Sulfate geoengineering (SG), made by sustained injection of SO2 in the tropical lower stratosphere, may impact the CH4 abundance through several photochemical mechanisms affecting tropospheric OH and hence the methane lifetime. (a) The reflection of incoming solar radiation increases the planetary albedo and cools the surface, with a tropospheric H2O decrease. (b) The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: The net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D). (c) The extratropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-To-upper troposphere, thus reducing the amount of NOx and O3 production. (d) The tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rate perturbation is highly latitude dependent, producing a stronger meridional component of the Brewer-Dobson circulation. The net effect on tropospheric OH due to the enhanced stratosphere-Troposphere exchange may be positive or negative depending on the net result of different superimposed species perturbations (CH4, NOy , O3, SO4) in the extratropical upper troposphere and lower stratosphere (UTLS). In addition, the atmospheric stabilization resulting from the tropospheric cooling and lower stratospheric warming favors an additional decrease of the UTLS extratropical CH4 by lowering the horizontal eddy mixing. Two climate-chemistry coupled models are used to explore the above radiative, chemical and dynamical mechanisms affecting CH4 transport and lifetime (ULAQ-CCM and GEOSCCM). The CH4 lifetime may become significantly longer (by approximately 16 %) with a sustained injection of 8 Tg-SO2 yr-1 starting in the year 2020, which implies an increase of tropospheric CH4 (200 ppbv) and a positive indirect radiative forcing of sulfate geoengineering due to CH4 changes (C0.10Wm-2 in the 2040-2049 decade and C0.15Wm-2 in the 2060-2069 decade). © Author(s) 2017.

Sulfate geoengineering impact on methane transport and lifetime: Results from the geoengineering model intercomparison project (GeoMIP)

Cionni, I.
2017-01-01

Abstract

Sulfate geoengineering (SG), made by sustained injection of SO2 in the tropical lower stratosphere, may impact the CH4 abundance through several photochemical mechanisms affecting tropospheric OH and hence the methane lifetime. (a) The reflection of incoming solar radiation increases the planetary albedo and cools the surface, with a tropospheric H2O decrease. (b) The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: The net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D). (c) The extratropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-To-upper troposphere, thus reducing the amount of NOx and O3 production. (d) The tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rate perturbation is highly latitude dependent, producing a stronger meridional component of the Brewer-Dobson circulation. The net effect on tropospheric OH due to the enhanced stratosphere-Troposphere exchange may be positive or negative depending on the net result of different superimposed species perturbations (CH4, NOy , O3, SO4) in the extratropical upper troposphere and lower stratosphere (UTLS). In addition, the atmospheric stabilization resulting from the tropospheric cooling and lower stratospheric warming favors an additional decrease of the UTLS extratropical CH4 by lowering the horizontal eddy mixing. Two climate-chemistry coupled models are used to explore the above radiative, chemical and dynamical mechanisms affecting CH4 transport and lifetime (ULAQ-CCM and GEOSCCM). The CH4 lifetime may become significantly longer (by approximately 16 %) with a sustained injection of 8 Tg-SO2 yr-1 starting in the year 2020, which implies an increase of tropospheric CH4 (200 ppbv) and a positive indirect radiative forcing of sulfate geoengineering due to CH4 changes (C0.10Wm-2 in the 2040-2049 decade and C0.15Wm-2 in the 2060-2069 decade). © Author(s) 2017.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/1720
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact