We developed and tested a new charged particle tracking system, able to operate in high luminosity experiments, which will be installed at Jefferson Laboratory HallA (VA, USA) for optimally exploit the new 12 GeV energy electron beam available at the end of 2013. The tracker is made of six GEM (Gas Electron Multiplier) large chambers and two 10×20 cm2 planes of SIlicon microstrip Detectors (SIDs). Each GEM chamber is composed by three 40×50 cm2 GEM modules, with two-dimensional strip readout, with expected spatial resolution of about 70 mm. The same dedicated acquisition system will be used for both detectors (GEM & SID) for a grand total of more than 50,000 channels. The readout electronics is divided into two parts: the front-end cards (based on the existing APV25 chip), hosted on the detectors periphery and the digitizer, a multi purpose VME-64x/VXS board located far from the high radiation environment. The very same electronics has been adopted by the Olympus experiment (DESY, Hamburg, D) to read out the six GEM chambers of its luminosity monitor. The developed detectors and electronics are now ready for the production, which will last for the next 2 years. © 2012 Elsevier B.V. All rights reserved.

Production status of the JLAB Hall-A GEM and Si μstrip Tracker

Capogni, M.
2013-01-01

Abstract

We developed and tested a new charged particle tracking system, able to operate in high luminosity experiments, which will be installed at Jefferson Laboratory HallA (VA, USA) for optimally exploit the new 12 GeV energy electron beam available at the end of 2013. The tracker is made of six GEM (Gas Electron Multiplier) large chambers and two 10×20 cm2 planes of SIlicon microstrip Detectors (SIDs). Each GEM chamber is composed by three 40×50 cm2 GEM modules, with two-dimensional strip readout, with expected spatial resolution of about 70 mm. The same dedicated acquisition system will be used for both detectors (GEM & SID) for a grand total of more than 50,000 channels. The readout electronics is divided into two parts: the front-end cards (based on the existing APV25 chip), hosted on the detectors periphery and the digitizer, a multi purpose VME-64x/VXS board located far from the high radiation environment. The very same electronics has been adopted by the Olympus experiment (DESY, Hamburg, D) to read out the six GEM chambers of its luminosity monitor. The developed detectors and electronics are now ready for the production, which will last for the next 2 years. © 2012 Elsevier B.V. All rights reserved.
2013
Front end and readout electronics;GEM
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact