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DAVID A. ANDOW,1 GABOR L. LÖVEI,2 AND SALVATORE ARPAIA3

Environ. Entomol. 38(6): 1528Ð1532 (2009)

A main point of our recent paper (Lövei et al. 2009)
is that there are non-neutral effects of Cry toxins and
proteinase inhibitors (PIs) on natural enemies in the
laboratoryand that thepatternof responses is complex
and needs additional analysis. Shelton et al. (2009)
aggressively attacked this conclusion. They claimed
that all negative effects of Cry toxins are caused by
effects of sublethally affected hosts and prey. We
suggested in Lövei et al. (2009) and reiterate here that
the actual situation is not that simple when laboratory
studies are considered. We made our point by using
statistical meta-analysis to show that there are more
nonzero effects of Cry toxins and PIs on natural en-
emies than expected under a statistical null hypothesis
that all observed effects were zero. The interested
reader may want to examine the longer history of some
of these issues (Lövei and Arpaia 2005; Andow et al.
2006; Romeis et al. 2006a, b).

In our rebuttal, we Þrst address the deeper, funda-
mental questions raised by Shelton et al. (2009) about
the value of meta-analysis and then proceed to rebut
the core criticisms about our statistical methods. Al-
though Shelton et al. (2009) raised many other issues,
we limited our rebuttal to these central issues; our lack
of comment does not imply agreement with their
other complaints.

Strengths of Meta-Analysis

Shelton et al. (2009) make two criticisms of our
work that are, in actuality, more fundamental criti-
cisms of meta-analysis. These criticisms are made, in
part, to defend the methods used and conclusions
reached in reviews by OÕCallaghan et al. (2005) and
Romeis et al. (2006b), neither of which are based on
meta-analyses. First they argued that nonsigniÞcant P
values are “devoid of futher meaning and interpreta-
tion” (Shelton et al. 2009, p. 318), and second, they
argue that the authorÕs conclusions should be given

greater standing than a data-driven reading of the
quantitative data (Shelton et al. 2009, p. 318). Both of
these are fundamental criticisms of meta-analysis, so
we address them Þrst.

One of the most confusing aspects of meta-analysis
is how it can take several statistically nonsigniÞcant
results and Þnd statistical signiÞcance. It would seem
that if 10 laboratories performed the same study and
each laboratory found statistically nonsigniÞcant re-
sults, the evidence for nonsigniÞcance should be over-
whelming. Such reasoning ignores the accumulation
of sample size. Suppose instead, that one laboratory
had performed the same experiment 10 times, each
time Þnding nonsigniÞcant results. If all 10 experi-
ments had P values between 0.1 and 0.3, pooling the
data could give rise to a statistically signiÞcant result
because the pooled data have 10 times the sample size
of each individual experiment. In a similar way, meta-
analysis is a method for pooling the results from sev-
eral laboratories to see if the combined results are
signiÞcant even when none of the individuals studies
was signiÞcant. SpeciÞcally, if the 10 laboratories pro-
duced nonsigniÞcant P values uniformly distributed
between 0.1 and 0.3, the combined data would have an
expectedPvalue of 0.00036, which is highly signiÞcant.
Meta-analysis does just what Shelton et al. (2009) said
we should not doÑcombine several nonsigniÞcant
studies to Þnd possible statistical signiÞcance.

Meta-analysis also provides an objective way to
combine the results from multiple authors because it
relies on the data and not on the interpretation of the
author (Romeis et al. 2006b) and avoids interpretive
pitfalls. Thus, although Shelton et al. (2009) agreed
with the summary statement of Bai et al. (2005) that
“Bt rice pollen had no negative impacts on P. japonica
Þtness,” such a statement may not hold up when the
data are combined with those of others and are com-
pared objectively using meta-analytic methods. Thus,
meta-analysis rejects the notion that statistical evi-
dence is found in the inferences and conclusions by an
author about his/her own data; instead, evidence is
found in the data published by that author. This point
was not accepted by Shelton et al. (2009), but all
scientists know that, whereas the interpretations may
be the most interesting part of a paper, the data are
primary.
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Modified Statistical Inference for Meta-Analysis

The core criticism of Shelton et al. (2009) concerns
our statistical methods. If our statistical methods are
valid, as we shall show in the following, the evidence
from the existing laboratory studies implies that “Cry
toxins and proteinase inhibitors often have non-neu-
tral effects on natural enemies [in laboratory studies]”
(Lövei et al. 2009, p. 293). None of the remaining
issues raised by Shelton et al. (2009) would erase this
important fact. Under “Prey/host-quality mediated ef-
fects,” Shelton et al. (2009) argued (1) that study
design is important for understanding the direct ef-
fects of Cry toxins on natural enemies and (2) that our
meta-analysis should have distinguished bitrophic and
tritrophic effects on natural enemies (see below).
Under “Ecological relevance and risk assessment,”
they also argued that (3) results from laboratory
studies do not necessarily imply that there will be
risks in the Þeld (our paper makes no contradictory
statement) and (4) that our meta-analysis should
have distinguished among kinds of proteinase in-
hibitors (this is desirable, but the data do not allow
at present an analysis Þner than Lövei et al. 2009,
Table 6). Even if they were correct, it is extremely
important to note that none of these additional
complaints would contradict our Þnding of non-
neutral effects of Cry toxins and PIs on natural
enemies in the laboratory, and a more nuanced
discussion becomes necessary.
Measure of Scaled Effect Size. In our paper, we

stated that our effect size measure is “similar” to
HedgesÕ g (Lövei et al. 2009, p. 293) to foreshadow that
we would not be conducting a classic meta-analysis.
Shelton et al. (2009) misinterpreted us; they added the
words “but not the same as” (in parentheses, their p.
318), which is not in our original text. By doing this,
they seek to cast doubt on the validity of our statistical
methods.

Actually, our basic effect size statistic is mathemat-
ically equivalent to HedgesÕ g. Scaled HedgesÕ g is
deÞned as

g � �n� x� t � x� c�/sdp, [1]

where x�t is the sample mean for the treatment group,
x�c is the sample mean for the control group, SDp is the
pooled SD of the two samples, and n is the sum of the
number of replicate observations in the treatment and
control (for simplicity, we show the case nt � nc)
(Hedges and Olkin 1985). Our statistic is

� x� t � x� x�/SEp, [2]

where SEp is the pooled SE. This can be seen from p.
294 (Lövei et al. 2009), where we explain in detail how
we handled the treatment and control means (giving
a measure of effect size), and in our p. 295, where we
state that the effect size is divided by SEp to classify the
reponse. Basic statistical theory deÞnes

SEp � sdp/�n. [3]

When equation (3) is substituted into equation (2),
we recover the right-hand side of equation (1), prov-
ing that our statistic is equal to scaled HedgesÕ g.
Hedges’ g and Hedges’ d. Marvier et al. (2007),

Wolfenbarger et al. (2008), Duan et al. (2008),
Nguyên et al. (2008), and Naranjo (2009) used
HedgesÕ d as a measure of scaled effect size. HedgesÕ
d is equal to HedgesÕ gmultiplied by a correction term
for small sample sizes. SpeciÞcally,
d � Jg, where

J � 1 �
3

4�n � 2� � 1

is the correction term, with n deÞned as above
(Hedges and Olkin 1985). When n is small (�15), the
correction term J is essential, and when n is large
(�20),J is negligible(0.96�J�1). Smallnare typical
in Þeld experiments (Marvier et al. 2007, Duan et al.
2008, Nguyên et al. 2008, Wolfenbarger et al. 2008,
Naranjo 2009) and some laboratory experiments on
honey bees (Duan et al. 2008). Meta-analysis also
requires that the scaled effect size is approximately
normal.BothHedgesÕgandHedgesÕdhavenoncentral
t-distributions. Under the null hypothesis of zero ef-
fect size (no difference between the treatment and
the control), both are approximately normal when n
is large (�20). For laboratory studies on natural en-
emies, n typically exceeded 20 (note that this would
have only 10 replicate observations in the treatment
and 10 in the control). Thus, not using the correction
term does not compromise our analysis.
Statistical Inference. Because HedgesÕ g is approx-

imately normal for large sample sizes under the null
hypothesis of zero effect size for all observations, we
posed the statistical question: does the distribution of
observed effect sizes follow a normal distribution? If
they do not follow a normal distribution and there are
fewer than expected nonzero effects (treatment is
different from control), we may conclude that there
are nonzero effects in the data. An examination of the
deviations from normality allows us to infer how often
and in what ways the treatment differs from the con-
trol. We tested this null hypothesis by binning the
effect sizes into Þve response groups based on SD units
of the standardized normal distribution (Lövei et al.
2009, p. 295). This mathematical operation is concep-
tually identical to using individual effect sizes to cal-
culate a mean effect size; we ascribed the same im-
portance to the individual effect sizes as is done in
classical meta-analysis. This operation allows us to
calculate expected values for each bin and to con-
vert the problem into a (admittedly not very pow-
erful, see p. 298 in Lövei et al., 2009) contingency
table analysis. Thus, there is nothing ßawed in our
analysis. Indeed our analysis is statistically conser-
vative and has the additional property of being in-
sensitive to extreme values. Thus, we showed that
the existing studies on Cry toxins and PIs have more
than expected nonzero effects on natural enemies in
laboratory studies.
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Still, we appreciate that a reader may wonder how
is it that two meta-analytic views (ours and Naranjo
2009) of the almost identical corpus of work give
divergent results. The classical meta-analysis ap-
proach used by Marvier et al. (2007), Wolfenbarger et
al. (2008), Nguyên et al. (2008), and Naranjo (2009)
summarized responses using an average effect size,
which can be a ßaw when aggregating diverse re-
sponses of multiple species studied with a variety of
experimental designs, which all of these published
meta-analyses do. A focus on the average can lead to
faulty inference. Consider a hypothetical example.
Suppose we know that the real effect of a certain
chemical is to cause the egg shells of peregrine falcons
to become 25% thinner and that this chemical also
causes the egg shells of dodos to become 25% thicker.
By using the average, Shelton et al. (2009) would have
us take the mean (�0% change in egg shell thickness)
and declare the toxin safe. Our approach highlights the
real variation among responses. This variation is the
raison d’être of risk assessment.

Nonindependence of Measures of Effect Size

Shelton et al. (2009) also argued that the lack of
statistical independence in the data biases our analysis
to yield false positives (type I error). The issue of
independence is a vexed problem in ecological meta-
analysis. There are many kinds of statistical depen-
dence that remain uncontrolled in nearly all ecolog-
ical meta-analyses, and these problems are evident in
all published meta-analyses of the effects of geneti-
cally engineered crops on nontarget species (Marvier
et al. 2007, Nguyên et al. 2008, Wolfenbarger et al.
2008, Naranjo 2009), except for Duan et al. (2008). For
example, meta-analyses of Þeld experiments treat the
different species density responses in the same exper-
iment as if they were independent, despite the fact
that we know that species interact and can strongly
affect each otherÕs densities. Results from experiments
conducted in the same environmental chamber are
also likely to be correlated. Arguably, even results
from the same primary investigator are likely to be
correlated because of individualistic variation in
technique and materials. Nearly all ecologically based
meta-analyses have signiÞcant nonindependence
among the observations. Meta-analysis theory has not
addressed nonindependence, so there has been no
way to address it except (unsatisfactorily) to try to
control it ad hoc and ignore the remainder.

Meta-analysis theory is clear that positive correla-
tions among data greatly inßate the type I error rates
for signiÞcance tests of mean effect size (Hedges and
Olkin 1985), but we do not estimate mean effect size
in our paper, and the sensitivity of our method to
statistical nonindependence is probably reduced. In
addition, it is likely that the data contain both positive
and negative correlations, and we argued in our paper
that these diverse correlations may even increase type
II error in our analysis (making our statistical test even
more conservative, p. 301, Lövei et al., 2009). Finally,
if we concede Shelton et al. (2009) their claim that

total immature development time and survival are not
different between transgenic treatment and control,
they must concede either that all of the instar-speciÞc
measures are nonsigniÞcant and not signiÞcantly cor-
related or that all signiÞcant correlations between
instar-speciÞc measures are negative correlations. If
any instar-speciÞc measures were strongly positively
correlated, the total immature development time or
survival would be different between transgenic treat-
ment and control. Any of these concessions contradict
the premise of their criticism about nonindepen-
dence; thus, their criticism does not logically hold. In
short, nonindependence may not be serious for our
analysis; indeed, it probably has the opposite effect to
that suggested by Shelton et al. (2009), increasing false
negatives (type II error) and making our analysis even
more conservative.

Given that nonindependence is common in ecolog-
ical data, an intriguing question remains. If the cor-
relations among the data are unknown, is it better to
ignore all potentially correlated data or to extract
information from them? It seems that Shelton et al.
(2009) prefer the former, when they suggest that the
instar-speciÞc survival rates and development times
should not even be considered. We prefer to try to
extract information from the data because information
is costly and hard to come by, and our analysis (Lövei
et al. 2009, p. 296) shows that there is additional in-
formation in the instar-speciÞc survival rates and de-
velopment times that is not present in the correspond-
ing summary statistics. This difference in perspective
may stem from the competing uses of laboratory data
for risk assessment. On the one hand, the data are
sometimes used to extrapolate to effects in the Þeld.
On the other, they are used to determine whether
additional studies are needed to characterize potential
effects in the Þeld. The Þrst approach has had dubious
success in risk assessment (Suter 2007) and in ecology,
which is why we are concerned with the second, more
common use of laboratory data in ecological risk as-
sessment. Thus, our published analysis (Lövei et al.
2009) is a Þrst step in characterizing the information
associated with laboratory studies and sets the upper
bound for what can be inferred from it.

Another useful approach for addressing statistical
nonindependence is to determine how much the
presumed correlations matter. We are currently ap-
proaching this problem by hypothesizing that the
data are all highly positively correlated at some level
of aggregation (e.g., all instar survival rates are pos-
itively correlated) to determine whether the hy-
pothesized correlations affect subsequent statistical
inference.

Bitrophic and Tritrophic Analysis

A separation of the responses by direct or indirect
exposure, as suggested by Shelton et al. (2009) is
useful, because it allows the assessment of host/prey
mediated effects separately from direct toxicity. Un-
der bitrophic interaction, the natural enemy directly
consumes the toxin. Under tritrophic interaction, the
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natural enemy consumes a prey or host that has di-
rectly consumed the toxin. Thus, under tritrophic in-
teraction, there is no direct exposure to the toxinÑ
only indirect exposure. We summarized the responses
for bitrophic (direct) and tritrophic (indirect) inter-
actions (Table 1) and found a complex set of re-
sponses. The null hypothesis that all effect sizes are 0
was rejected for both bitrophic and tritrophic preda-
tor exposure to Cry toxins (Table 1), which contra-
dicts the claims of Romeis et al. (2006b) and Shelton
et al. (2009) that nonzero effects only occur in tritro-
phic studies with predators. For parasitoids, the null
hypothesis was rejected for tritrophic but not for
bitrophic studies. In addition, the responses of para-
sitoids in bitrophic experiments were not skewed. To-
gether, these results suggest that parasitoids may be
affected by the commercialized Cry toxins only
through indirect interaction. For PIs, the null hypoth-
esis was rejected for both bitrophic and tritrophic
parasitoid exposure but only for tritrophic predator
exposure. The sample size for predator bitrophic stud-
ies with PIs is probably too small to support a reliable
inference. PIs seem to affect parasitoids by both bi-and
tritrophic pathways and predators by at least the
tritrophic pathway. Clearly, there is a need for addi-
tional analysis of these data.

Summary

Were-emphasize thatwehavenotclaimednorhave
we implied that laboratory data should be used by
themselves to characterize the risks of Cry toxins and
PIs to natural enemies. We are concerned that only
limited inferences can be drawn by a risk assessment
process that relies only on laboratory data to make
critical initial decisions about risk. We believe that
sound generalizations from the laboratory data con-
cerning the responses to genetically modiÞed plants
by natural enemies will emerge as this literature is
explored in detail. Just as there are not 10 million
different types of population dynamics (Lawton
1992), there are not 10 million different types of re-
sponses to GM plants. In our paper, we pointed out

that these laboratory data paint a more complex pic-
ture than hypothesized by Romeis et al. (2006b) and
Shelton et al. (2009). The criticisms of Shelton et al.
(2009) of our statistical methods do not stand up to
scrutiny and do not invalidate one of our main con-
clusions: existing Cry toxins and PIs have nonzero
effects on natural enemies in the laboratory that need
to be understood better. We encourage the reader to
critically examine their claims in light of the evidence
and explanations given in our original paper (Lövei et
al. 2009) and the additional clariÞcations presented
here.

To close on a positive vein, we note several impor-
tant Þndings in our paper (Lövei et al. 2009) that were
not disputed by Shelton et al. (2009). These include
that (1) the data support only limited generalization
about the responses of natural enemies to Cry toxins
and PIs; (2) there is an overemphasis on Þve natural
enemy species, although the literature is expanding in
scope; (3) tests have been conducted in only a few
countries; (4) the Cry toxins that have been studied
are mainly Cry1Ab, Cry1Ac, and to a lesser extent
Cry3Bb, and other commercialized Cry toxins are un-
der-reported. In addition, we found (Lövei et al. 2009)
that (5) parasitoids may be more sensitive than pred-
ators to the effects of both Cry toxins and PIs, (6) PIs
seem to affect natural enemies more than Cry toxins,
and (7) Cry toxins and PIs can have beneÞcial effects
on natural enemies.
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