The electron beam emitted backward by plasma focus devices is being considered as a radiation source for Intra-Operative Radiation Therapy (IORT) applications. Radiobiological investigations have been conducted to assess the potential of this new prototype of IORT device. A standard x-ray beam, ISO-H60, was used for comparison, irradiating cell cultures in a holder filled with an aqueous solution. The influence of scattering by the culture water and by the walls of the holder was investigated to determine their influence on the dose delivered to the cell culture. MCNPX simulations were run and experimental measurements conducted. The effect of scattering by the holder was found to be negligible; scattering by the culture water was determined to give an increase in dose of the order of 10%.Health Phys. 105(4):000-000; 2013 © 2013 Health Physics Society.

The effect of x-ray scattering by water in the irradiation of cell cultures for the dosimetric characterization of a new prototype of IORT (Intra-Operative Radiation Therapy) device: Monte Carlo simulation and experimental validation

Castelluccio, D.M.;Ferrari, P.;
2013-01-01

Abstract

The electron beam emitted backward by plasma focus devices is being considered as a radiation source for Intra-Operative Radiation Therapy (IORT) applications. Radiobiological investigations have been conducted to assess the potential of this new prototype of IORT device. A standard x-ray beam, ISO-H60, was used for comparison, irradiating cell cultures in a holder filled with an aqueous solution. The influence of scattering by the culture water and by the walls of the holder was investigated to determine their influence on the dose delivered to the cell culture. MCNPX simulations were run and experimental measurements conducted. The effect of scattering by the holder was found to be negligible; scattering by the culture water was determined to give an increase in dose of the order of 10%.Health Phys. 105(4):000-000; 2013 © 2013 Health Physics Society.
2013
dosimetry;Monte Carlo;radiation therapy;x rays
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12079/985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact