This paper describes the SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) Project results obtained so far in the design of the seismic isolation system of two nuclear power plants: the ELSY configuration for the LFR (Lead-Cooled Fast Reactor) design and the MYRRHA configuration for the accelerator-driven systems (ADS). The seismic protection of the nuclear buildings by means of seismic isolation has been chosen in order to minimize changes to the standard design of the civil works and internal components of the Nuclear Power Plant. The work led to the identification of the optimal design solution, in terms of type and location of seismic devices, to achieve compliance to the floor response acceleration spectra in horizontal and vertical direction, with levels of horizontal displacements not exceeding the maximum acceptable values for structural and non-structural elements. The isolators studied in the project are of the type elastomeric, both High Damping Rubber Bearings and Lead Rubber Bearings; moreover the adoption of a fail-safe system to limit the horizontal isolator deformation in case of beyond design earthquakes is studied.

Siler project: Design of the seismic isolators

Scipinotti, R.;Ferrucci, B.;Forni, M.;Poggianti, A.
2014-01-01

Abstract

This paper describes the SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) Project results obtained so far in the design of the seismic isolation system of two nuclear power plants: the ELSY configuration for the LFR (Lead-Cooled Fast Reactor) design and the MYRRHA configuration for the accelerator-driven systems (ADS). The seismic protection of the nuclear buildings by means of seismic isolation has been chosen in order to minimize changes to the standard design of the civil works and internal components of the Nuclear Power Plant. The work led to the identification of the optimal design solution, in terms of type and location of seismic devices, to achieve compliance to the floor response acceleration spectra in horizontal and vertical direction, with levels of horizontal displacements not exceeding the maximum acceptable values for structural and non-structural elements. The isolators studied in the project are of the type elastomeric, both High Damping Rubber Bearings and Lead Rubber Bearings; moreover the adoption of a fail-safe system to limit the horizontal isolator deformation in case of beyond design earthquakes is studied.
2014
9780791846070
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/5770
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact