The critical heat flux (CHF) condition is characterized by a sharp reduction of the local heat transfer coefficient as a result of the replacement of liquid by vapor adjacent to the heat transfer surface [1]. The CHF condition in flow boiling can be of different nature [1–5]. At low vapor quality, it is associated with subcooled boiling or saturated boiling and high heat. However, at medium or high quality, it is the dryout and there is no liquid film on the tube wall. Usually this is in case of annular flow and due to surface wave instabilities or entrainment and vaporization. © 2015, Springer International Publishing Switzerland.

Critical heat flux

Celata, G.P.
2015-01-01

Abstract

The critical heat flux (CHF) condition is characterized by a sharp reduction of the local heat transfer coefficient as a result of the replacement of liquid by vapor adjacent to the heat transfer surface [1]. The CHF condition in flow boiling can be of different nature [1–5]. At low vapor quality, it is associated with subcooled boiling or saturated boiling and high heat. However, at medium or high quality, it is the dryout and there is no liquid film on the tube wall. Usually this is in case of annular flow and due to surface wave instabilities or entrainment and vaporization. © 2015, Springer International Publishing Switzerland.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/1738
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact