Rice straw is a widely available lignocellulosic waste with potential for energy recovery through anaerobic digestion. Lignin slows the hydrolysis phase, resulting in low methane recovery and long digestion periods. Although pretreatment is effective, it often requires high energy inputs or chemicals that are not feasible for farm-scale systems. This study investigates a unique co-digestion strategy to improve methane yields and reduce digestion times for farm-scale systems.By adding both piggery wastewater and paper mill sludge, specific methane yields in laboratory-scale digesters reached the theoretical value for rice straw (i.e. 330LNCH4/kgVS) over the 92-day period. Accelerated hydrolysis of the straw was directly related to the quantity of sludge added. The most stable digester, with sufficient buffering capacity and nutrients, contained equal parts of straw, wastewater and sludge. This approach is feasible for farm-scale applications since it requires no additional energy inputs or changes to existing infrastructure for dry systems. © 2013 Elsevier Ltd.

Enhanced methane production from rice straw co-digested with anaerobic sludge from pulp and paper mill treatment process

Spagni, A.
2013-01-01

Abstract

Rice straw is a widely available lignocellulosic waste with potential for energy recovery through anaerobic digestion. Lignin slows the hydrolysis phase, resulting in low methane recovery and long digestion periods. Although pretreatment is effective, it often requires high energy inputs or chemicals that are not feasible for farm-scale systems. This study investigates a unique co-digestion strategy to improve methane yields and reduce digestion times for farm-scale systems.By adding both piggery wastewater and paper mill sludge, specific methane yields in laboratory-scale digesters reached the theoretical value for rice straw (i.e. 330LNCH4/kgVS) over the 92-day period. Accelerated hydrolysis of the straw was directly related to the quantity of sludge added. The most stable digester, with sufficient buffering capacity and nutrients, contained equal parts of straw, wastewater and sludge. This approach is feasible for farm-scale applications since it requires no additional energy inputs or changes to existing infrastructure for dry systems. © 2013 Elsevier Ltd.
2013
Co-digestion;Energy recovery;Lignocellulosic;Paper mill;Anaerobic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact