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1 Introduction

Charm and beauty quarks arise from hard scattering processes with large four-momentum
transfer (Q2). In the subsequent hadronization process they lose their initial virtuality
and produce short-lived heavy-flavor hadrons, which can be reconstructed either through
their weak hadronic decays or indirectly via their semi-leptonic decay channels. In case of
proton-proton collisions, the inclusive production cross section of heavy-flavor hadrons can
be calculated with perturbative quantum chromodynamics (QCD) using the factorization
approach, which assumes that the collision process can be described by a convolution of
parton distribution functions (PDFs), a short-distance parton-level cross section, and a
fragmentation function. This factorization was proven to be valid at the leading power
of Q [1], as well as the leading power corrections O(1/Q2) [2, 3]. The concept of the
QCD factorization is often extrapolated to proton-nucleus collisions by replacing the usual
PDFs with nuclear PDFs (nPDFs), while keeping the short-distance parton-level cross
section and the fragmentation function the same [4–9]. However, there are also additional
phenomena which may or may not be incorporated into the nPDFs, for instance soft gluon
interactions between the incoming and/or outgoing hadrons causing kT-broadening and
energy loss of partons in the cold nuclear matter [10–13]. These effects may break the
QCD factorization in nuclear collisions, thus making the nPDFs process dependent. They
are often accounted for as extra modification factors or convolutions with extra functions
in various models [14–17]. The differences between the factorization of proton-proton and
proton-nucleus collisions are in general referred to as cold-nuclear-matter (CNM) effects.
The overall impact of the CNM effects on the resulting pT-differential inclusive production
cross section spectrum can be quantified by means of the nuclear modification factor,
defined as the ratio of the particle yield measured in proton-nucleus collisions and the
expected yield that would be obtained from a superposition of independent pp collisions.
The sensitivity of heavy-flavor probes to CNM effects can be expected to differ from that
of light-flavor probes due to the mass-dependent jet fragmentation [18–20].

Small collision systems such as pp or p-A provide a natural reference for the more
complex nucleus-nucleus collisions. Nuclear matter in these ultra-relativistic heavy-ion
collisions can reach extremely high energy densities and temperatures, and transform into
its hot and dense deconfined phase, the quark-gluon plasma (QGP) [21–23]. Initial parton
showers interact with the medium via collisional and radiative processes that cause dissipa-
tion and redistribution of energy inside the parton shower. This results in the suppression
of high-pT hadrons and jets [24–28] in nucleus-nucleus collisions and the modification of the
jet substructure [29–32], the so-called jet quenching. Since heavy-flavor quarks are mainly
produced in initial hard processes and since their numbers remain largely unchanged in the
later stages of the reaction [33, 34], they provide a unique opportunity to study the space-
time evolution of the QGP. In this context, small collision systems represent an important
test for theoretical models that account for the system-size-dependent evolution of the QGP
signatures as well as CNM effects. Understanding CNM effects is therefore essential for the
accurate quantification of the effects of a hot and dense medium in heavy-ion measurements.
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The reconstruction of jets containing heavy-flavor hadrons provides more direct access
to the primary heavy-flavor parton kinematics than an inclusive measurement of heavy-
flavor hadrons. By measuring heavy-flavor jets, production and fragmentation effects can
be studied separately. The ALICE Collaboration reported production of charm-tagged jets
in pp collisions at

√
s = 7TeV [35]. Measurements of beauty-tagged jets (b jets) in pp and

p-Pb collisions were performed by the CMS experiment [54]. They reported the nuclear
modification factor for b jets with transverse momentum larger than 50GeV/c. The AL-
ICE detector has excellent tracking capabilities for low-pT charged particles, which makes it
possible to measure b jets at low transverse momenta. This provides a unique opportunity
at the LHC to study nuclear modification of b jets down to the region where the energy
scale of the jets is of similar magnitude compared to the b-quark mass, which increases
sensitivity to mass dependent effects. In this paper, we present the first measurement of in-
clusive charged-particle b-jet pT-differential cross section and the b-jet fraction, down to jet-
transverse momentum pT,ch jet = 10GeV/c in p-Pb and pp collisions at √sNN = 5.02TeV.
The measured pT distributions were used to obtain the nuclear modification factor of b
jets, Rb-jet

pPb , in the transverse momentum range 10 ≤ pT,ch jet ≤ 100GeV/c.
The paper is organized as follows: the next section introduces the experimental setup

and data sets used for these measurements. Jet reconstruction and the b-jet tagging pro-
cedures are described in section 3. Section 4 deals with the correction steps that were
applied in the analysis. These include corrections for b-jet tagging efficiency, b-jet tagging
purity, and unfolding of the jet momentum smearing due to underlying event fluctuations
and instrumental effects. Systematic uncertainties are discussed in section 5. Section 6 is
devoted to the discussion of the final results. The paper is summarized in section 7.

2 Experimental setup and data sets

The ALICE detector [37, 38] consists of a central barrel, a forward muon arm, and a set of
forward detectors that are used for triggering and event characterization. The central barrel
hosts detection systems that provide tracking and particle identification. The most impor-
tant ones for this analysis are the Inner Tracking System (ITS) and the Time Projection
Chamber (TPC). The ITS is a 6-layer silicon tracker, which allows for precise reconstruc-
tion of primary interaction and secondary decay vertices. The two innermost layers of the
ITS are formed by the Silicon Pixel Detector (SPD). All detectors of the central barrel are
placed in a solenoidal magnet that provides a field of 0.5T along the beam direction.

The present analysis is based on the p-Pb and pp collisions at √sNN = 5.02TeV
taken by ALICE in 2016 and 2017, respectively. For p-Pb collisions, the beam energies of
colliding protons and Pb nuclei were asymmetric: the protons had 4TeV, while Pb nuclei
had an energy of 1.59TeV per nucleon. This resulted in the laboratory frame in a rapidity
(y) shift of the nucleon-nucleon center-of-mass system by ∆y = 0.465 in the direction of
the proton beam.

The main triggering device for the data sets used here is the V0 detector [39], consisting
of two scintillator arrays V0A and V0C. They cover the full azimuth angle in the forward
and backward pseudorapidity ranges 2.8 < η < 5.1 and −3.7 < η < −1.7, respectively. The
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minimum bias trigger (MB) is defined by a coincidence of V0A and V0C signals. Timing
of the V0A and V0C signals is also used to reject background from beam-gas interactions.

Pile-up events constitute less than 1% (0.5%) of triggered events in pp (p-Pb) collisions.
They were identified and rejected using an algorithm that utilizes track segments, formed
by hits in the SPD, to recognize events with multiple primary vertices. The remaining
undetected pile-up events constitute a negligible fraction of the analysed sample.

The p-Pb data set corresponds to an integrated luminosity of LpPb = (298± 11)µb−1

(624 × 106 MB events) [40], and the pp data set to Lpp = (18.9 ± 0.4) nb−1 (968 × 106

MB events) [41]. Only events with the location of the reconstructed primary vertex along
the beam axis within |zvtx| < 10 cm were retained to assure a uniform detector coverage at
midrapidity.

3 Jet reconstruction and b-jet identification

The analysis uses high-quality tracks [35] reconstructed in the pseudorapidity range
|ηtrack| < 0.9 that have at least one hit in either of the two SPD layers. In the regions
where the SPD was inefficient, high-quality tracks were supplemented with complementary
tracks that do not have a hit in the SPD, to achieve azimuthal uniformity in the tracking
acceptance. The momentum resolution of complementary tracks is improved by constrain-
ing the origin of the track to the primary vertex. Complementary tracks constitute about
3.5% of all primary tracks. The tracking efficiency for primary tracks with pT > 1GeV/c
varies with pT between 70 and 85%. Primary-track momentum resolution is about 0.7% at
pT = 1GeV/c, 1.6% at pT = 10GeV/c, and 4% at pT = 50GeV/c. The spatial resolution
of the track impact parameter with respect to the primary vertex is better than 75µm for
charged-particle tracks with transverse momentum pT > 1GeV/c and better than 20µm
for tracks with pT > 20GeV/c [35, 38]. More information about the track selection can be
found in ref. [35].

Jets were reconstructed using the infrared and collinear safe anti-kT algorithm [42] from
the FastJet package [43]. The resolution parameter was set to R = 0.4, which ensures that
most of the momentum of the initial parton (approximately 70% to 90% in the range of the
current measurement) falls within the jet cone [44]. The jets were constructed from charged
particles having pT,track > 0.15GeV/c and pseudorapidity |ηtrack| < 0.9. Their four-
momenta were combined using the pT recombination scheme, which considers all particles to
be massless [43]. The pseudorapidity coverage of the reconstructed jets was constrained to
|ηjet| < 0.9−R = 0.5 to select only jets that are fully contained within the TPC acceptance.

The reconstructed transverse momentum for jets preco
T,ch jet is obtained using the mea-

sured transverse momentum of charged-particle jets praw
T,ch jet, corrected for the mean con-

tribution of the underlying event using the formula preco
T,ch jet = praw

T,ch jet − ρ×Ajet [45]. Here
Ajet denotes the area of the jet and ρ is the mean underlying event pT density. The mean
underlying event pT density was calculated on an event-by-event basis using the estimator
introduced by CMS [46].

Identification of b jets is based on kinematic variables related to the lifetime of b-
hadrons (cτ ≈ 500µm), and the large impact parameter of beauty-hadron-decay daugh-
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ters. Several discriminator variables were defined and applied in two distinct b-jet tagging
methods that are presented in this paper, the impact parameter (IP) method (based on
the distance of closest approach, DCA, of the individual jet tracks to the primary vertex),
and the displaced secondary vertex (SV) method (based on the topology of a reconstructed
secondary vertex using a subset of the jet tracks). The tagging of the b-jet candidates
utilizes global tracks only and exploits the high spatial resolution of the SPD. The b-
jet pT-differential spectra were separately obtained with the two tagging algorithms and
eventually combined to improve the accuracy of the measurement. While the IP method
generally provides better b-jet tagging efficiency, the SV method has been proven to be
more stable at low pT. Both methods are discussed in detail below. For more information
on b-jet tagging algorithms, the reader may refer to refs. [47–49].

3.1 b-jet tagging based on impact parameter

The impact parameter of a track can be measured either in three dimensions or in the
projection on the plane perpendicular to the beam axis. This analysis used the latter
definition (denoted dxy) to exploit the better resolution of the ITS in this plane.

The sign of the impact parameter is determined as the sign of the scalar product of the
jet axis and the impact parameter vector pointing from the primary vertex to the point of
closest approach. Tracks originating from a secondary vertex tend to have positive impact
parameter values because of the mother particle decay length. On the other hand, the
tracks originating from the primary vertex can have both positive and negative impact
parameter values due to finite resolution which smears the impact parameter of primary
tracks symmetrically around the primary vertex. Discrimination among different jet flavors
was based on the impact parameter significance (Sdxy), defined as the ratio of the impact
parameter to its estimated resolution. The impact parameter resolution largely depends
on the η and pT of the tracks. Figure 1 (top left) shows the probability distribution of the
impact parameter significance for tracks belonging to different jet flavors, as determined
from a detector-level simulation, where PYTHIA 8 Monash 2013 [50] events were processed
with an ALICE GEANT 3-based particle transport model [51].

On average, tracks associated to b jets have larger Sdxy values when compared to c jets
and light-flavor jets. This means that the impact parameter has a strong discriminating
power in distinguishing between the different jet flavors.

This analysis uses the track counting algorithm [47], which arranges the Sdxy values of
tracks in a jet in descending order. A jet was tagged as a b jet if the second largest impact
parameter significance value (see figure 1 top right) was greater than a certain threshold
parameter Sdmin

xy . The default threshold parameter that was chosen in this analysis is
Sdmin

xy = 2.5, which gives an average tagging efficiency of 55% with average purity of 42%
for b jets with 20 < preco

T,ch jet < 40GeV/c. This choice provided an optimum balance between
good efficiency and good background rejection. Discrimination based on the tracks with
the first largest as well as the third largest impact parameter significance value (see figure 1
bottom left) were used for consistency checks.

The purity and b-jet tagging efficiency of the selected b-jet sample presented in sec-
tion 4.1.1 were determined using the jet probability algorithm [47, 49, 53]. This algorithm
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Figure 1. Top left: the normalized impact parameter significance (Sdxy) distribution for all tracks
inside light-flavor, charm, and beauty jets as determined from PYTHIA 8 (Monash 2013 tune [52])
detector-level simulations. Top right: the distribution of the second largest impact parameter
significance in the jet. Bottom left: the distribution of the third largest Sdxy in the jet. Bottom
right: distribution of Sdxy for data in pp and p-Pb collisions.

evaluates a combined impact parameter significance of tracks inside the jet and estimates
a likelihood that all tracks associated with the jet originated from the primary vertex.

Reconstructed tracks were classified based on different geometric and tracking features.
The algorithm defines a resolution function RIP for each category, by fitting the negative
side of the signed Sdxy distribution (bottom right panel of figure 1). This fit is carried out
on the negative part of the distribution because in this range it is predominantly populated
by primary tracks originating from the primary vertex.

The resolution functions corresponding to the different track categories were used to
calculate the track probability Ptr. This Ptr corresponds to the probability that a high-
quality jet constituent track with an impact parameter significance Sdxy is coming from
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√
s = 5.02TeV.

the primary vertex:

Ptr(Sdxy) =
∫−|Sdxy |
−∞ RIP(S)dS∫ 0
−∞RIP(S)dS

, (3.1)

where the integration is done over the negative side of the impact parameter significance
distribution. A large impact parameter value results in a small Ptr. The jet probability
(JP ) is then calculated by combining the Ptr values of tracks within a given jet according
to the equation [47, 49, 53]:

JP =
∏
×

Ntrack−1∑
k=0

(− log
∏

)k

k! , where
∏

=
Ntrack∏

i=1
Ptr,i . (3.2)

Only tracks with positive Sdxy are selected to calculate the jet probability. The JP dis-
criminates over different jet flavors only in a very narrow interval (0 < JP < 0.2). This
distribution is therefore not convenient for discrimination. For this reason, the − ln(JP )
quantity was used as a discriminator in our analysis to determine the b-jet tagging effi-
ciency using a data-driven method. As shown in figure 2, the − ln(JP ) decreases much
faster for light-flavor jets and c jets when compared to b jets, allowing for an effective
statistical discrimination of b jets.

3.2 b-jet tagging based on secondary vertex reconstruction

Secondary vertices (SV), where the weak decay of the beauty hadrons take place, are in most
cases well displaced from the primary vertex of the collision due to the lifetime of beauty
hadrons. Beauty hadrons primarily decay to non-prompt charm particles which typically
have similarly long lifetime. The SV algorithm reconstructs the secondary vertices inside
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Figure 3. Distributions of the tagging discriminators used in the SV method, SLxy (left) and
σSV (right), for b jets, c jets, and light-flavor jets as obtained from a MC simulation of the ALICE
apparatus, using PYTHIA as an event generator.

the jets from triplets of jet-constituent tracks. This choice was motivated by the typical
decay patterns of beauty hadrons. From all of these reconstructed secondary vertices,
this algorithm selects for the b-jet tagging the vertex that is most displaced. The vertex
reconstruction quality is described by the dispersion of the reconstructed secondary vertex,
σSV =

√
d2

1 + d2
2 + d2

3, where d1,2,3 are the distances of closest approach of the three tracks
to the secondary vertex.

This algorithm uses the decay length Lxy as a discriminator. The decay length is the
distance between the primary vertex and the secondary vertex measured in the plane trans-
verse to the beam axis. The significance is then defined by dividing Lxy by its uncertainty,
SLxy = Lxy/σLxy . The b-tagging is then performed by considering both the SV dispersion
σSV and the decay length significance SLxy.

The default operating point of the tagging in the analysis is SLxy > 7 and σSV <

0.03 cm. These selection values were determined by optimizing for high b-tagging efficiency
and low c-quark and light-flavor mistagging rates based on simulations. Figure 3 shows
examples of the SLxy and σSV distributions for jets having different flavors as obtained
from PYTHIA 8 simulations using the Monash tune [52] followed by an ALICE detector
level MC simulation and reconstruction. Figure 4 shows examples of the SLxy and σSV
probability distributions in pp and p-Pb collision data.

4 Corrections to the b-tagged jet spectrum

The raw pT spectrum of b-jet candidates (dN tagged/dpreco
T,ch jet) that was obtained after

applying the tagging algorithms was corrected for the b-jet tagging efficiency, εb, and the
purity of the selected b-jet sample, Pb,

dNb jet
det. level

dpreco
T,ch jet

= dN tagged

dpreco
T,ch jet

× Pb
εb
. (4.1)
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Figure 4. Distributions of the tagging discriminators used in the SV method, SLxy (left) and σSV
(right), for pp and p-Pb collisions.

The resulting spectrum is then corrected for jet reconstruction efficiency and momentum
smearing due to detector effects and background fluctuations by means of unfolding. All
corrections are discussed below in detail.

4.1 Tagging efficiency

The b-jet tagging algorithms discussed in section 3 do not identify all produced b jets.
The probability that a given tagging algorithm correctly identifies a jet originating from
a b quark as a b jet is called the tagging efficiency. Similarly, one can also define the
mistagging efficiency as the probability that a jet originating from a charm quark or a
light-flavor parton is falsely tagged as a b jet. The efficiency of a given algorithm for
tagging or mistagging is defined as

εi =
N tagged

i (preco
T,ch jet)

N total
i (preco

T,ch jet)
, (4.2)

where i is the jet flavor (b, c or light-flavor), N tagged
i is the number of tagged i jets, and

N total
i is the total number of i jets.

4.1.1 Tagging efficiency of the IP algorithm

The tagging efficiency of the IP algorithm was estimated based on the semi-data-driven
method outlined in refs. [47, 54], where the − ln(JP ) distributions are fitted with a set of
detector-level MC templates, which describe the shape of the jet probability distributions
corresponding to b jets, c jets, and light-flavor jets. The templates for p-Pb were obtained
from a MC simulation based on the EPOS event generator [55] with embedded PYTHIA 6
events, where particles are propagated through a model of the ALICE detector using
GEANT 3 [51]. The simulated events were then reconstructed as events in data. The tem-
plates for pp collisions were obtained similarly, using the PYTHIA 8 MC event generator.
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Figure 5. Fit of the measured − ln(JP ) discriminator distribution with a linear combination of b,
c, and light-flavor jet templates for the untagged sample (left) and for the tagged sample (right).

Two jet samples were created: a sample that contains the jets satisfying the tagging
requirement (tagged sample), and another sample that contains the inclusive jets before
applying the tagging algorithm (untagged sample). The associated − ln(JP ) distributions
from data were fitted with the corresponding b, c, and light-flavor jet templates using a
binned maximum likelihood fit. The fitting procedure was done separately for the tagged
jet (with Sdmin

xy = 2.5) and the inclusive (untagged) jet samples, see figure 5.
The b-jet tagging efficiency is then obtained as the ratio of the number of identified b

jets to the number of b jets before identification:

εb = Cb × f tag
b ×N tag

data
funtag

b ×Nuntag
data

. (4.3)

Here funtag
b and f tag

b denote the b-jet fractions before and after tagging, respectively, which
are extracted from the fits; Nuntag

data and N tag
data give the numbers of jets before and after

tagging, which were extracted from data; finally, Cb is the fraction of b jets for which the
jet probability can be defined, i.e. b jets having at least two constituent tracks with positive
Sdxy. This factor was estimated from MC. The Cb is ≈80% at 10GeV/c and increases to
98% at 40GeV/c and remains at that value for pT > 40GeV/c.

Figure 6 shows the b-jet tagging efficiency of the IP method in pp and p-Pb collisions.
As an alternative for − ln(JP ) in the template fitting, other discriminators were also used
to check consistency and estimate systematic uncertainties. The alternative discriminators
were the jet mass distribution [56] and the distribution of energy fraction fE carried by the
secondary vertex in the jet. Both of them provide results that are consistent with the stan-
dard analysis within one standard deviation. The systematic uncertainty on the tagging
efficiency is estimated by fitting the fE distribution instead of − ln(JP ). While JP may be
correlated with the IP, there is no such correlation in the case of fE . The good match be-
tween efficiencies and purities obtained with the different methods excludes the possibility
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Figure 6. The b-jet tagging efficiency extracted from the data-driven method using the IP algo-
rithm in pp and p-Pb collisions.

that any such correlation affects the results. Finally, it is worth noting that the template
fit procedure yields results with large systematic uncertainties for pT,ch jet < 20GeV/c, so
the interval between 10 < pT,ch jet < 20GeV/c was omitted in the IP analysis. The reason
for these uncertainties is that the individual templates have rather similar shapes, causing
instabilities in the fitting algorithm and thus reducing the discrimination power of the fit.

4.1.2 Tagging efficiency of the SV algorithm

For the SV method, tagging and mistagging efficiencies of beauty, charm, and light-flavor
jets were estimated based on the same detector-level MC simulation data sets that were
used in the IP method. While the IP algorithm used the MC simulation to get templates
and assesses the reconstruction efficiency with a data-driven method, the SV algorithm
obtained the efficiency directly from the MC simulation via eq. (4.2). In particle-level
simulations, a jet was counted as a b jet if there was a beauty hadron present with a three-
momentum vector contained within the jet cone. An analogous definition was also used
for c jets and the remaining jets were considered to be light-flavor jets. Figure 7 presents
the efficiencies as a function of jet momentum in pp and p-Pb collisions. The figure shows
that tagging with the default selection criteria yields similar performance in both systems,
ensuring suppression of light-flavor jets by two orders of magnitude. Comparing the tagging
efficiencies of the IP and SV methods, it can be seen that the efficiency of the IP method
tagging is about a factor two higher because of the less stringent selections that are applied.

4.2 Purity of the b-jet sample

The b-jet tagging algorithms introduced in section 3 select not only b jets but also a certain
fraction of charm and light-flavor jets, cf. section 4.1. Given the higher production cross
section of light-flavor and charmed jets, this leads to a significant sample contamination
that needs to be corrected for. The purity of the tagged sample of b-jet candidates, Pb, is
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Figure 7. Beauty-jet tagging efficiencies, as well as charm-jet, and light-flavor jet mistagging
efficiencies for the SV method in pp (solid markers) and p-Pb (open markers) collisions at √sNN =
5.02TeV, shown as a function of jet transverse momentum.

defined as the fraction of true b jets over the total number of tagged jets,

Pb =
N tagged

b jet (preco
T,ch jet)

N tagged(preco
T,ch jet)

. (4.4)

Here N tagged
b jet is the number of tagged true b jets and N tagged is the number of all tagged

jets. One of the biggest challenges in the b-jet analysis is to obtain an accurate purity
estimate.

4.2.1 b-jet purity from the IP tagging
In the IP method analysis, b-jet purity is estimated using a data-driven method based
on the jet probability discriminator. A linear combination of detector-level MC templates
corresponding to pure beauty, charm, and light-flavor jets were fitted to the − ln(JP )
distribution measured in data in a similar way as discussed in section 4.1.1. Figure 8
shows the resulting b-jet purity for the IP method with Sdmin

xy = 2.5 in pp and p-Pb
collisions. The template fitting procedure was repeated with other discriminators to assess
the corresponding systematic uncertainty, as detailed in section 4.1.1.

On figure 8, one can see that the purity in p-Pb collisions is slightly higher than that
in pp collisions. This effect arises from small differences between the two systems. Let us
note that this difference is much smaller than the systematic uncertainties corresponding
to the purity calculation.

4.2.2 b-jet purity from the SV tagging
The purity of the b-jet candidate sample tagged with the SV method was estimated based
on a hybrid method that utilizes both data-driven template fitting and simulations. In p-Pb
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Figure 8. The b-jet purity as obtained from the IP method in pp and p-Pb collisions.

data, the purities were primarily determined by fitting the invariant mass distribution of
the most displaced secondary vertex with beauty, charm, and light-flavor templates. The
invariant mass was calculated from the three prongs that were used to reconstruct the
secondary vertex, assuming that all tracks have the mass of a charged pion. These templates
were obtained from the detector-level EPOS simulation with embedded PYTHIA 6 events.
Analogous fits were done also for the pp data using detector-level PYTHIA templates. The
fits were done in several pT intervals. Figure 9 shows a typical example of template fit in
pp and p-Pb collisions. The small statistical samples, however, prevented the use of the
template fitting method for jets with momenta larger than 30–40GeV/c. Therefore, the
purity was also estimated based on POWHEG HVQ simulations [57] with the CTEQ6M
parton distribution function (PDF) set [58]. In the case of the p-Pb system, the EPS09
nPDF set was applied in addition [59], and the rapidity shift was taken into account.
Simulated particle-level charm and beauty jet pT spectra were subjected to instrumental
(efficiency and detector effects) and background fluctuation effects to estimate the c- and
b-jet contributions in the inclusive raw jet spectrum before tagging. The purity was then
estimated in each preco

T,ch jet bin as

Pb = εbNb
εbNb + εcNc + εlf (Nincl −Nb −Nc)

, (4.5)

where εb, εc, and εlf are tagging and mistagging efficiencies for beauty, charm, and light-
flavor jets, respectively; and Nb (Nc) is the estimated contribution of beauty (charm) jets
in the raw inclusive untagged jets Nincl. Nevertheless, this purity estimate relies on model
parameters that cannot be directly validated, i.e, quark masses as well as renormalization
and factorization scales used in the computation of the beauty and the charm production
cross section. Hence, a statistical analysis was carried out comparing simulated purities
with purities obtained by the data-driven invariant mass template fit method simultane-
ously in a broad range of tagging selection criteria. This was done in order to determine the
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Figure 9. Invariant mass distribution of the combination of three prongs, forming the most
displaced secondary vertex in jets with 20 < preco

T,ch jet < 30GeV/c, tagged with the default selection
SLxy > 7 and σSV < 0.03 cm for pp (left) and p-Pb (right) collisions. The data (black points) are
fitted with detector-level MC templates corresponding to beauty, charm, and light-flavor jets to
assess the purity of the b-jet candidate sample. See text for further information on MC.

simulation configurations that are consistent with the results of the data-driven method.
Consistency was defined with a χ2/NDF < 10 goodness-of-description test taking into ac-
count the total number-of-degrees-of-freedom (NDF) in the simultaneous comparison. The
configuration space covered variations of the QCD renormalization and factorization scales
by factors 0.5–2 with respect to the default values, and variations of the quark masses in
the range 4.5–5 GeV/c2 for b-quarks and 1.3–1.7 GeV/c2 for c-quarks. The variation of the
heavy quark masses only has a small effect on the observed b-jet sample purity, below 2%
for the b-quark and negligible for the c-quark. Changing the factorization (renormaliza-
tion) scales in the simulation of the b-quark spectrum by a factor of 2 affects the purity in
the same (opposite) direction by 4 to 8%, while a factor of 2 change in the renormalization
or factorization scales in the simulation of the c-quark spectrum causes a 2 to 6% effect on
the resulting purity in either direction.

Simulations with accepted configurations were then used to determine the purities
in the p-Pb as well as the pp data. Figure 10 shows a comparison of the b-jet sample
purity obtained for the default tagging with the template fit method and the POWHEG-
simulation-based approach. All accepted configurations were used to assess the systematic
uncertainty related to the purity of the tagged b-jet candidate sample.

4.3 Detector effects and unfolding

The measured jet spectra were affected by distortions stemming from two main sources:
instrumental effects and local background fluctuations with respect to the mean underly-
ing event density. These two effects smeared the true jet spectrum and can be corrected
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for via an unfolding procedure. The corrections were assumed to factorize; thus, were
handled with a product of two matrices that were determined separately [60]. The instru-
mental effects were accounted for by constructing a response matrix that is based on a
b-jet sample generated with PYTHIA 8 [50], and subsequently processed with an ALICE
GEANT 3-based particle transport model [51]. The detector-level jets were matched to the
particle-level jets based on geometry. This was done by minimizing their angular distance
∆R =

√
∆ϕ2 + ∆η2, where ∆ϕ and ∆η are, respectively, the differences in azimuthal

angle and pseudorapidity between given particle-level and detector-level jets. One-to-one
correspondence between particle-level and detector-level jets was required, and ∆R was
constrained to be less than 0.25 [61]. The instrumental effects cause a similar shift in
the jet energy scale of reconstructed charged-particle b jets and inclusive untagged jets;
untagged jets being shifted by about ≈ 1% more. The shift is pT-dependent and for b jets
with 10GeV/c reaches about 2% and increases to about 18% for 100GeV/c b jets. The jet
energy scale resolution of b jets and inclusive untagged jets is likewise similar; b jets having
by about 1% smaller resolution than the untagged jets. The resolution for 10GeV/c b jets
is about 17% and increases to approximately 22% for 100GeV/c b jets.

The matrix that describes momentum smearing due to background fluctuations was
obtained with two methods based on track embedding and the random cone technique
(RC) [62]. In the track-embedding approach, a track was embedded perpendicular in
azimuth to the axis of the tagged b-jet candidate. This region is expected to be dominated
by the underlying event. The resulting momentum smearing is

δpemb
T = praw, emb

T,ch jet − ρAjet − pemb
T , (4.6)
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where praw, emb
T,ch jet is the reconstructed momentum of the jet with the embedded track, Ajet

is its area, ρ is the estimated underlying event pT density, and pemb
T is the transverse

momentum of the embedded track.
In the RC approach, momentum smearing was calculated using a cone with radius

Rcone = 0.4 placed in a random position in the η − ϕ plane in an event. This cone must
not overlap with the leading and the sub-leading jets in the event and must be fully inside
the acceptance of the central barrel.

The momentum smearing is calculated from tracks which are inside the cone as:

δpRC
T = pRC

T − ρπR2
cone , (4.7)

where pRC
T denotes the sum of the pT of the tracks inside the cone. Only events which

contained a tagged b-jet candidate were selected for the calculation of δpT.
The δpT matrices obtained with the track embedding and RC techniques provided

consistent unfolded b-jet spectra and the difference is accounted for as a systematic uncer-
tainty. In this analysis, the track embedding technique was used in the standard analysis,
and the RC method as a systematic variation.

By default, unfolding of the raw b-jet spectrum defined in eq. (4.1) was performed using
the singular value decomposition (SVD) method [63] implemented in the RooUnfold pack-
age [64]. The optimal regularization parameter value was found to be four for the SV analy-
sis and eight for the IP analysis. Stability of the unfolded solutions was tested also with the
Bayesian unfolding [65] and the χ2 unfolding. These algorithms provided consistent results
with the SVD and the differences were taken into account in the systematic uncertainties.

4.4 b-jet cross section and nuclear modification factor

The pT-differential b-jet production cross section was calculated as

d2σb jet

dpT,ch jetdηjet
= 1
L
× d2Nb jet

unfolded
dpT,ch jetdηjet

, (4.8)

where d2Nb jet
unfolded/dpT,ch jetdηjet is the unfolded pT differential yield of b jets and L is the

integrated luminosity corresponding to minimum bias events, which was quoted for the pp
and p-Pb data samples in section 2.

Modification of the b-jet spectrum in p-Pb collisions due to nuclear matter effects was
then quantified with the nuclear modification factor [66], which compares the pT-dependent
production rates in p-Pb to the rates expected from the independent superposition of pp
collisions.

Rb-jet
pPb = 1

A

d2σb jet
pPb /dpT,ch jetdηjet

d2σb jet
pp /dpT,ch jetdηjet

, (4.9)

where A = 208 is the number of nucleons in the Pb nucleus.

4.5 Combining the results of the IP and SV methods

The pT-differential b-jet production cross sections obtained from the IP and SV methods
were combined using the Best Linear Unbiased Estimator (BLUE) method [67, 68]. The
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BLUE method is used to combine different measurements of the same physical quantity,
where the uncertainties of the individual measurements are correlated between the mea-
surements to some extent. Besides the b-jet cross section in pp and p-Pb collisions, the
BLUE method was also used to obtain the combined nuclear modification factor Rb-jet

pPb
given that correlated systematic uncertainties cancel to a different degree in the individual
ratios for the IP and SV analyses.

The combined results were obtained under the following considerations. The system-
atic uncertainties from tagging, and purity extraction were assumed to be uncorrelated
between the two methods. The contributions to the systematic uncertainty from the track-
ing efficiency and pT resolution, as well as from the contamination by secondary tracks, were
treated as fully correlated. Since the same data set was used in the two methods, the sta-
tistical uncertainty is partially correlated. The correlation coefficient ρstat was estimated as

ρstat = Cov(IP, SV)
σIPσSV

with Cov(IP, SV) = σ2
IPσ

2
SV

σ2
IP∩SV

, (4.10)

where σIP (σSV) is the statistical uncertainty corresponding to the jet sample from the
IP (SV) method, and σIP∩SV is the statistical uncertainty corresponding to the sample
selected by both the IP and the SV methods. The correlation coefficients for statistical
uncertainty are ρstat = 0.35 for pp collisions and ρstat = 0.27 for p-Pb collisions. For
the background fluctuations and unfolding uncertainties, which were partially correlated
between both methods, an arbitrarily chosen correlation coefficient value of 0.5 was used,
with values 0 and 1 used as consistency checks. Correlation coefficients between other
parameters were varied similarly and the resulting systematic uncertainty from these
choices was found to be negligible.

5 Sources of systematic uncertainties

Systematic uncertainties of the pT-differential b-jet cross section and Rb-jet
pPb were assessed

by varying the selection and correction procedures. Table 1 lists the possible sources of
systematic uncertainties, and the adopted variations, with respect to the standard selection
procedures and methods used to obtain the central values of the results. These variations
are discussed in more detail below. Table 2 provides a summary of all uncertainties, re-
ported separately for the IP and SV analyses, as well as for the combined results obtained
with the BLUE method. The two analyses were developed largely independently from
each other. In the IP analysis, all uncertainties were considered as symmetrical, while in
the SV analysis, most of the uncertainties were considered as asymmetrical. Systematic
uncertainties due to the tracking efficiency and pT resolution, tagging, contamination by
secondary tracks, and background fluctuations were treated as correlated between the pp
and p-Pb systems. Hence, these were partially propagated into Rb-jet

pPb , taking the correla-
tion into account. All the other uncertainties were considered uncorrelated and were fully
propagated. The different types of correlated systematic uncertainties on the Rb-jet

pPb were
determined by simultaneously varying the pp and the p-Pb results to make sure that the
correlations cancel out. Since the combination with the BLUE method requires symmetric
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Source Standard analysis Variations
C
om

m
on

Tracking efficiency default reconstruction 4% of tracks removed
Track pT resolution default reconstruction pT-smeared reconstruction
Secondary track contamination default MC correction data-driven estimate
Underlying event fluctuations embedding random cone

IP
m
et
ho

d Unfolding

Method SVD Bayesian-χ2

Regularization 8 7–9
Matrix full truncated at 5GeV/c
Binning default limits shifted by 2GeV/c
Prior function POWHEG b-jet spectrum measured-unfolded χ2 spectra

Tagging efficiency/purity Sdxy 2.5 1–4
Fit distribution − ln(JP ) fE

SV
m
et
ho

d

Tagging efficiency SLxy 7 6–8
σSV 0.03 cm 0.02–0.05 cm

Purity POWHEG b and c spectra “hybrid” scale variations

Unfolding

Method SVD Bayesian
Regularization 4 3–5
Matrix full truncated at 5GeV/c
Binning default limits shifted by 1GeV/c
Prior function POWHEG b-jet spectrum all scale variations

Table 1. Summary of sources of systematic uncertainty and adopted variations to estimate their
effects in the cases of the SV and the IP methods.

uncertainties, two SV spectra were made, one with the lower and one with the upper uncer-
tainties. These spectra were combined with the IP spectrum separately, and a conservative
choice was made by taking the maximum of the lower and upper boundaries point-by-point
in the combined result. The individual uncertainty sources are discussed in detail in the
following paragraphs.

5.1 Tracking efficiency

The systematic uncertainty on tracking efficiency is about 4% [69]. This uncertainty trans-
lates into an uncertainty on the energy scale of reconstructed jets. The resulting effect
on the b-jet spectra was estimated by constructing an instrumental response matrix from
which 4% of tracks were randomly removed. This matrix represents the downward uncer-
tainty on the reconstruction efficiency. It is assumed that a 4% variation towards higher
tracking efficiency would affect the results symmetrically. The tracking efficiency uncer-
tainty is one of the major sources of systematic uncertainties on the b-jet cross section. It
tends to increase with increasing b-jet pT.

5.2 pT resolution of tracks

The pT resolution of tracks was discussed briefly in section 3 and more details can be
found in ref. [38]. The systematic uncertainty on track transverse momentum resolution
was estimated from the azimuthal variation of the pT spectrum of positively and negatively
charged particles following the procedure described in ref. [70]. The resulting effect of these
variations on the b-jet cross section spectra was investigated by unfolding the b-jet spectrum
with an instrumental response matrix that reflected the observed local variations in track
pT smearing.
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pT,ch jet interval 10–20GeV/c 40–50GeV/c 80–100GeV/c
analysis SV IP SV comb. IP SV comb.

Statistical
uncertainty

pp 1.9 6.3 5.2 6.3 23.5 18.4 22.9
p-Pb 1.9 3.7 3.6 3.8 9.0 12.9 9.3
Rb-jet

pPb 2.6 8.9 6.4 5.8 31.2 22.5 20.6

Tracking
efficiency

pp 7.9 11.1 8.4 11.1 16.2 9.5 16.0
p-Pb 6.7 12.1 9.2 12.2 14.2 8.6 14.5
Rb-jet

pPb 1.4 0.9 1.0 1.0 1.9 1.3 1.6

Tracking
resolution

pp +1.2/−1.2 1.4 +3.9/−3.9 1.4 3.1 +6.0/−6.0 3.2
p-Pb +3.3/−3.3 1.6 +4.5/−4.5 1.5 2.1 +5.3/−5.3 1.9
Rb-jet

pPb +2.1/−2.2 0.2 +0.6/−0.6 0.5 1.0 +0.8/−0.7 0.9

Secondary vertex
contamination

pp +1.6/−0.0 2.3 +2.4/−0.0 2.6 4.0 +2.9/−0.0 7.2
p-Pb +4.1/−0.0 6.1 +5.4/−0.0 1.5 7.6 +7.8/−0.0 2.2
Rb-jet

pPb +0.0/−2.5 3.6 +0.0/−3.0 1.0 3.3 +0.0/−5.1 4.2

Background
fluctuation

pp +0.0/−5.4 6.9 +0.0/−10.3 6.8 3.2 +3.2/−0.0 3.1
p-Pb +0.0/−3.1 2.7 +0.0/−5.4 2.8 1.7 +3.1/−0.0 1.8
Rb-jet

pPb +2.6/−0.0 4.2 +6.7/−0.0 5.5 1.4 +1.4/−0.0 0.7

b-jet tagging
pp +0.9/−2.8 0.2 +3.4/−6.5 0.2 3.4 +6.8/−13.4 3.3
p-Pb +3.4/−1.6 0.4 +4.6/−8.6 0.5 0.8 +6.0/−15.3 1.2
Rb-jet

pPb +2.5/−2.2 0.4 +5.0/−5.3 3.6 3.5 +10.7/−13.8 7.2

Purity
pp +13.0/−21.8 15.3 +16.4/−16.8 12.0 15.3 +21.8/−17.3 11.7
p-Pb +13.1/−21.0 8.9 +11.9/−16.3 9.4 8.9 +21.1/−15.7 9.5
Rb-jet

pPb +5.2/−9.4 14.7 +5.2/−6.6 5.6 14.7 +8.2/−9.7 8.8

Unfolding
pp +7.2/−0.9 2.1 +1.0/−1.9 2.1 7.9 +27.1/−6.1 7.8
p-Pb +9.5/−5.6 0.9 +0.5/−4.5 0.9 1.6 +11.4/−14.3 1.5
Rb-jet

pPb +2.5/−5.4 2.2 +3.1/−4.7 2.6 8.1 +4.4/−15.9 10.6

Total systematic
uncertainty

pp +17.0/−24.0 18.1 +19.3/−22.8 18.1 22.8 +37.4/−25.4 23.1
p-Pb +18.6/−23.2 16.5 +17.2/−22.2 15.8 18.7 +28.0/−28.1 17.7
Rb-jet

pPb +7.3/−11.6 15.9 +10.4/−10.2 9.1 17.7 +14.3/−23.8 16.2

Normalization
uncertainty

pp 2.34
p-Pb 3.7
Rb-jet

pPb 4.37

Table 2. Statistical and systematic uncertainties, in percent, corresponding to three representative
pT,ch jet ranges for the pp and p-Pb cross sections, as well as for the Rb-jet

pPb . Uncertainties of
the IP and SV methods are quoted separately. Wherever applicable, the table also reports the
resulting combined uncertainties. Both the upper and lower values are listed for the asymmetric
SV systematic uncertainties. An additional uncertainty from the normalization by the integrated
luminosity [40, 41] is quoted in the last row.

5.3 Contamination from secondary tracks

Contamination of jets from secondary tracks, due to weak decays, was corrected for using
the instrumental matrix. This correction is MC based and relies on the secondary track
fractions from the simulations. As a systematic variation, these fractions were taken from a
data-driven approach where DCA distributions of tracks to the primary vertex were fitted
with templates corresponding to primary tracks and secondary tracks. This resulted in
a systematic shift in jet energy scale. In the SV analysis this uncertainty was treated as
one-sided since the true fraction of secondary tracks is expected to fall between the two
calculations.
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The production of long-lived strange particles is known to be poorly described by the
PYTHIA MC event generator [71–74]. Decays of K0

S and strange baryons were however
found to contribute by less than 1% to the constructed light-flavor SV invariant mass
templates that are used for the data driven purity estimate. Possible variations of the
strangeness in simulations would; therefore, have negligible impact on the shape of this
template and should have negligible impact on the extracted purity. A similar situation
holds also for the IP templates, where decays of long-lived strange particles contribute on
the percent level only. Omission of the long-lived strange particles from construction of
the templates led to negligible changes of the fit results.

5.4 Underlying event fluctuations

This uncertainty was estimated by comparing the spectra unfolded using δpT matrices
constructed with the track embedding and the random cone methods. This resulted in a
one-sided uncertainty on the SV spectra.

5.5 b-jet tagging efficiency and purity in the IP method

The uncertainty was estimated by varying the default impact parameter significance and
template fit discriminator. The working point of the tagging selection criterion, set by
default as Sdmin

xy = 2.5, was varied in the range from 1 to 4. This resulted in variations in
the data driven b-jet tagging efficiency and purity that were propagated to the b-jet cross
sections.

Similarly, The energy fraction carried by charged tracks associated to the secondary jet
vertex, fE was used as template fitting discriminator. Differences between these methods
were added up in quadrature with the uncertainties from the fitting method to establish
the overall uncertainty on the template fitting.

The purity of the selected b-jet candidates can be in principle affected also by the
admixture of the long-lived strange V0 particles (K0

s and Λ/Λ), which result in decay-
daughter tracks with large impact parameters. The possible effect of these daughter tracks
on the purity and efficiency of the IP tagging was tested by ignoring those tracks that,
when combined with other tracks of the same event, yield an invariant mass compatible
with the K0

s or Λ hypothesis. The corresponding systematic effect on the resulting b-jet
spectrum was found to be negligible.

5.6 b-jet tagging efficiency and purity in the SV method

The default tagging selection, SLxy > 7 and σSV < 0.03 cm, was chosen to fall into a region
where the simulation adequately describes the data. The variations were performed such
that one parameter was kept at its default value while the other parameter was altered.
In this study, SLxy was varied from 6 to 8, and σSV was varied from 0.02 to 0.05 cm.
Since these two parameters are correlated, the envelope of the systematic variations was
considered, constructed using the point-by-point maximal upper and lower variations.

In the SV method, the major source of systematic uncertainty on the b-jet cross
sections stems from the purity assessment of the tagged b-jet candidate sample. The
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uncertainty was evaluated by repeating the analysis with each of the accepted POWHEG
purity curves shown in figure 10. The uncertainty is defined by the envelope of the
resulting spectrum variations.

The POWHEG configurations that provide a statistically acceptable description of
the purity are determined based on template fits in the p-Pb system. Since the same
configurations are used in the pp system, the assumptions on the CNM effects in POWHEG
p-Pb simulations will, counter-intuitively, affect the purity estimation in the pp system.
This effect was estimated based on the comparison of the POWHEG simulations to the
existing heavy-flavor RpPb measurements [75, 76]. This additional, independent uncertainty
on the SV-method purity in the pp system was found to be a few percents at low pT and
is vanishing towards higher pT.

In the SV method, since a three-prong secondary vertex is required and the purity is
determined based on template fitting of the invariant mass distribution, a possible incorrect
modelling of V0 particles poses negligible impact on the purity.

5.7 Unfolding

Both the IP and SV methods use SVD unfolding in the standard analysis. To establish the
uncertainty stemming from the choice of the unfolding method, the spectra were also un-
folded with the Bayesian method, and in the IP analysis, with the χ2 method in addition.
The sensitivity to the choice of regularization parameter was investigated by changing its
value within ±1. The unfolding was also repeated with a modified lower pT limit of the
input spectrum from pT = 5GeV/c to pT = 1GeV/c. The SV analysis also considered a dif-
ferent input pT spectrum binning. Both methods used the b-jet POWHEG spectrum as the
default prior function in the respective standard analyses. In the IP analysis, the unfolding
was repeated using the measured, as well as the χ2-unfolded spectra as priors. In the SV
analysis, the unfolding was repeated by taking as priors the POWHEG b-jet spectra result-
ing from different scale and mass variations. The root mean square (RMS) of the differences
between these variations and the standard analysis spectra was taken as uncertainty in the
IP analysis. In the SV analysis, the statistical and systematic parts were separated using
pseudo-experiments with randomized input spectra. The pseudo-experiments were carried
out for the standard analysis configuration as well as for each systematic variation. The
maximum deviations at each pT,ch jet value were taken as asymmetric uncertainties.

An additional systematic uncertainty stems from the limited knowledge of very low
momentum jet production, determined from PYTHIA simulations when constructing the
response matrix. This was estimated by using a matrix that was truncated below pT,ch jet =
5GeV/c, and the resulting deviation with respect to the standard analysis spectrum was
added up in quadrature to the total uncertainty.

5.8 Normalization

There are also uncertainties on the normalization of the differential cross section which
will be propagated to the nuclear modification factor. The normalization uncertainties are
discussed in detail in ref. [40] for pp collisions and in ref. [41] for p-Pb collisions.
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Figure 11. Comparison of the pT differential production cross section of charged-particle anti-
kT R = 0.4 b jets measured in pp and p-Pb collisions at √sNN = 5.02TeV using the IP and SV
methods. Systematic and statistical uncertainties are shown as boxes and error bars respectively.
The additional common normalization uncertainty due to luminosity is denoted σSys

L and it is quoted
separately.

6 Results and discussion

6.1 b-jet production cross section in pp and p-Pb collisions

Figure 11 presents the pT-differential production cross section of b jets obtained from the
IP and SV analyses in pp and p-Pb collisions at √sNN = 5.02TeV. For easier comparison
across the two systems, the p-Pb cross section is normalized by the number of Pb nucleons
A = 208. The results obtained with the two methods are consistent within uncertainties.

The combined b-jet cross sections are compared with NLO pQCD calculations by
the POWHEG dijet tune with PYTHIA 8 fragmentation [77, 78], see figure 12. The
measured b-jet cross section is described by the calculations within the experimental and
theoretical uncertainties. The quoted theoretical uncertainties on the POWHEG data
contain uncertainties obtained by changing the renormalization and factorization scales by a
factor 0.5–2, variation of αs, and variation of the PDFs of the CT14NLO parton distribution
function [79] and the EPPS16 nPDF [80] in the POWHEG calculations. The uncertainties
from CT14NLO and EPPS16 were propagated according to the Hessian prescription of
the authors of these parameterizations (eq. 53 of ref. [80]). The uncertainty on αs was
estimated by varying the strong coupling from 0.111 to 0.123.

6.2 b-jet fraction

Figure 13 shows the fraction of charged-particle b-jets among inclusive charged-particle jets
in pp and p-Pb collisions. The reference pT-differential cross sections of inclusive charged-
particle jet production in pp and p-Pb were taken from refs. [81] and [82], respectively.
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Figure 12. Top panels: the combined differential production cross section of charged-particle
anti-kT R = 0.4 b jets measured in pp (left) and p-Pb (right) collisions at √sNN = 5.02TeV. The
data are compared with a NLO pQCD prediction by the POWHEG dijet tune with PYTHIA 8
fragmentation [77, 78]. Systematic and statistical uncertainties are shown as boxes and error bars,
respectively. The additional common normalization uncertainty due to luminosity, σSys

L , is quoted
separately. Bottom panels: ratio of the theory calculations to the data.

The inclusive-jet and the b-jet measurements were obtained from different data samples,
collected in different periods. Although the uncertainties corresponding to track recon-
struction may be partly correlated, as a conservative approach, both the statistical and
systematic uncertainties of the inclusive and b-jet cross sections were considered as uncor-
related. The measured b-jet fractions are compared with calculations of the POWHEG
dijet tune with PYTHIA 8 fragmentation [77, 78]. In the p-Pb case, the EPPS16 nuclear
PDF set was also applied. The measured b-jet fraction is described by these calculations
within uncertainties.

6.3 The b-jet nuclear modification factor Rb-jet
pPb

Figure 14 (left) shows the nuclear modification factor of charged-particle b jets obtained
from the IP and SV methods. The Rb-jet

pPb of the two methods are consistent within uncer-
tainties. Figure 14 (right) displays the combined b-jet nuclear modification factor Rb-jet

pPb as
a function of pT,ch jet, compared to the NLO pQCD, POWHEG dijet tune with PYTHIA 8
fragmentation calculation [77, 78]. The NLO Rb-jet

pPb was estimated from the ratio of the
b-jet spectra obtained with EPPS16 and CT14NLO parton distribution functions. The
Rb-jet

pPb is consistent with unity within uncertainties, as well as with a mild modification of
Rb-jet

pPb ≈ 1.1 ± 0.1 predicted by antishadowing in the EPPS16 nuclear PDFs, in the full
10 < pT,ch jet < 100GeV/c range of the measurement. The pQCD calculations describe the
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Figure 14. Left: the nuclear modification factor Rb-jet
pPb of the inclusive charged-particle anti-kT

R = 0.4 b jets as a function of pT from the IP and SV method. Right: the nuclear modification factor
Rb-jet

pPb obtained from combining the IP and SV method results as a function of pT,ch jet compared
with the calculation by the POWHEG dijet tune with the PYTHIA 8 fragmentation [77, 78].
Systematic and statistical uncertainties are shown as boxes and error bars, respectively. There is
an additional normalization uncertainty of 4.37% due to luminosity, which is quoted separately.

data within uncertainties. These results indicate that there are no strong nuclear matter
effects present in b-jet production at midrapidity in p-Pb collisions at √sNN = 5.02TeV.

Figure 15 shows the Rb-jet
pPb for charged-particle b jets measured by ALICE as a function

of jet pT, compared with the measurement of the CMS collaboration for full-jet b jets [54].
Since the jets from CMS also include the neutral particles, the pT scales do not compare
directly. Note that there is an additional ≈ 22% scaling uncertainty on the CMS data from
the pp reference that was computed using PYTHIA simulations. Despite the different jet
definitions and rapidity ranges used in the two measurements, the ALICE and CMS data
are fully compatible in the overlap region. A substantial nuclear modification of b-jet pro-
duction by cold nuclear matter can be excluded in the whole range from pT,ch jet > 10GeV/c
(approximately corresponding to pT,fulljet & 15GeV/c) up to pT,fulljet < 400GeV/c.
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Figure 16 shows the nuclear modification factor of the b jets compared to that of
inclusive jets from ref. [82]. The inclusive-jet RpPb, dominated by jets originating from
light-flavor gluons and quarks, is consistent with unity as well as with Rb-jet

pPb . This suggests
that jets in the given pT,ch jet may only be subject to mild cold nuclear matter effects,
regardless of the jet-initiating parton.

7 Summary

A measurement of the pT-differential b-jet production cross sections in pp and p-Pb colli-
sions at √sNN = 5.02 TeV is presented in this paper, in the transverse momentum range
10 ≤ pT,ch jet ≤ 100GeV/c and the central rapidity region. The lower pT reach of the current
measurements is unprecedented at the LHC. The fraction of b jets compared to inclusive
jets in pp collisions are around 0.02 in the lowest 10 ≤ pT,ch jet < 20GeV/c interval, satu-
rating at about 0.03 from pT,ch jet ≥ 30GeV/c. There is no significant difference between
the b-jet fractions measured in pp and p-Pb collisions. The nuclear modification factor
Rb-jet

pPb is found to be consistent with unity within the current precision, implying no strong
cold nuclear effects on the b-jet production in p-Pb collisions at √sNN = 5.02TeV. The
b-jet measurements are described by NLO pQCD POWHEG calculations with PYTHIA 8
fragmentation within uncertainties.

In the low jet transverse momentum range, jet energy loss by radiative and collisional
mechanisms in a hot and dense medium is expected to be strongly mass dependent. The
current results, which exploit the excellent tracking capabilities of ALICE and reach down
to pT,ch jet = 10GeV/c, provide a baseline for future measurements of nuclear modification
in Pb-Pb collisions.
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