Climate change may alter the geographical pattern and intensity of near-surface winds which are the “fuel” for wind turbines. In a context of fast current and planned development of wind power worldwide, investigating the impacts of climate change on wind power generation is necessary. This study aims at assessing future changes in the potential for wind power generation over the whole Europe and in the effective wind power production from national wind farms operating at the end of 2012 and planned by 2020. For this purpose, a simplified wind power generation model is applied to an ensemble of 15 regional climate projections achieved from 10 Regional Climate Models downscaling six Global Climate Models under the SRES A1B emission scenario from the ENSEMBLES project. The use of a relatively large multi-model ensemble allows the identification of robust changes and the estimation of a range of uncertainties associated with projected changes. We show with a high level of confidence that, under the A1B scenario, over most of Europe, changes in wind power potential will remain within ±15 and ±20 % by mid and late century respectively. Overall, we find a tendency toward a decrease of the wind power potential over Mediterranean areas and an increase over Northern Europe. Changes in multi-year power production will not exceed 5 and 15 % in magnitude at the European and national scale respectively for both wind farms in operation at the end of 2012 and planned by 2020. Therefore, climate change should neither undermine nor favor wind energy development in Europe. However, accounting for climate change effects in particular regions may help optimize the wind power development and energy mix plans.

Assessing climate change impacts on European wind energy from ENSEMBLES high-resolution climate projections

Balog, I.;Ruti, P.M.
2014-01-01

Abstract

Climate change may alter the geographical pattern and intensity of near-surface winds which are the “fuel” for wind turbines. In a context of fast current and planned development of wind power worldwide, investigating the impacts of climate change on wind power generation is necessary. This study aims at assessing future changes in the potential for wind power generation over the whole Europe and in the effective wind power production from national wind farms operating at the end of 2012 and planned by 2020. For this purpose, a simplified wind power generation model is applied to an ensemble of 15 regional climate projections achieved from 10 Regional Climate Models downscaling six Global Climate Models under the SRES A1B emission scenario from the ENSEMBLES project. The use of a relatively large multi-model ensemble allows the identification of robust changes and the estimation of a range of uncertainties associated with projected changes. We show with a high level of confidence that, under the A1B scenario, over most of Europe, changes in wind power potential will remain within ±15 and ±20 % by mid and late century respectively. Overall, we find a tendency toward a decrease of the wind power potential over Mediterranean areas and an increase over Northern Europe. Changes in multi-year power production will not exceed 5 and 15 % in magnitude at the European and national scale respectively for both wind farms in operation at the end of 2012 and planned by 2020. Therefore, climate change should neither undermine nor favor wind energy development in Europe. However, accounting for climate change effects in particular regions may help optimize the wind power development and energy mix plans.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/2911
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact