The snowflake [1,2] divertor is a proposal for solving the heat and particle exhaust problem in fusion grade plasmas. Turning the X-point into a second order null gives the possibility of radially expanding the poloidal flux in the divertor region much more than in a SD, increasing the connection length, redistributing the power load on a larger area and enhancing radiative losses. Since the efforts associated to the design of reactor-relevant configurations, like the snowflake, are large, ENEA is studying this configuration using efficient and flexible numerical tools to design and optimise tokamak equilibrium configurations. Such studies are applied to the Divertor Test Tokamak FAST, a satellite tokamak proposed for the European roadmap towards fusion. © 2014 Elsevier B.V.

Analysis of FAST snowflake divertor by EDGE2D/EIRENE

Maddaluno, G.;Viola, B.
2015-01-01

Abstract

The snowflake [1,2] divertor is a proposal for solving the heat and particle exhaust problem in fusion grade plasmas. Turning the X-point into a second order null gives the possibility of radially expanding the poloidal flux in the divertor region much more than in a SD, increasing the connection length, redistributing the power load on a larger area and enhancing radiative losses. Since the efforts associated to the design of reactor-relevant configurations, like the snowflake, are large, ENEA is studying this configuration using efficient and flexible numerical tools to design and optimise tokamak equilibrium configurations. Such studies are applied to the Divertor Test Tokamak FAST, a satellite tokamak proposed for the European roadmap towards fusion. © 2014 Elsevier B.V.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact