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Abstract
In the present study, two different advanced oxidation processes, the Fenton reaction and titanium dioxide photocatalysis pro-
cess, were tested and compared with the aim of water recovery from bilge water. A suitable analytical method was developed 
in order to evaluate the efficiency of the processes. Wastewater and process products were characterized using analysis of 
the total carbon content, elemental analysis and permanganometry. The experimental tests were performed both on synthetic 
samples and on the real matrix. The percentages of carbon abatement in bilge water after the Fenton reaction and titanium 
dioxide photocatalysis were 67% and 64%, respectively. The Fenton reaction efficiency increased to 95% when the bilge 
water aqueous phase was pretreated by flocculation using a polyelectrolyte. This combined process can be considered as a 
valid method to treat bilge water which can then be discharged directly into the sea, sewer, or may be reused as gray water.
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Introduction

Marine transportation represents more than 90% (by weight) 
of the global commerce. Based on the type of load trans-
ported, it can be mainly classified in cargo-carrying com-
mercial shipping such as merchant marine and non-cargo 
commercial shipping such as ferries, cruise ships, but also 
military ships, tugs, and fishing vessels (Walker et al. 2018). 
In the period between 1990 and 2019, the global seaborne 
trade volume exponentially increased from 4 to 11 billion 
tons (Statista Research Department 2021). Although marine 
transportation is one of the most common way to transport 
goods, different environmental issues are related to shipping 
(Andersson et al. 2016). In particular, the impacts of ship-
ping on the marine environment are listed into three main 
categories: discharges to water (e.g., ballast water, bilge 
water, oil spills), physical impact (e.g., noise and resuspen-
sion of sediments) and air emissions (e.g., ejection of sulfur 

oxides  (SOx), nitrogen oxides  (NOx) and greenhouses gases 
through exhaust fumes) (Yang 2011; Church et al. 2019). Oil 
spills are one of the major sources of oil released into the 
marine ecosystem. An additional source of hydrocarbons is 
represented by vessel operational discharges, including dis-
charge of ballast water and bilge water (Motoyoshi and Nishi 
2020; McLaughlin et al. 2014; Shen et al. 2020).

Bilge water is accumulated in the lower internal part of 
the ship (bilge) and its composition depends on the type of 
ship and its operation mode (Peng et al. 2005; Byrnes and 
Dunn 2020). Bilge water is generally composed of a mixture 
of seawater with different compounds including oily fluids 
and other pollutants such as metals, surfactants and solvents, 
which come from the mechanical part of the ship (McLaugh-
lin et al. 2014; Tiselius and Magnusson 2017). It can be 
described as a two-phase dispersion system where seawa-
ter is the continuous phase and the oil is the dispersed one 
(Tomaszewska et al. 2005). The physicochemical proper-
ties of marine oily wastewater are as follows: salty, alkaline, 
indecomposable and serious emulsification (Han et al. 2019). 
The dispersed oil is present in four physical states depending 
on the size of the droplets: floating oil (> 100 μm), dispersed 
oil (10–100 μm), emulsified oil (0.1–10 μm) and dissolved 
oil (< 0.1 μm) (McLaughlin et al. 2014; Han et al. 2019).

Although the amount of hydrocarbons discharged dur-
ing normal maritime operations is lower compared to the 
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amount spilled during maritime accidents, the operational 
discharge occurs constantly from numerous vessels (Motoy-
oshi and Nishi 2020). For this reason, the International Mar-
itime Organization (IMO) sets the standards for developing 
regulations regarding treatment and disposal of oily bilge 
water to reduce the negative effects of oily wastewater to 
the marine environment system. For achieving this param-
eter, ships are equipped with oil/water separators (OWS) as 
requested in Annex I of MARPOL (73/78) (International 
Maritime Organization (IMO) 1978; Amran and Musta-
pha 2021; Gryta 2020). Although the OWSs technology 
is efficient with floating oil and dispersed oil, with emul-
sion oil droplets and dissolved oil the removal effective-
ness decreases. Indeed, the presence of surfactants in water 
increases the emulsion stability due to the formation of a 
film on oil droplets surface which avoids the coalescence 
(Maiti et al. 2011; Gryta 2020; Eskandarloo et al. 2018). 
Therefore, the physical methods (gravity OWS and centrifu-
gal OWS) are inefficient to remove oil droplets with a parti-
cle size below 20 μm, but also colloidal metals and soluble 
compounds which are present in bilge water (McLaughlin 
et al. 2014; Penny and Suominen-Yeh 2006; Aini Amran and 
Nor Adibah Mustapha 2021).

In the last decades, several bilge water treatment tech-
nologies have been developed to decrease the discharge of 
oily wastewater and drastically reduce the related environ-
mental damages (Yu et al. 2017; Han et al. 2019; Amran 
and Mustapha 2021). As reported in the review of Han et al. 
(2019), these studies can be mainly classified into physical 
treatments by using different separation methods (Shen et al. 
2020; Sun et al. 2010; Tomaszewska et al. 2005; Gryta 2020; 
Lu et al. 2018; Cortese et al. 2014), chemical technologies 
such as adsorption (Rahmani et al. 2018; Turco et al. 2017; 
Furlan et al. 2017; Wang et al. 2014; Gupta and Kandasubra-
manian 2017) and electrochemical oxidation (Körbahti and 
Artut 2013; Ulucan and Kurt 2015; Carlesi et al. 2014; Bil-
gili et al. 2016) and biological treatments (Sun et al. 2009; 
Chanthamalee et al. 2013; Crisafi et al. 2016; Zhang et al. 
2018; Putatunda et al. 2019). Due to the different physico-
chemical properties of marine oily wastewater, in the last 
years also combined treatments were studied (Eskandarloo 
et al. 2018; Akarsu et al. 2016; Mancini et al. 2017; Mosle-
hyani et al. 2016a; Moslehyani et al. 2016a, b).

Advanced oxidation processes (AOPs) are based on the 
formation of hydroxyl radicals (•OH) by using ultraviolet 
(UV) radiation, ozone  (O3), hydrogen peroxide  (H2O2), 
and oxygen  (O2), among others (Luo et al. 2021; Ribeiro 
et al. 2015; Wang and Zhuan 2020). The most commonly 
employed AOPs are classified as homogeneous and het-
erogeneous processes depending upon occurring in single 
phase (such as  O3-based processes, Fenton-based pro-
cesses, wet oxidation and wet peroxide oxidation) or using 

heterogeneous catalysts such as carbon materials, metal 
supported catalysts or semiconductors such as titanium, 
zinc and tungsten oxides (Ribeiro et al. 2015; Ma et al. 
2021). Heterogeneous processes include heterogeneous 
photocatalysis, irradiated with UV and/or Vis-light, cata-
lytic wet peroxide oxidation (CWPO), catalytic ozonation 
and others (Ribeiro et al. 2015; Ma et al. 2021). As men-
tioned above, AOPs generate hydroxyl radicals, which can 
destroy organic pollutants into less complex compounds 
with high reaction rates (about 109 L   mol−1   s−1). The 
kinetic rate depends on the concentration of organic frac-
tion (Ribeiro et al. 2015; Luste and Sillanpää 2020; Ma 
et al. 2021). Regarding hydroxyl radicals’ characteristics, 
AOPs are considered a clean and efficient treatment for 
polluted water (Ribeiro et al. 2015). •OH is a non-selec-
tive agent and it is the strongest oxidant with  E° = 2.80 V, 
after fluorine (Pera-Titus et al. 2004; Liu et al. 2019). 
After the generation of hydroxyl radicals, they would 
attack organic chemicals by radical addition, hydrogen 
abstraction and electron transfer, oxidizing almost all 
organic compounds to carbon dioxide and water (Pera-
Titus et al. 2004). Moreover, hydroxyl radicals have a 
short lifetime and need to be generated in situ through the 
combination of oxidizing agents, irradiation and catalysts 
(Gautam et al. 2019).

The aim of this study is to develop a process to recover 
water from bilge water. The recovery treatments have been 
conducted by comparing two different AOPs: the Fenton 
reaction (homogeneous process) and titanium dioxide 
 (TiO2) photocatalysis (heterogeneous process). Both pro-
cesses are efficient and have been selected to treat several 
organic wastes (Ma et al. 2021). Because bilge water is 
a complex matrix, it was necessary to develop a suitable 
analytical method to evaluate the efficiency of wastewater 
treatment and characterize the final product. In the first 
part of the work, the experiments were carried out on 
bilge water synthetic solutions prepared considering the 
composition of the real one. The experiments performed 
on synthetic solutions allowed improving the methods of 
analysis to examine the oxidation processes. In addition, 
these experiments allowed testing the process efficiency on 
categories of substances typical of bilge water, but also of 
other types of wastewater.

The developed analytical methods and processes were 
afterward tested on the real matrix. The ultimate purpose 
of the study was to obtain water having physicochemical 
parameters suitable to the MARPOL 73/78 limit, so that 
it can be directly discharged into the sea as well as in 
surface waters.

The research activity reported in this paper has been 
performed in the ENEA laboratory facilities (Rome, Italy) 
during year 2019.
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Materials and methods

Synthetic stock solutions were prepared using sodium dode-
cyl sulfate as a surfactant (SDS, Sigma Aldrich), due to its 
wide employment in the formulations of commercial deter-
gents, and nonane as a hydrocarbon  (C9H20 Nonane Reagent 
plus® 99%, Sigma Aldrich), as it is a short-chain hydrocar-
bon contained in ship fuels.

Solutions of SDS were prepared at different concentra-
tions (from  10–1 to  10–4 mol  L−1), by dissolving SDS in 
ultra-pure water. C initial content was 30 mg  L−1 (sample 
1), 280 mg  L−1 (sample 2), 3900 mg  L−1 (sample 3) and 
30,700 mg  L−1 (sample 4), respectively. Nonane was used 
as received.

The bilge water sample was collected from “Norwegian 
Jade” docked at Civitavecchia port (Italy). Samples were 
stored in plastic tanks at room temperature. After 24 h, due 
to gravitational separation, the bilge water gave a two-phase 
system (water and oil). Oil was then separated from the 
water phase by pumping. Tests were performed on this water 
phase, which was used throughout the whole investigation.

Different analytical methods were employed to determine 
the concentration of organic C: total organic carbon (TOC) 
analysis by TOC-VCPN (Shimadzu), volumetric analysis 
using potassium permanganate  (KMnO4) as titrant (also 
known as Kubel method) and elemental analysis through 
the Elemental Macro Vario Cube analyzer.

The experimental tests on synthetic and real samples were 
performed 5 times. Each analysis was repeated 3 times. The 
obtained results were averaged, and the repeatability was 
always < 5%.

All reagents were of analytical grade and were used as 
received. The glassware utilized was class A Pyrex glass.

Treatment by Fenton reaction

Synthetic solutions

The Fenton reaction is based on the production of •OH radi-
cals by employing  H2O2 and  Fe2+ salts, as shown in Eq. 1:

The degradation efficiency depends on several parameters 
such as aqueous phase pH, concentration of Fenton reagent 
and initial organic concentration; in particular, the pH range 
of 2–4 allows achieving the best treatment efficiency (Zhang 
et al. 2019).

The Fenton reaction was performed by using solutions 
of ferrous sulfate heptahydrate  (FeSO4·7H2O, Mallinckrodt 

(1)Fe2+ + H2O2 + H+
→ Fe3+ + H2O + ⋅OH

Baker) 0.024 mol  L−1 and hydrogen peroxide  (H2O2) 30% 
w/v (Panreac).

The following parameters were controlled during each 
test: temperature to be 19 ± 1  °C, pH = 2.36—2.41 and 
 FeSO4 solution/synthetic solution volume ratio = 1/1; these 
operative conditions were selected because allowed obtain-
ing the lowest reagents consumption, as assessed during 
preliminary tests.

Regarding the surfactant, the experiments were conducted 
by adding 250 mL of  FeSO4·7H2O solution to 250 mL of 
SDS solution, under magnetic stirring; subsequently, 15 mL 
of  H2O2 was added drop by drop. Kinetic tests were carried 
out (1, 2 and 24 h), and samples were analyzed by TOC-
VCPN before and after the reaction to determine C concentra-
tion and therefore the effectiveness of the process.

The solutions were centrifuged at 3500 rpm (Nüve NF800 
centrifuge), and the supernatant was filtered with 0.2 μm 
Sartorius Stedim polyether sulfone (PES) membrane filters 
and analyzed by TOC-VCPN. The precipitate was washed, 
dried and weighed to determine the amount of produced 
sludge. In addition, iron concentration was analyzed by 
atomic absorption spectrophotometry (AA-6300, Shimadzu) 
before and after the Fenton reaction.

Regarding the hydrocarbon, 20 mL of nonane (Reagent 
Plus® 99%) was put under magnetic stirring in a beaker 
with 20 mL of  FeSO4·7H2O solution; subsequently 1.5 mL 
of  H2O2 was added drop by drop. Nonane is insoluble in 
water, so a biphasic organic phase (nonane)/aqueous phase 
(Fenton reactive) system was formed during the reaction. 
Kinetic tests were carried out (1, 2 and 24 h). The organic 
phase was separated, adsorbed on Celite®545 AW (Sigma 
Aldrich) and placed inside a tin crucible. The percentage of 
C was determined with a CHN analyzer. The aqueous phase 
was filtered with 0.2 μm PES membrane filters and analyzed 
through the TOC-VCPN.

Bilge water

The treatment methods described above were then tested 
on the real bilge water matrix. Fenton reaction experiments 
were conducted under magnetic stirring, adding 80 mL of 
 FeSO4·7  H2O solution and 5 mL of  H2O2 poured drop by 
drop to 80 mL of de-oiled aqueous phase (DAP). Kinetic 
tests were carried out (1, 2 and 24 h). Samples were cen-
trifuged and C content was analyzed by TOC-VCPN. The 
sludges produced during the reaction were separated from 
the aqueous phase by centrifugation, dried at 40 °C and 
weighed with an analytical balance.

Further tests were performed combining a flocculant pro-
cess by using a polyelectrolyte before the AOPs treatments 
studied. The flocculation produced suspension flakes which 
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were separated from the aqueous phase, dried at 40 °C and 
weighed with an analytical balance. C content in the super-
natant solution was determined by TOC–VCPN. Chemical 
analysis of bilge water before and after flocculation treat-
ment was executed via inductively coupled plasma optical 
emission spectroscopy microwave plasma atomic emission 
spectroscopy (MP-AES). In addition, inductively coupled 
plasma optical emission spectroscopy (ICP-OES) measure-
ments were performed to confirm metal values below MP-
AES detection limit (LOD).

Treatment by  TiO2 photocatalysis

Synthetic solutions

In photocatalytic processes, semiconductor materials (such 
as  TiO2) are irradiated with UV light which causes migra-
tion of electrons from the valence band to the conduc-
tion band, resulting in the formation of an oxidizing and a 
reducing site, as shown in Eqs. 2, 3, 4 and 5). The organic 
compounds are thus oxidatively degraded into reaction 
products such as  CO2 and  H2O (Dhanjai et al. 2019).

SDS solutions and anatase titanium oxide (Sigma 
Aldrich, ≥ 99% trace metals basis, powder, − 325 mesh) 
were placed inside a quartz glass reactor and irradiated 
with a Helios Italquartz UV lamp, with wavelengths rang-
ing from 380 to 10 nm under magnetic stirring. The lamp 
was equipped with a quartz cooling tube which allowed 
keeping the samples exposed at a constant temperature. 
Air at a pressure of 55 bar was used to cool down the lamp 
and maintain the temperature at 40 °C.

The experimental tests were performed by using a 
 TiO2/SDS solution ratio equal to 25·10–3 g  mL−1; as in the 
case of Fenton reaction, this value was selected because 
allowed obtaining the lowest reagents consumption, as 
assessed during preliminary tests. 200 mL of a known 
concentration of SDS were put in the quartz reactor with 
about 5 g of  TiO2, and the sample was stirred at 200 rpm.

Kinetic tests were carried out (1, 2 and 24 h) to study 
the efficiency of the process. Samples were filtered with 

(2)TiO2 + hv → TiO2

(

e
− + h

+
)

(3)OH− + h
+
→ ⋅OH

(4)H2O + h
+
→ ⋅OH + H+

(5)⋅OH + organic compounds → CO2 + H2O

0.2 μm PES filters, and C content was analyzed using the 
TOC-VCPN and by the Kubel method.

Regarding the hydrocarbon, 6 mL of nonane samples was 
put into the quartz reactor and stirred at 200 rpm with about 
600 mg of  TiO2. Kinetic tests were carried out (1, 2 and 
24 h), and C content was analyzed using the Kubel method.

Bilge water

The analytical methods described above were tested on the 
real bilge water matrix.

TiO2 photocatalysis experiments were carried out adding 
5 g of  TiO2 to 200 mL of DAP. Samples were placed in the 
reactor and collected after 1, 2 and 24 h, filtered with 0.2 μm 
PES filters and C content was analyzed by the TOC-VCPN.

Further tests were performed combining a flocculant 
process by using a polyelectrolyte before the photocataly-
sis treatment. The flocculation produced suspension flakes 
which were separated from the aqueous phase, dried at 40 °C 
and weighed with an analytical balance. C content in the 
supernatant solution was determined by TOC—VCPN.

Results and discussion

Treatment by Fenton reaction

Synthetic solutions

The results of the Fenton reaction treatment on synthetic 
SDS solutions are reported in Table 1. It was found that 
the reaction is already efficient within a short time (1 h) 
as reported in the literature (Ma et al. 2021). The percent-
age of mineralization varied between 80 and 90% for SDS 
synthetic solutions 1, 2 and 3, while for sample 4 the value 
was 62%. The difference between the C depleted in the four 
SDS synthetic solutions can be due to insufficient quantities 
of Fenton reagents, compared to the surfactant concentra-
tion, even though Fenton oxidation is particularly suitable 
for organic wastewater that would be hard to biodegraded 
or treated with conventional chemical techniques (Zhang 
et al. 2019).

The produced sludge was 320 mg  L−1 on average. Its 
production depends mainly on the Fenton reactant (Zhang 
et al. 2019). To confirm this, iron concentration before and 
after the reaction was determined through AAS and it was 
found that the amount of Fe in the solution decreased of 
about 90%.

Regarding nonane, it is a highly hydrophobic hydrocar-
bon; therefore, it was not possible to determine C content 
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within the solutions by using the liquid TOC. For this rea-
son, elemental analysis was employed through the Elemental 
Macro Vario Cube analyzer. In addition, nonane is a highly 
volatile liquid hydrocarbon; thus, it was adsorbed on a solid 
support to prevent sample weight variability. Tests by using 
several supports such as glucose (D—( +)—glucose, Sigma 
Aldrich), glass wool (amorphous silicates) and celite®545 
AW (Sigma Aldrich) were performed to determine the opti-
mum adsorbent. To reduce evaporation, the sample was 
weighed directly in the tin crucible, where the adsorbent 
was inserted and immediately closed.

To determine the most efficient sample/adsorbent ratio, 
tests were carried out with different quantities of hydro-
carbon for the same quantity by weight of adsorbent. For 
each experiment, sample blank with the adsorbent alone 
was firstly determined as internal standard (Table 2). It was 
observed that the optimum conditions are achieved with 
50 μL of nonane and 15 mg of adsorbent.

In addition, Table 2 shows that the optimal measurement 
conditions are achieved using Celite®545 AW as adsorbent, 
when comparing the percentage of measured C content to 
the percentage of expected C content. Indeed, for 50 μL of 
nonane in 15 mg of celite, the expected value of C was 59% 
and the measured value of C was 59% as well.

After the validation of C content measuring method for 
the nonane, tests were carried out through the Fenton reac-
tion. C content was determined collecting the sample after 
1, 2 and 24 h (Table 1). The results show that the Fenton 

Table 1  C removal percentage in the SDS and nonane synthetic solu-
tion after Fenton reaction

SDS solution

Sample Time (h) C removal (%)

1 0 –
1 89
2 87
24 87

2 0 –
1 83
2 80
24 79

3 0 –
1 80
2 74
24 74

4 0 –
1 62
2 57
24 57

Nonane

Celite +  C9H20 (mg) Time (h) C removal (%)

50.01 0 –
50.07 1 31
50.1 2 32
50.05 24 33

Table 2  Determination of sample C content through the elemental macro vario cube analyzer, analyzing different solid supports

Sample Adsorbent (ADS) ADS 
weight (mg)

Expected  C9H20 
weight (mg)

Expected weight 
ADS +  C9H20 (mg)

Measured weight 
ADS +  C9H20 (mg)

Expected C 
content (%)

Measured C 
content (%)

C9H20
10 μL

Glucose 15 7 22 12 54 3
Fiberglass 15 7 22 13 27 5
Celite 15 7 22 14 27 4

C9H20
20 μL

Glucose 15 14 29 20 62 16
Fiberglass 15 14 29 20 41 20
Celite 15 14 29 20 41 20

C9H20
30 μL

Glucose 15 21 36 30 66 25
Fiberglass 15 21 36 31 50 24
Celite 15 21 36 32 50 23

C9H20
40 μL

Glucose 15 28 43 37 69 29
Fiberglass 15 28 43 39 55 40
Celite 15 28 43 39 55 40

C9H20
50 μL

Glucose 15 36 51 50 71 61
Fiberglass 15 36 51 50 59 59
Celite 15 36 51 50 59 59
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reaction has the maximum efficiency after 1 h, as seen for 
SDS, with a carbon abatement of about 32%.

Comparing the results on SDS and nonane, it was found 
that Fenton reaction is more efficient for the surfactant with a 
C % removed between 62 and 90%, depending on C concen-
tration. In the case of nonane, the C % removed was about 
32%, which can be due to the higher oxidation resistance of 
hydrocarbons (Tomaszewska et al. 2005; Eskandarloo et al. 
2018) and to the higher C concentration of nonane. There-
fore, the oxidative process efficiency depends on both pol-
lutants concentration and their oxidation resistance.

Bilge water

Four aliquots were collected from the aqueous phase of bilge 
water and C content was measured by TOC-VCPN. The value 
obtained was 316.3 mg  L−1 on average with a percentage 
error < 5%. C content is comparable to the SDS  10–2 mol 
 L−1 synthetic sample, where the efficiency of the Fenton 
reaction was > 80%.

The aqueous phase was treated by Fenton reaction and 
it was found that the percentage of carbon removed reaches 
the value of 66% after 1 h and remains constant if the reac-
tion time is increased up to 2 h, as already occurred for the 
experiments with the SDS synthetics solutions with a C con-
centration of  10–2 mol  L−1.

The result obtained with the aqueous phase was low if 
compared to the experiments carried out with SDS  10–2 mol 
 L−1, where more than 80% of the C present in the solution 
was demineralized. This phenomenon depends on the bilge 
water composition as it is a heterogeneous matrix contain-
ing hydrocarbons and oils that are more resistant to oxida-
tion, in addition to the surfactant (Eskandarloo et al. 2018; 
Tomaszewska et al. 2005).

The sludges produced during the reaction were separated 
and weighted and the quantity was 322 mg  L−1 on average. 
This value is comparable to the results obtained with the 
SDS standard solution (320 mg  L−1 on average). The con-
stant amount of solid residue demonstrated that the sludge 
is mainly coming from the Fenton reagents (M. Zhang et al. 
2019).

To decrease the amount of the fraction that is more resist-
ant to oxidation, a possible scenario is to pretreat bilge water 
with a flocculant (Han et al. 2019).

Four aliquots of bilge water were collected and treated by 
using a polyelectrolyte as described in 2.1.2. Carbon con-
tent was measured by TOC—VCPN and the value obtained 
was found to be 291.3 mg  L−1 on average with a percent-
age error < 5%. Comparing the results measured before 
(316.3 mg  L−1) and after (291.3 mg  L−1) the flocculation 
treatment, a decrease in carbon content of 8% was observed. 
The percentage of carbon removed after 1 h was 95%, and 
this value was higher compared to the results obtained by 

treating the aqueous phase of bilge water directly with the 
Fenton reaction (66%).

In Table 3, the chemical analyses of some chemical spe-
cies before and after the flocculation process are presented. 
Although the flocculation process decreased the carbon con-
tent of about 8%, this method allows to purify the solution 
from other chemical species and, in particular, from metals. 
The combined method (flocculation process + Fenton reac-
tion) gives the possibility of water reuse as well as its direct 
discharged into the sea or surface water. In addition, the 
quantity of reaction sludge was determined. The value was 
2.5 g  L−1 on average for the flocculation, while for the Fen-
ton reaction was 321 mg  L−1 on average (comparable with 
the results obtain with SDS synthetic solutions).

Treatment by  TiO2 photocatalysis

Synthetic solutions

The experimental tests were performed by using a SDS 
synthetic solution with a concentration of  10–2 mol  L−1 
as the C concentration in the real matrix. Oxygen con-
sumption  (VO2) was determined in the solution through 
permanganometry, in particular with the Kubel method. 
For each sample, three titrations were carried out.  VO2 
derives from the oxidation of organic substances in solu-
tion using potassium permanganate and was determined 
according to Eq. 6:

where � is the volume of permanganate solution, N is the 
normality of the  KMnO4 solution (0.01210 N), 8 is the mass 

(6)
(� ⋅ N ⋅ 8) ⋅ 1000

V

Table 3  Bilge water chemical analysis via MP-AES, before and after 
flocculation treatment (*values measured by ICP-OES)

Element Before flocculation (mg  L−1) After floc-
culation (mg 
 L−1)

Al 54 1
Ba 3 1
Cd < 1 < 0.01*
Total Cr 69 < 0.01*
Fe 650 1
Mn 14 1
Ni 40 1
Pb 9 < 0.01*
Cu 9 < 0.01*
Sn < 1 < 0.01*
Zn 20 < 0.01*
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in grams of one equivalent of oxygen, 1000 is a conversion 
factor (gmg) and V is the volume of the analyzed sample.

It was found that the  VO2 was 117 mg  L−1 on average.
The SDS solutions were placed in the reactor with 

 TiO2 to be irradiated. For each experiment, two sam-
ples were collected after 1, 2 and 24 h. In the first one, 
oxygen consumption was determined using the Kubel 
method; in the other one, C content was determined by 
TOC-VCPN.

Oxygen consumption was determined in 15 mL of SDS 
synthetic solution treated with the photocatalysis and it was 
39.80 mg  L−1, which represented 65% of  VO2. This con-
sumption is attributable to the abatement of organic sub-
stances caused by photocatalysis oxidation that oxidizes the 
surfactant into  CO2 and  H2O. Similarly to Fenton reaction, 
it was found that the photocatalysis reaction reaches the 
maximum efficiency within a short time reaction (1 h), as 
also reported by Chen et al. 2020. Moreover, the samples 
were analyzed through TOC—VCPN to evaluate C concen-
tration before and after  TiO2 photocatalysis; the results 
confirmed that the reaction was efficient after 1 h with a 
percentage of carbon removal of about 67%. Although the 
consumption of oxygen and the quantity of residual carbon 
are two different parameters, the obtained values are com-
parable and both can be used to evaluate the efficiency of 
the process. Hydroxyl radicals generated during the  TiO2 
photocatalysis reaction oxidized almost all the organic com-
pounds to carbon dioxide and water. Therefore, C content 
decreases due to the reaction and consequently the oxygen 
consumption is also reduced, allowing correlation between 
the two parameters.

Regarding  TiO2 tests on nonane hydrocarbon, a number 
of experiments were carried out to determine the  VO2 with 
Kubel method. From the analysis, the oxygen consumption 
value was about 447 mg  L−1. Comparing the  VO2 value 
of nonane to the  VO2 value of SDS  10–2 mol  L−1 (117 mg 
 L−1), it was found that the  VO2 of nonane is higher than 
the  VO2 of SDS. This depends on C concentration of non-
ane which was 599 g  L−1, while C present in the SDS 
solution was 3.94 g  L−1.

The nonane solutions were placed in the reactor with 
 TiO2 to be irradiated. The samples were collected after 1, 
2 and 24 h and the oxygen consumption was determined 
using the Kubel method. It was not possible to determine 
the C content through TOC—VCPN, because nonane is 
a strong hydrophobic hydrocarbon.  TiO2 photocatalysis 
reaches the equilibrium after 1 h, as SDS experiments con-
firmed, with an oxygen consumption of 75%.

Bilge water

Four samples were collected from the aqueous phase of bilge 
water and placed inside the reactor with  TiO2. Samples were 
collected after 1, 2 and 24 h, and the C content was analyzed 
through TOC—VCPN.  TiO2 photocatalysis reaction is effi-
cient after 1 h and the percentage of C removal was 64% and 
this is comparable to the demineralization of SDS  10–2 mol 
 L−1 synthetic solutions. The poor affinity of photocatalysts 
toward organic pollutants could be an explanation for the 
results obtained through  TiO2 photocatalytic process. As Lee 
et al. (2018) presented in their work, slow photocatalytic 
degradation rates were caused by low adsorption of organic 
pollutants on the  TiO2 surface. Photocatalyst immobilization 
on an inert matrix could solve the selective affinity issue 
(Lee et al. 2018; Chen et al. 2020).

In addition, tests were also carried out to verify the possi-
bility of reusing  TiO2 during the photocatalysis experiments. 
The values obtained after the process with the recycled  TiO2 
showed that the oxide was still efficient with a percentage of 
reduced carbon of 63%.

Further tests were performed combining a flocculant 
process by using a polyelectrolyte before the photocatalysis 
treatment. Four samples were collected, treated by using a 
polyelectrolyte and centrifuged. Subsequently, the superna-
tant was demineralized with  TiO2 photocatalysis. Samples 
were collected after 1, 2 and 24 h, and the carbon content 
was determined via TOC-VCPN. It was found that  TiO2 
photocatalysis is efficient after 1 h and the percentage of C 
removal was about 63%: the effect of the photocatalysis on 
the sample after flocculation process produces then similar 
results to those obtained after the oxidation process on the 
aqueous phase.

Conclusion

In this paper, water recovery from bilge water is presented 
by comparing two different advanced oxidation processes: 
the Fenton reaction and  TiO2 photocatalysis.

All the oxidative processes tested on both synthetic solu-
tions and bilge water showed that the highest efficiency is 
achieved already after one hour with comparable oxidation 
yields. The surfactants oxidation in both oxidative processes 
achieved a C depletion higher than 90% compared to hydro-
carbons (30%). This difference is due to the higher resistance 
to oxidation of hydrocarbons (Tomaszewska et al. 2005; 
Eskandarloo et al. 2018). Therefore, the oxidative process 
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efficiency depends on both concentration and pollutants oxi-
dation resistance.

The oxidative process yields obtained on bilge water 
are lower compared to the synthetic solutions ones (about 
60%). Furthermore, it was found that the oxidative processes 
efficiency increases when the bilge water aqueous phase is 
pretreated by flocculation (95% of C depleted in the case of 
Fenton reaction).

The processes here presented allowed obtaining water 
having chemical-physical parameters which allow its direct 
discharge into the sea as well as in surface waters. It is con-
cluded that the AOPs treatments can be applied to a matrix 
with a similar composition to bilge water. Furthermore, ana-
lytical methods such as analysis of the total carbon content, 
elemental analysis and Kubel method proved to be efficient 
to evaluate the effectiveness of the processes.
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