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Abstract

We consider special classes of Palatini f(R) theories, featured by additional Loop Quantum Gravity
inspired terms, with the aim of identifying a set of modified Ashtekar canonical variables, which still pre-
serve the SU(2) gauge structure of the standard theory. In particular, we allow for affine connection to be
endowed with torsion, which turns out to depend on the additional scalar degree affecting Palatini f(R)
gravity, and in this respect we successfully construct a novel Gauss constraint. We analyze the role of the
additional scalar field, outlining as it acquires a dynamical character by virtue of a non vanishing Immirzi
parameter, and we describe some possible effects on the area operator stemming from such a revised theo-
retical framework. Finally, we compare our results with earlier studies in literature, discussing differences
between metric and Palatini approaches. It is worth noting how the Hamiltonian turns out to be different in
the two cases. The results can be reconciled when the analysis is performed in the Einstein frame.
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1. Introduction

The most successful approach to the problem of quantizing gravity is, up to now, the so called
Loop Quantum Gravity (LQG) theory [1-3]. This formulation, of course, still contains a number
of unsolved issues, like the implementation of the quantum dynamics via the scalar constraint,
the construction of a classical limit and the ambiguity in the meaning and value of the so-called
Immirzi parameter [4—11]. Nonetheless, the great interest for LQG is due to the possibility of
constructing a kinematic Hilbert space for the quantum theory. resulting in geometrical operators
like areas and volumes, endowed with discrete spectra [12-14]. By other words, LQG is able
to introduce space discretization starting from a classical Lagrangian for the gravitational field
[1], with the quantum theory just relying on the pre-metric concept of graph. That is achieved
via Ashtekar-Barbero-Immirzi variables [15-18], which allow an Hamiltonian formulation of
gravity by close analogy with non-Abelian gauge theories: the constraint associated to local spa-
tial rotations can be put in the form of a standard Gauss constraint for the SU (2) group. When
tetrads and spin connections are considered independent fields, however, it is necessary to add to
the Palatini action new terms, the Holst or Nieh-Yan contributions, which do not affect the classi-
cal dynamics (the former is vanishing on half-shell, where the equation for the connection holds,
and the latter a pure topological term [19-24]). In both cases, then, we deal with a restatement of
General Relativity, suitable for loop quantization, which admits Einstein equations as classical
limit.

In this respect, the recent interest for f(R) modifications of General Relativity [25,26], makes
very timely questioning about possible LQG extensions of f(R) models, especially via their
scalar-tensor reformulation [27-29]. A first attempt in this direction was performed in [30-32]
(see also [33-35]), where the problem was faced by considering the metric as the only inde-
pendent field. and authors actually followed in defining Ashtekar-like variables an extended
phase-space method [3]. Conclusions of this study suggest that a suitable set of variables can
be determined, and Gauss and vector constraints properly obtained, with the non-minimally cou-
pled scalar field affecting the scalar constraint.

Here, we face the same problem on a more general framework and adopting the most natural
first order formalism, i.e. we deal with Palatini f(R) models [36], equipped with Holst and
Nieh-Yan terms. In particular, we characterize the resulting classical theory and we discuss the
reformulation in terms of SU (2) variables.

In including Holst and Nieh-Yan terms, we have two different choices, consisting in inserting
these terms either inside or outside the argument of the function f. We first analyze the classical
dynamics of these models demonstrating that they correspond to two physically distinct scenar-
ios. In fact, both when the Holst term is included in the argument of f and when the Nieh-Yan
term is added to the f(R) Lagrangian, we recover the dynamics of Palatini f(R) models, char-
acterized by a non-dynamical scalar field. Conversely, when the Holst term is added to f and
the Nieh-Yan one is plugged inside the function, we deal with a scalar-tensor theory, where the
kinetic term for the scalar field is modulated by the Immirzi parameter. We specialize, then, to
this case, showing how a non vanishing value of the Immirzi parameter causes the scalar field
to acquire an independent dynamical character. We perform the Hamiltonian formulation and
we discuss the resulting morphology in terms of the constraints emerging after the Legendre
transformation.

The main merit of this study consists of the determination of suitable generalized Ashtekar-
Barbero-Immirzi variables starting from a genuine first order action, and we determine Gauss and
vector constraints with the same form of LQG, i.e. we are able to construct a kinematic Hilbert
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space suitable for LQG canonical quantization. We study the spectrum of the area operator, and
differently from what assumed in [37], we clarify how the area operator has an unambiguous
geometrical nature, being constructed with the real triad of the space. We stress. therefore, how
the different link between the real triads and the particular SU(2) variables considered affects
the morphology of the area operator. In the case of a standard Palatini f(R) model, the field is
non-dynamical and when it is expressed via the trace of the stress energy tensor, a coupling takes
place among the size of the area associated to a graph and the nature of the matter filling the
space. More interesting is when the scalar field is truly dynamical, and it must be quantized as a
proper scalar degree of freedom. In this case, following [38], the discrete character of the area is
spoiled by the continuous spectrum of the scalar field.

In this regard, we can infer that in extended theories we considered the ambiguity of Immirzi
parameter is to some extent weakened. Our study, indeed, suggests that such a parameter could be
reabsorbed in the scalar field definition, hinting a more general formulations of the gravitational
sector as a SU(2) gauge theory. We emphasize that the quantization procedure for the scalar field
requires in both the cases a very particular attention. Indeed, when non dynamical, it still relies
on the quantization of the truly gravitational degrees of freedom, which are of course involved
in the very definition of the trace for the stress energy tensor. On the other hand, the dynamical
case is sensitive to the non minimal coupling of the scalar field and the ¢-factors appearing in
the Hamiltonian constraint must be treated carefully.

Furthermore, when comparing the second order metric analysis of [31] to our Palatini for-
mulation, we observe the emergence of a discrepancy in the scalar constraints. By other words,
starting directly from a metric formulation of f(R) gravity with SU(2) variables provides dif-
ferent dynamical constraints with respect to a first order formulation. In this respect, we outline
the possibility to restore a complete equivalence between these two approaches, by restating our
models into the Einstein framework and performing a canonical transformation. We note that
similar issues hold also for [39], in which the analysis is actually pursued in a first order formal-
ism, starting from an action which differs however from the one considered here by the inclusion
of additional contributions which eliminate torsion from the theory.

The paper is structured as follows. In section 2 the models are presented and their effective
theories are derived, highlighting equivalences and differences with Palatini f(R) theory in its
scalar-tensor formulation. In section 3 the spacetime splitting and Hamiltonian analysis of the
constrained system are performed. In section 4 the new modified variables and the correspondent
set of constraints are derived. In particular, we depict some possible effects on the spectrum of
the area operator in the presence of a scalar field, and we also briefly discuss the case when it is
devoid of a proper dynamics. The analysis performed in the conformal Einstein frame and the
comparison with earlier studies in literature are contained in section 5. In section 6 conclusions
are drawn, while some details regarding the results presented in section 3 can be found in the
Appendix A.

Eventually. notation is established as follows. Spacetime indices are denoted by middle alpha-
bet Greek letters 1, v, p, spatial ones by letters from the beginning of the Latin alphabet a, b, c.
Four dimensional internal indices are displayed by capital letters from the middle of the Latin
alphabet 7, J, K, while 7, j, k indicate three dimensional internal indices. Spacetime signature is
chosen mostly plus, i.e. n,, =diag(-1, 1,1, 1).
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2. Extended f(R) actions

We consider the following models
1
s=5- [ dsvmer®+ L, (1)

|
S=2—fd4x\/—g[f(7€)+L], (2)
X

where xy = 87 G. The Ricci scalar R = g#""R,,, is obtained by the contraction of the Ricci tensor
R.v. here considered as a function of the independent connection r vp and related to the Rie-
mann tensor by R, = R’ 0, with RY o = 8,75 — 8, T, + F'ulp T, — ., F}‘vp. The
term L either coincides with the Holst term or with the Nieh-Yan invariant, given by, respectively

B
H = =5 Rypupa, 3)
!8 npo 1 A
NY = 58 ET e T}\.pd - R’_,Lupo . (4)

with f8 the reciprocal of the Immirzi parameter. Torsion tensor is displayed by T, =T",, —
F”PU and, as outlined in [34,35,40], it cannot be a priori neglected in Palatini f(R) generaliza-
tions of Holst and Nieh-Yan actions, being its form to be determined dynamically.

It is worth noting that by dealing with a proper metric-affine formalism, the affine connection
I'*,, can be a priori characterized by non-metricity as well, measuring the departure from met-
ric compatibility, i.e. Qpuv = —V, 2.0 # 0. However, it can be demonstrated (see [41-43] for
details) that by means of the projective transtormation

l_‘ppw — l_'pw, + Spﬂsu. 5)

where &), is a vector degree, non-metricity contributions can be always neglected, so that we can
safely assume connection be still metric compatible. Therefore, without loss of generality, we
can rewrite the connection as l"pw, = C'OW + K’gﬂv , where C"W denotes the Christoffel symbol
of g,,, and the independent character of the connection is now encoded in the contortion tensor,
given by Kp,w = %(T‘OM T, LT, p,u ). Now, in complete analogy with f(R) theories, the
actions (1) and (2) can be expressed in the Jordan frame as

1

5= ﬂfdﬁ‘m/——g [p(R+L)— Vg, ©
1

S=3, f d*x=g[pR+ L — V(@) @)

with ¢ defined as the derivative of the function f(-) with respect to its generic argument, while
the potential takes the same expression as in standard Palatini f('R) theory.

Next, the effective theories dynamically equivalent on-half shell to models (6) and (7). can
be computed inserting into the actions the solution of the equations of motion for the indepen-
dent connection. This can be easily achieved decomposing the torsion tensor into its independent
components according to the Lorentz group. These are the trace vector 7, =T, . the pseudo-
trace axial vector Sy, = &0 T "°? and the antisymmetric tensor g,,,,. satisfying e#"*7¢,,; =0
and ¢",,, = 0. Their equations of motion can be solved yielding g,.,, = 0, whereas vectors S,
and T, can be expressed in terms of d,¢ as
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_ 3 1+b1b2®ﬂ2/¢ .
TM_%[W} e )
_Gﬁ bl_bzcb/(p ‘
su= L | s | e '

where we introduced two parameters b and by which can take values 0 or 1 according to what

specific model considered. If the Holst term is taken into account, then by = 1, while by =0

and b1 =1 for f(R)+ H and f(R + H), respectively. When the action features the Nieh-Yan

contribution, b» =0, while by =0 and b; =1 for f(R) + NY and f(R + NY). Finally, @ is

coincident with ¢ in the f(R 4+ H) case and identically equal to I in the f(R) + H one.
Substituting these results back into the actions yields the effective theory

1 Q
S=2—jd4x\/—g [qu— f)a#¢a#¢— V(¢>)}, (10)
X
where Q(¢) depends on the particular model addressed. Both for f(R + H) and f(R) + NY
it assumes the constant value 2 = —3/2, corresponding to the effective description of standard

Palatini f(R) gravity. This implies that the field ¢ is not an actual degree of freedom, but it is
simply determined by the structural equation as in the standard case [25,36], i.e.

2V(p) —¢V'(¢) = xT, (1D

where a prime denotes differentiation with respect to the argument and 7 is trace of the stress
energy tensor for some matter contributions, which are assumed do not couple to connection.
Thus, as one might expect, the topological character of the Nieh-Yan term is preserved if it is
added directly to the Lagrangian. Less trivial, instead, is of course the outcome for the f(R +
H) model. In this case, indeed, the vanishing of the Holst term on half shell is to some extent
recovered when it is included in the argument of the function f(-).

On the other hand, inserting the Nieh-Yan term in the argument of the function f(-) or fea-
turing the Palatini f(R) theory with an additional Holst contribution, leads to the following
expressions, respectively:

_3E-n 3 ¢
2 2924 pY
ensuring the classical equivalence to Palatini f(R) gravity for g = 0. In this case, therefore, the

scalar field acquires in general a dynamical character due to a non vanishing value of the Immirzi
parameter, and (1 1) is replaced by

Q (12)

(3+2Q)06 + Q'(39)* +2V(¢) — ¢V'(¢) = xT. (13)
Now, by virtue of the dependence of T, S,, on derivatives of scalar field ¢, we actually deal
with a theory equipped with propagating torsion degrees, by close analogy with [34,35], where
f(R)+H and f(R)+ NY models were considered in the presence of a dynamical Immirzi field.
As aresult, even though the (R + NY) model is formally identical to metric f(R) gravity for
B ==x1 (2 =0), they are actually endowed with distinct phenomenology.

3. Analysis of the constrained Hamiltonian system

In this section we perform the spacetime splitting and Hamiltonian analysis of the models
presented above, with the aim of characterizing the phase space structure of the theory.

5
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Since we are eventually interested in the implementation of Ashtekar-like variables, let us first
recall the two possible procedures available to achieve this result, namely the so called extended
phase space approach, which was followed in [30,31,32]. and the first order approach based
on the addition of Holst or Nieh-Yan contributions, which is the one we adopted in this paper,
consistently with the Palatini formulation of f(R) gravity.

The former, the so called extended phase space approach, is carried out in a second order
formalism at the Hamiltonian level, firstly defining new configuration variables, i.e. the extrinsic
curvature and densitized triad as in standard LQG, and then by extending the phase space to a
larger one, characterized by an additional constraint. Next, a symplectic reduction is performed,
showing that the new phase space reproduces the correct Poisson brackets between the old con-
figuration variables, namely the 3-metric and its conjugate momentum. Finally. the Ashtekar
variables are introduced by means of a canonical transformation on the new phase space vari-
ables. This is the paradigm followed in [30-32].

The other approach is pursued directly at Lagrangian level according a first order or Palatini
formalism, by including additional terms in the action, such as the Holst or Nieh-Yan contri-
butions. The formulation in terms of densitized triads and extrinsic curvature arises naturally
after the 341 spacetime decomposition and Legendre transform are performed. Eventually, with
the same canonical transformation, a constrained Hamiltonian system coordinatized by Ashtekar
variables is obtained.

In this paper we follow this very last approach for both models (1)-(2).

Let us start performing the spacetime splitting on actions (6) and (7), which, by means of

tetrad fields "’L and spin connections m#”, can be simultaneously rewritten, modulo surface
terms, as
L 1 g 2o
d'xe (beleJR —SHS, ¢pTHT, (14)
24 3
2THa b '85“8 b CD'ST'“S 14
+ uqb_ 13 p¢+ 2 ? ©w (¢) |,

where ¢ = det(ei) and R,ﬂ = Za[ﬂwv]” + 2w[#[KwU]KJ is the strength tensor of the spin con-
nection. In (14), terms containing ¢, have been neglected since they would eventually turn out
to yield vanishing contributions as argued further on.

The spacetime splitting is achieved via a foliation of the manifold into a family of 3-
dimensional hypersurfaces ¥, defined by the parametric equations y* = y* (¢, x%), where r € R.
The submanifold %, is globally defined by a time-like vector n* normal to the hypersurfaces,
such that n*n, = —1, and an adapted base on I, is then given by b} := d,y*, satisfying the
conditions g,,n*b;, = 0. Defining the deformation vector as t# = d;y#, it can be decomposed
on the basis vectors {n'“, bﬁf} as t* = Nn* + N*, where N#* = N%plf. N is the lapse function
and N the shift vector.

The completeness relation h,, = g,,, + n,n, holds, where h,, = habb" bb is the projector
on the spatial hypersurfaces and h,;, the 3-metric, related to the triads by s, = ea eip. The lapse
function, shift vector and the 3-metric are the new metric configuration variables, in terms of
which the metric acquires the usual ADM expression, i.e.

ds? = —N2dt* + hgp(dx® + N%dt)(dx? + NPdr), (15)
as in standard geometrodynamics.
Now, assuming the time gauge conditions n# = eo , ¢ =0 and using e = Ne. with e =

det(ea), the action can be rewritten as






F. Bombacigno, S. Boudet and G. Montani Nuclear Physics B 963 (2021) 115281
Sp= f didx & {q;e;‘ £kl = Do) 10 KE]+

+ (—n T + by gn S) L:p— N9 [Z(PebD[w)Kb] + (—n -T + by gn . S) Baqb] -

peiel o i B ¢ 2 ¢ >
+N{ . (Rf +2K[aK“'])+(T ~biTs )&ﬂb—E(n-S) + 50T+
ﬁ ¢ ag _f a E a _l
b2 T ) + 128, = STUT, + by TS, 2V(¢)]}, (16)

where K’ = cuo‘ the Lie derivative along the vector field ¢# is deﬁned as L;V, =19V, +

]
0y wU—r“wFf,

n-T=n"T, and n-S=ntS,. Moreover, we defined the derivative D\ acting only on spatial

V81", while - indicates spacetime indices contractions, namely 7 - ' = "w);

internal indices via the spatial components of the spin connection, i.e. Déw) fo =0, Vg +coaij Vb".

Then. the computation of conjugate momenta of Kc’, and ¢ yields, respectively

- LAY _

§ = o = e, (17
SLKL
5S

r=—2—¢ —n-T+blén-S , (18)
8L 4

while all other momenta vanish. Thus, all momenta are non invertible for the correspondent

velocities, implying the presence of just as many primary constraints (See the Appendix A for
the detailed list of primary constraints).

A total Hamiltonian can be therefore defined by replacing each non invertible velocity with a
Lagrange multiplier, i.e.:

Hy = fd3,x (BeLoKi+mLip+2"Co— 1) =

= fd3x {—r . (ufDéw)(Ef) +17- (UikKa;E,‘('—Q—

- - E
N | 2E! D\ K}y + ‘,E (—11 T +b1§n : 5) E)

_Nf 2\/_

\/g[(fr“—bli )Sq& i(n 5 +

(3R;’,') + 2K[faKg]) (19)

¢ 2 (D,B ¢ .
+3 (0 T) = ba== (o T)(n - §) + 15554
¢ B

1
—=T°T, +by®=T°S, — =V A"Co
ST T+ b : (¢)}+ }

where E = det(ff) and A" Cy, in the first line collectively indicates the primary constraints
and their correspondent Lagrange multipliers, indicated by A characters (see the Appendix A).

7
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Finally, the phase space is equipped with the standard Poisson brackets, which are defined in the
Appendix as well.

At this stage we have to impose that primary constraints be preserved by the dynamics of the
system. This amounts to compute their time evolution, evaluating their Poisson brackets with the
total Hamiltonian using (A.29)-(A.40), and imposing the result to be at least weakly vanishing
on the constraint hypersurface. This yields

Eoce = z¢ —peny] Ot ~o0, (20)

= W—i—e(T)k—eb]'B(S)A’“O 1)
@c¢t = (j)éAﬁ}(K)A{) ~0, (22)
@), = D E* ~0, (23)

(l”")C"fz- =t-wlEila ZNLVEE-KJ‘]{. — N‘IE[C;- K jje

J]a (w) Jla ~
JE (I)pr(\/g)o. (24)

Mg, =— (215?0[(;’),(;;] + 7 0a) = Ha 0, (25)
; | E B
M = f f ( RJ +2K[a1<bf])+ E[(jra_blzsa) )
—%(n-S) +§( T)“—baCDB(n T)(n - S)+%S“
rar, + pyalra =—H~
-3 a+ 2C1>gT Sa—EV(q‘)) =—-H~=0, (26)
@), = Ka[ké;'a] ~ 0, (27)
. E B ¢ o
Bea=nN, | b —a“ — S 4 by —T | 0, 28
qﬁ’( I ¢+24 +h— (28)
E 2 Op
(T) a_ a, = a “Feal) o
C N‘/‘qﬁ (a = 30T +br—=S ) 0, (29)

®¢=-nN,/ ]i (¢n S+b2—’8n )—s—élblﬁ ~0, (30)
¢’ 4
De =N (2—¢n T — bz—ﬁn S)—éxzo, 31
Vo3 \3 6

where we defined

ze=|Ef Hr| — e (0. ), (32)
Al = (058] — eve]). (33)
W = {m, HT}—I—(n-T—blgn-S) {e, Hr}. (34)
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The expressions above are either functions of the phase space variables alone or they also
depend on the Lagrange multipliers. In the former case, the weakly vanishing of the expressions
must be imposed. resulting in the presence of secondary constraints. In the latter, they have to
be considered as equations in the Lagrange multipliers and must be solved for them, restricting
their original arbitrariness.

Before moving on, we note that some phase space variables, namely 7, 1 - a)i, ws", N, N.
t .S, T,.n-S.n-T.are actually completely arbitrary and can be considered as Lagrange
multipliers themselves. This happens because their momenta only appear in the combination
A™C,, in Hr and therefore their dynamics is itself arbitrary, being given only by the correspon-
dent Lagrange multiplier. )

Now, expressions (20), (22), (23), (24), (28), (29) contain Lagrange multipliers ("))LE, (K)).i,

waij, t-a', S, T, and are solved by

o '
©@ig=—(a7)" z¢, (35)
(]56’ ak '
®K034 =, (36)
.. .. o . - - 1 -~ ~ - ~
wa! = @, = EYi (2a[a EJl + EIVEL adEbk) + EE;; EIPy,E, (37)
_ . Fib
towl = —2N°Ki + = (vV9). (38)
E

where (A7) = (6;5;; - %e;e;) is the inverse of Ay defined such that A}/ (A~H% = 5¢8!
and the solutions for S, and T, are given by the spatial part of expressions (8) and (9), which is
consistent with the expressions obtained at the Lagrangian level, solving the field equations for
torsion.

Note that (38) is a solution to (24) since in the latter the third term is proportional to the
rotational constraint, which will be derived shortly. while the last term can be dropped once the
spin connection is set as in (37).

Eventually, the spatial components of the spin connection turn out to be functions of E:’
However, this does not imply that we have replaced the initial first order Palatini formulation with
a second order one. Indeed, part of the original connection is now encoded in the components
of torsion. Moreover, the modified Ashtekar connection (3)A§’ obtained in section 4 contains
K! =w,”, which is a part of the original spin connection that has not been expressed in terms
of any other variable and is still completely independent.

Equations (30) and (31) are solved by

2
)\:§¢Nn- T (39)

and n - S =0 in models with ¢ non-dynamical, or

n-S=4n-T (40)
and
n-S=—4—ﬁn-T 41
¢

inthe f(R+ NY) and f(R)+ H cases, respectively.
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We emphasize that for f(R) + NY and f(R + H) models we can reproduce the structural
equation from the secondary constraint (21), provided we fix one between ¥ and ). How-
ever, it is worth noting that, as shown in [36] for the pure Palatini f(R) case, the same result can
be obtained without fixing any of the Lagrange multipliers but making use of the equations of
motion and taking into account the scalar constraint.

Then, one has to impose the conservation of the structural equation and check it a further con-
straint arises. This yields a linear homogeneous equation in A which in turn must be proportional
ton - T as in (39). Therefore, no tertiary constraints arise and the conservation of the structural
equation is just a restriction on the Lagrange multiplier n - 7', which has to vanish. Thus, the
scalar field momentum in non dynamical models turns out to be weakly vanishing, in agreement
with the non dynamical character of its conjugate variable ¢.

In the other two models instead, the time evolution of (A.l4) can be set to zero fixing )
or 1)}, which eventually implies that both of them are no longer arbitrary since the equations
of motion for n - § and n - T are proportional to their Lagrange multipliers and relations (40)
and (41) hold. Thus, in this case there are no arbitrary degrees of freedom in the definition of
7 that can be used to freeze its dynamics. Moreover, if one of the Lagrange multipliers is used
to reproduce the structure equation also in this case, this would imply the non dynamicity of ¢,
ending up with an inconsistency and forcing to choose another form for the Lagrange multiplier.

Finally, expressions (26) and (25), which do not contain arbitrary Lagrange multipliers any-
more, are imposed to be weakly vanishing implying the presence of the vector, scalar and
rotational constraints. namely

H,=— (255’1)[(;’) Kj, + naa(,b) ~0, (42)

oot

3 pii e
Rop+2KL K} )+

2f (

E a ﬁ a (:'b 2 (P 2
& [(T — by —S)aaafv—ﬁ(n-S) +30n- 17+

4
p ¢ ¢
b d 2Ty -5+ Lsas, - Lrar,
2 6("! )(n - )+48 3 +
B 1
Ka[kE,-a] ~ 0. (44)

Eventually, taking into account the restrictions on Lagrange multipliers obtained in this section,
the above constraints take the form shown in equations (47), (48) and (49) of section 4.

The algebra of the remaining constraints has already been studied in [31]. The treatment
applies also to the present case since the two sets of constraints are linked by a canonical trans-
formation, as shown in section 5.

Matter can be implicitly included into the theory positing its action to depend only on the
metric and the matter fields and not on the connection. Assuming that no primary constraints
arise in the matter sector, the constraint structure of the theory gets modified by the addition of
the terms E?ﬁfﬁ” and 2% o the vector and scalar constraints (42) and (43), respectively, being
Hare the matter Hamlltonian. In terms of it, from the usual definition of the stress energy tensor
of matter in terms of the matter Lagrangian, its trace can be expressed as

10
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T =

20772 N 8H,ng SHpa
¢ ( it It)’ (45)

NVE\ 20 6N R

a relation useful in order to recover the structural equation in the Einstein frame formulation
developed in section 5.

Finally, let us notice that, if the terms proportional to g,,, would not have been neglected,
then, given the absence of derivatives of g, its conjugate momentum would have been weakly
vanishing. The additional terms proportional to it via a Lagrange multiplier appearing in the total
Hamiltonian would have produced secondary constraints whose solutions would have implied in
turn the vanishing of ¢g,,,, components, since it does not couple to any derivative of the scalar
field ¢, contrary to what happens to the other components of torsion.

4. Modified Ashtekar variables

In this section we successfully implement a modified set of Ashtekar-like variables, still suit-
able for loop quantization and that ensure the presence of a SU (2) Gauss constraint in the phase
space of the theory.

We now focus on f(R)+ H and f(R + NY) models. As a result of the analysis pursued in
the previous section, the gravitational sector of the phase space turns out to be characterized by
the set of canonical variables {7, ¢; E"f Ké}, where 7 denotes the conjugate momentum to ¢
and {E;’. K;} are defined as

K(; =w Ef’ =¢E?, (46)

a

where Ef = det(ef))ef is the ordinary densitized triad and a)M” the independent spin connection.
This set of variables is not posited and then justified via a symplectic reduction, as it would
be done in the extended phase space approach. Instead, it naturally arises from the spacetime
splitting and Legendre transform performed in section 3 on actions (6)-(7).

The phase space is subject to a set of first class constraints consisting of the rotational con-
straint

Ri=e; ;" KJEf ~0, @7
the vector constraint
H, =2F! D(“’)Kb] + 73 A0, (48)

and the scalar constraint

_ J&Ef’ﬁf j $ o,
=-2 ( ()—|—2K[al{)—|—2 SaT

(p% ¢datp + 5 @V(fﬁ) (49)

where E = det(Ef’), 3R”ab () = 28[awb + 2w[ k(ub] ' Tn particular, we defined a new type

of covariant derivative fo”), acting on internal spatial indices, by means of the modified spin
connection

5. — i (2a[aég']] + Ef]‘fﬁiadébk) + =BV EVy, E (50)

11
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which can be expressed in terms of the Riemannian spin connection J)M” = e”IVﬂe,{ and the

scalar field as cbaij = c?)aij(E) + éE([,iEj]bi(b. Then. performing the canonical transformation
Ef - PE = BE], (51)
Ki— w’Af:%K;—kf;, (52)

where f’; = —%sij"‘&)jk, a set of modified Ashtekar variables {('B)E;’, (ﬂ)AZ} can be obtained,

in terms of which the rotational constraint can be combined with the compatibility condition
D[(f‘)) Eib =0, satisfied by (50), yielding the SU (2) Gauss constraint

G; =3a(‘8)E?+Sijk(ﬁ)A£(‘8)Eg%0. (53)

This guarantees that Palatini f(R) models here considered are actually feasible for LQG quan-
tization procedure. Especially, by means of the new variables the vector constraint can be rear-
ranged as in standard LQG, along with the additional term associated to the scalar field. i.e.

Hy="PE}Fl, + 7.9, (54)

where F;b =20[q (ﬁ)Ag] + aijk(ﬁ)Aé(ﬁ)Aﬁ. Conversely. the scalar constraint turns out to be mod-
ified with respect to the standard case, namely

(BYEaB) b . .
BPAE

1] ¢3 ¢ , 1 (B)Eszaa 5 1 (B)E"V 55
+§ Wﬁn +§ I ¢a¢+5 s (@), (55)

where A F = det((ﬁ)E?). reflecting the difference in the dynamics which exists at a classical
level between General Relativity and Palatini f(R) Gravity.

The preservation of Gauss and vector constraints assure that it is straightforward to extend
the usual quantization procedure [1-3] to the new variables (51)-(52), while the quantization
of the scalar sector still requires some care, by virtue of the different dynamical character of ¢
in the different models. When the scalar field is dynamical, it embodies a proper gravitational
degree of freedom and following [38] we can introduce a scalar field Hilbert space spanned by
quantum states |¢), defined by C*-functions ¢ : £ — R and endowed with the scalar product
(ple) =1, (p|g") =0, whenever ¢ # ¢’. The operator associated to the scalar field acts by mul-
tiplication as qg(x) lp) = @(x) |@), allowing well defined operators 5;55 and /¢, as shown in
[38]. Conversely, the operator associated to the conjugate momentum only exists in its expo-
nentiated version. However, as noticed in [38], an operator dexf(x)ﬁ' (x) can still be defined
as a directional functional derivative acting in the dual space, spanned by linear functionals
® : C*(X) — C. Now. the main difficulty in the present case comes from the ¢! factors appear-
ing both in the scalar constraint and in the area (see section 4.1). Therefore, in order to define an
operator associated to the inverse of the scalar field one can restrict to the case ¢ > 0 (condition
required on a classical level in order the theory be consistent) and resort to the following classical
identity

¢‘(x)=4({\/qﬁ(x),[d%n(z)})

H=

2
: (56)
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eventually defining the operator ¢! via the replacement {-, -} — [-,-]/(ih). where braces and
square brackets denote Poisson brackets and commutators, respectively.

4.1. Heuristic picture for the area spectrum

In standard LQG the classical expression for the area of a surface S is written in terms of
densitized triads as

A(S) =/ds,/E;’Ef’nanb, (57)
§

where n, is the normal vector to the surface, and then quantized computing the action of fluxes
on spin-network basis states. The area operator turns out to be diagonal in this basis, with the
spectrum given by'

871'5’“;, —
a=— ;\/quﬁl), (58)

where £p = +/hG is the Planck length and the sum runs over punctures p of the surface S due to
edges of the spin-network. colored by spin quantum numbers jp.

However, in the theories we analyzed, the phase space variable to be quantized is (JB)E;’ ,
whereas the physical metric is still associated to the ordinary densitized triad E{'. Thus, equation

(57) still holds and, in view of its quantization, it has to be rewritten in terms of (5)5:7, namely

na(ﬁ)Ebnb
A(S) = [ds . (59)

Now, the square root can be quantized via a regularization procedure as in the standard case
and, as long as ¢ is dynamical, one can treat the reciprocal of the scalar field as explained in
section 4. Computing the action of both #~! and the fluxes on a state obtained by the direct
product of spin-network and (dual) scalar field states result in a modified area spectrum

Srrﬂ,u Z Virlp +1)

@(p)

(60)

where the only non vanishing contributions are those in which the scalar field is computed in the
punctures. This implies that the scalar field contribution to the area operator spoils the discrete
character of its spectrum, similarly to what argued in [44.,45].

At the same time, this feature implies that the Immirzi parameter ambiguity, present in stan-
dard LQG, is here absent, since different values of 8 do not label different values of physical
observables but instead they lead to the same, continuous spectrum. Such an outcome seems to
suggest that in Palatini f(R) extensions of LQG, the Immirzi parameter can be conveniently
set to unity in definitions of geometrical objects as in (57), and its effects on dynamics ab-
sorbed in the value of 2. We note that in [44.45] analogous results are achieved in the context

' We consider here only the simple case in which there are no nodes of the graph belonging to the surface nor edges
laying on it.
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of Conformal-LQG, where an additional conformal transformation is included into the symme-
tries of the theory. In that case, indeed, it is possible to build an area operator invariant under
conformal transformation and independent on the Immirzi parameter, which acquires the role of
gauge parameter for the new conformal symmetry. For such a purpose, however, one is forced to
consider the conformal rescaled metric as the physical one, in contrast to our assumptions and
by analogy with [37].

4.2. Non-dynamical models

For the two models in which the scalar field is non dynamical, namely f(R+ H) and f(R)+
NY, the main result presented in this section still holds, namely the existence of a generalized
set of Ashtekar variables allowing the preservation of the vector and Gauss constraints.

There are however some important caveats. As shown in section 2, in both cases the parameter
€2 assumes the constant value €2 = —3/2, corresponding to the effective description of standard
Palatini f(R) gravity which is characterized by the non-dynamical character of the scalar field.

This aspect is classically encoded in the structural equation of motion (11). However, we
proved that it is also reflected in a slightly different phase space structure. Indeed, the phase
space of these models is endowed with an additional second class constraint, which can be recast,
provided we properly fix the Lagrangian multipliers, in the form (1 1), proving the non dynamical
character of the field ¢. This result is reinforced by the fact that its conjugate momentum turns
out to be weakly vanishing. In the other two models, instead. no additional constraints arise and
the scalar field and its conjugate momentum are truly dynamical.

Thus. since in these models the scalar field is not an independent degree of freedom., it has not
to be directly quantized, but it has to be considered a function of matter fields ¢ (7)) by means
of (11). The same goes for the scalar field appearing in (59). This introduces a dependence of
the area operator on matter and we expect that it could affect the purely geometric contribution
too, resulting in a modification of the eigenvalue expression (58) by virtue of the dependence
of T on the metric tensor. However, given a matter Lagrangian, even for the simplest choices
for the function f, the expression for ¢(7) can be quite cumbersome, making its treatment
unfeasible.

5. Formulation in the Einstein frame

Here we compare the results of the Hamiltonian approach discussed in section 4 to analogous
studies present in literature [31,39], where a different set of canonical variables was obtained.
denoted by hatted characters and related to ours by the canonical transformation

Ef = —E¢ Ki =¢K!, (61)

p=¢. (62)

These results are to some extent controversial, since performing on (47)-(49) such a transforma-
tion reproduces the same set of constraints of [31,39] only if we replace by hand Q with 2+ 3/2.
Furthermore, in [31] starting from a second order analysis of (10), a LQG formulation of scalar
tensor theories was achieved via a symplectic reduction technique [3]. Then, this seems to point
out that the implementation of Ashtekar variables could be affected by the peculiar choice of the
formalism adopted, when extensions to General Relativity are taken into account, as it occurs

14
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for the Jordan frame formulation of Palatini f(R) models we considered. In this sense, the fact
that in [39] were actually derived results equivalent to [31] according a first order approach, can
be traced back to the choice of including additional contributions in the action, featuring a Holst
term, with the aim of eliminating torsion from the theory.

Now, we want to show how the phase space structure obtained in [31,39] could be reproduced
by means of the canonical transformation (61)-(62), provided the analysis of section 3 be pursued
in the so called Einstein frame, endowed with the conformally rescaled metric g, = ¢g,,. Of
course, we note that such an equivalence does not exclude a priori the existence, even at the level
of the Jordan frame, of a different, possibly gauged canonical transformation (see [46]), able to
tackle this problem.

With steps analogous to the ones followed in the section 2, the effective actions for the difter-
ent models can be derived as

1 ~
S=3 j d*xy-z [R - f) G, — U () |, (63)

where R is the Ricci scalar depending only on the conformal metric and U(¢) = V(q))/(?z. As
before the models can be divided in two cases. f(R) + H and f(R) + NY, for which Q =0,

and f(R+ NY) and f(R + H). for which Q@ = %q&ﬁz and Q = %% respectively.

1+p?
In particular, by comparing (63) with (10), we see that 2 and 2 are related by
- Q4372
Q= +—/ (64)
¢
which shows how the value € = —3/2, associated to non dynamical configurations for the field

¢ in the Jordan frame, corresponds to 2 = 0, in agreement with the representation in the Einstein
frame of scalar tensor theories.

Then, following the line of section 3, we can perform the Hamiltonian analysis, which reveals
a phase space coordinatized by the set of variables {E?, Kfz}, where the densitized triad is now
defined in terms of the spatial part of the conformal tetrad EL = ﬁei. and a rotational constraint
coincident for all models with the expression derived in the Jordan frame. Regarding the vector
and scalar constraints instead, in the non dynamical models they read. respectively

H,=2E!D K} ~0 (65)
b

H= —’—\/Tf (3R;’b((7)) +2K|, K;]) +VEU @) ~0, (66)
WE

where @," is the spin connection compatible with & . In this case, the conjugated momentum to
the scalar field is weakly vanishing, leading to the primary constraint 7w & 0, whose conservation
along the dynamics simply amounts to impose the variation of the potential term with respect to
¢ to weakly vanish. If matter is included this reproduces the structural equation as a secondary
constraint, as shown in section 3.

In models where ¢ is dynamical, instead, the vector constraint takes the form (48) and the
scalar constraint reads

ra b

=

+—==r"+
WESQ
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1 Q2 ESEP JE
+ 5 —=0%¢¢+ vV EU(P) =0. (67)
NG
If we then perform the canonical transformation (61)-(62), the difference consisting in the shift
by —3/2 of €2 is now compensated taking into account relation (64), and the final expression
for the constraints is in agreement with [39], both for @ # —3/2 and for 2 = —3/2 (2 =0 and
Q # 0). Specifically. in the latter case the primary constraint 7 = 0 becomes 7 + LE}’ K! ~0,

which reproduces the so called conformal constraint present in [39], and proves the equivalence
of first and second order approaches in the Einstein frame.

6. Concluding remarks

In this work, we adopted the point of view that introducing Ashtekar-Barbero-Immirzi vari-
ables into modified f(R) contexts requires a Palatini formulation of the action. This perspective
implies the need to add to the Lagrangian the typical Holst and Nieh-Yan contributions, like the
standard Einstein-Palatini action in [20]. As shown in section 2, we have different possible com-
binations for the Lagrangian, corresponding to include the aforementioned terms either inside
the argument of the function f or simply outside. When the equations of motion are calculated,
and the torsion field is expressed via the metric and the scalar field variables, two different phys-
ical formulations come out. In fact, plugging the Holst term in the function f or adding the
Nieh-Yan contribute directly in the Lagrangian, simply corresponds to a standard Palatini f(R)
theory. Conversely, in the opposite case a truly scalar-tensor model is obtained, whose parameter
2 turns out to depend on the Immirzi parameter.

In both instances we are able to define new Ashtekar-Barbero-Immirzi variables, in terms of
which Gauss and vector constraints of LQG are recovered. The discrepancy between the two
scenarios is also reflected into the morphology of the area operator, obtained starting from its
expression in natural geometrical variables, i.e. the natural tetrad fields, and then expressed via
the proper SU (2) variables, suitable for loop quantization. As a result, the area spectrum depends
now on the scalar field properties as well. In particular, in the case of a Palatini f(R) theory, we
have to deal with the intriguing feature that the geometrical structure of the space depends on
the nature of the matter by which it is filled. Another interesting issue comes out when the scalar
field must be also quantized, and the area operators eigenvalues contain features of the scalar
mode spectrum. This property is a consequence of the non-minimal coupling of the scalar field
to gravity and suggests space discretization could be influenced by the particular considered form
of the function f, i.e. of the potential term V (¢). Thus, the form of the Lagrangian one adopted
to describe gravity seems to directly affect the space quantum kinematics, differently from the
classical scenario, where only the space metric fixes the geometry kinematics, disregarding the
Lagrangian form.

We also showed that the scalar field impacts the area spectrum in such a way that it is possible
to set the Immirzi parameter equal to one in all the kinematic constraints, while it still affects the
scalar constraint morphology.

This is not surprising since we are able to directly link the Immirzi parameter to the scalar-
tensor parameter 2. However, the SU (2) morphology of the theory and its kinematic properties
must be not influenced by €, since we can re-absorbe its value into the Ashtekar-Barbero-
Immirzi variable definition. In turn, the dynamics can be instead affected by €2.1.e. by f. since the
theories are not dynamical equivalent and these parameters can be constrained by experimental
observations [47-50].
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In this sense, the Immirzi parameter ambiguity is here completely solved, by its link to the
physical scalar-tensor parameter and by the independence of the theory kinematics on its specific
value. This is, in our opinion, a very relevant result, opening a new perspective for the solution
of some of the LQG shortcomings into a revised and extended formulation of the gravitational
interaction.

We conclude by stressing a technical issue concerning the possibility to obtain equivalent
formulations, when starting from a second order approach as in [31] and according the present
Palatini approach. In fact, the scalar constraint appears different in the two analysis and the
possibility to restore a complete equivalence implies the choice of a Einstein framework for our
formulation, i.e. a conformal rescaling of the tetrad field. This technical evidence suggests a
possible physical interpretation for the dynamics in the Einstein framework of a f(R) theory (on
the present level it must be considered simply a mathematical tool to make the scalar dynamics
minimally coupled), which deserves further investigation.
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Appendix A

The complete set of conjugate momenta, computed from action (16), reads

~ 85 _
K E?ESL',K(’; = peel, (A1)
55,
é nzaﬁibze;(—n-T—i—b]in-S); (A.2)
: 8Sp
“. Opi=_2_—; A3
el Tra 5[:;6’? ? ( )
. 5Sp
s W= = A4
tw e SEG o) ; (A4)
wf o @ogt= T o (A.5)
L (i)
88y
N?: Mg = =0; A6
Ta = SL,Na (A.6)
58,
N: Mp= 2% _g (A7)
SLN
: 5
ok g =270 (A.8)
8L (1 - wik)
65p
S - (8) ya — =0; A9
a T 5L.S, ( )
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8Sp

T,: mnaEMT =0; (A.10)
tla
58,

" TESLn-s) (A-1D)
8Sp

T Deg=_""___9. A.12

" T=8L(n-5) (A.12)

None of the above relation is invertible for the correspondent velocity, yielding the following set
of primary constraints

Kica = 9 — peet ~ 0 (A.13)
CEJT—}-E(J:-T—b]gn-S)%O; (A.14)
(e)ci = ((’)ﬂ.i P O; (AIS)
@), = @)~ (A.16)
(fUa)Ci{fi = (wa)n—lf]j "\N-'O; (A17)
Me, =Mz ~0; (A.18)
Me=Mg a0, (A.19)
(wt)Cik = (wt)TT.-'k ~0); (A.20)
) ca = ) ga (A2D)
(T)Ca = (T)R,a ~(): (A.22)
Se=® g a0 (A.23)
MM~ (A.24)

To enforce each of them in the variational principle one can introduce arbitrary Lagrange multi-
pliers, indicate here by A characters. In particular, they appear in equation (19) via the following
expression

ANC,y = (KJ)L;(K)C:_J +0C + (“)A?(G)C; + (“’f)k"(“’f)c,- (A.25)

+ (“)u)}\'y(“)a)c?j 4 WNpatNe 4 (N (N e (A.26)

4 (@i (w')cij + 8, Sca My Dea (A27)

+ 5,0 + (MM e (A.28)
Finally, the phase space is equipped with the following Poisson brackets:

[Kico, B2 | = siobace, v (A29)

@), m(y)) =80x, y); (A.30)

ferco. @afon ) =olspac, v (A31)

ft-al @), @m0 =850 (A32)

[0, @0 )] = aafesfoce, (a3

[N" (x). (N)ij(}‘)} =875(x, ¥); (A.34)
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[NG), ®xm) ] =50, ; (A33)
[0, @man] =sipc v; (A.36)
[5.00). O} =sbs0x, »); (A37)
{7u0), Db} =850, ) (A.38)
{500, Ox(n}=s0r v: (A39)
[0, D} =60, (A40)
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