In a trapped-vortex combustor (TVC) flame stabilization is achieved through intense internal exhaust gases recirculation, which is promoted by the adoption of cavities. Thanks to its peculiar features, a trapped-vortex burner produces low pressure drop and emissions and it is characterized by extended blow-out limits. The strong mixing of fresh reactants with flue gases due to internal recirculation represents the basis for the establishment of a distributed MILD, i.e. "Moderate Intense Low-Oxygen Dilution Combustion" regime, which is characterized by reduced temperature peaks, volumetric distributed reactions, low NOx emissions and no thermo-acoustic instabilities. Aim of the work is to study the possibility to obtain a MILD regime in our available trapped-vortex device, taking the advantage of the combined effect of TVC strong internal exhaust gases recirculation and of oxy-combustion external exhaust recirculation, attaining the benefits of CO2 capture at the same time. To this end a series of computational fluid dynamics simulations were conducted on our TVC device, in order to understand the influence on combustion of the main operating parameters, such as the equivalence ratio, the level of dilution, the injection temperature, the velocity, etc.. A preheating temperature and a range of oxygen concentrations that at the same time complies with a distributed reactions regime and an efficient combustion were identified for the premixed and non-premixed operating modes.

New-concept gas turbine burner simulation in moderate intense Low-Oxygen Combustion Regime

Calchetti, G.;
2017-01-01

Abstract

In a trapped-vortex combustor (TVC) flame stabilization is achieved through intense internal exhaust gases recirculation, which is promoted by the adoption of cavities. Thanks to its peculiar features, a trapped-vortex burner produces low pressure drop and emissions and it is characterized by extended blow-out limits. The strong mixing of fresh reactants with flue gases due to internal recirculation represents the basis for the establishment of a distributed MILD, i.e. "Moderate Intense Low-Oxygen Dilution Combustion" regime, which is characterized by reduced temperature peaks, volumetric distributed reactions, low NOx emissions and no thermo-acoustic instabilities. Aim of the work is to study the possibility to obtain a MILD regime in our available trapped-vortex device, taking the advantage of the combined effect of TVC strong internal exhaust gases recirculation and of oxy-combustion external exhaust recirculation, attaining the benefits of CO2 capture at the same time. To this end a series of computational fluid dynamics simulations were conducted on our TVC device, in order to understand the influence on combustion of the main operating parameters, such as the equivalence ratio, the level of dilution, the injection temperature, the velocity, etc.. A preheating temperature and a range of oxygen concentrations that at the same time complies with a distributed reactions regime and an efficient combustion were identified for the premixed and non-premixed operating modes.
2017
Trapped-vortex burner;MILD combustion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/3167
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact