future comparison of
metabolic profile maps to soil electrical conductivity and
remote sensing spectroscopic results may strongly improve the
understanding and use of such tools. In fact, a visual
comparison of Figure 5 and Figure 3 of Denora et al.13 is
encouraging, showing an evident similarity between MI and
electrical conduntivity maps. Work is in progress to
mathematically compare the two results.

Figure 6. PC1 loadings. Positive loadings are positively correlated to red regions in the maps of Figure 4 and negatively correlated to blue regions.
The reverse occurs for negative loadings.
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