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Abstract: This paper addresses the study of a pyro-gasification plant designed, built, and operated
to recover inert metals from different types of solid waste. Experimental tests were carried out
using pulper as the solid waste. However, while a reliable composition analysis of the produced
syngas was carried out, a precise composition evaluation of the pulper used during the experimental
activities was not performed and the related data were characterized by unacceptable uncertainty.
Therefore, with the aim of reliably characterizing the plant operation, a thermochemical model of
the gasification process was setup to simulate the equilibrium operation of the plant and a vector
optimization methodology was used to calibrate the numerical model. Then, a decision-making
problem was solved to identify the most suitable optimal solution between those belonging to
the Pareto optimal front, thus obtaining reliable composition data for the adopted pulper waste.
In particular, four different identification criteria were applied for the selection of small subset of
solutions over the 3138 dominant solutions found. Among them, the solution (i.e., set of calibration
parameters) that minimizes the experimental-numerical difference between the lower heating value
of the produced syngas seemed to provide the most reliable approximation of the real plant operation.
Finally, a possible plant configuration is proposed for the energetic valorization of the pulper waste
and its overall conversion process efficiency is estimated.

Keywords: pyro-gasification plant; thermochemical modeling; multi-objective optimization problem;
decision-making process; biomass steam power plant

1. Introduction

The balance between energy supply and energy demand is a critical issue to address,
as widely discussed in [1]. At the end of this century, the global energy demand is expected
to be about six times greater than the current. Today, the available energy supply is much
lower than the energy required in many of the developing countries. Moreover, fossil
fuels are still the main primary sources of energy worldwide (Figure 1, [2]), covering
approximately 82% of the total electricity generation [3–5].
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Figure 1. World total primary energy supply in 2017 detailed by fuel. Peat and oil shale are aggregated
with coal and the label “Other” includes geothermal, solar, wind, heat, etc., [2].

Although energy-related CO2 emissions stalled in 2015 [6] because of the improve-
ments in energy efficiency and an increasing use of low-carbon energy and renewable
energy sources, a more efficient use of energy and an increasing use of renewable energy
sources are still mandatory to limit the rise in the global average temperature below 2 ◦C
above pre-industrial levels (Figure 2, [7,8]). In this scenario, alternative sources of energy
such as those provided by emerging waste-to-energy (WtE) processes could play a fun-
damental role [9]. The problem of disposal of a huge quantity of generated waste along
with the need of reliable sources of renewable energy are common in many developing
countries. Therefore, the use of waste as a potential renewable energy source could be a
useful solution, also meeting the increasing demand for energy [3]. Moreover, promoting
technologies for waste valorization could be part of the policies to limit the global average
temperature rise, entailing the increase in the share of renewable energy (i.e., biomass and
waste in Figure 2) expected by 2050.
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Since traditional waste disposal is one of the major causes of environmental pollution,
WtE technologies may significantly reduce the potential environmental impact of waste
disposal. Therefore, WtE processes are considered among the most suitable options to tackle
waste-related problems [3]. A report from the World Bank estimates that waste generation
will increase from 2.01 billion tons in 2016 to 3.40 billion tons in 2050 [10]. For this reason, in
recent decades, possible solutions to disposal of municipal solid waste (MSW) in landfills
are attracting much attention because of the clearly negative environmental impact deriving
from inadequate waste management. Environmental issues include landscape impact, dust,
and leachate production, and emissions of contaminating gases [11]. Some research works
indicate how recycling could be, depending on the energy recovery technologies, a better
option than energy recovery [5,12]. However, about 70% of the waste could be generally
recycled. Therefore, whenever recovery and reuse of materials cannot be pursued, different
treatment technologies can be adopted to effectively generate energy from waste, thus
avoiding the use of landfills and leading to economic and environmental benefits [13–15].

Biological and thermochemical treatments are more commonly used; thermal treat-
ments can be obtained through pyrolysis, gasification, or incineration [16]. Until recently,
incineration was the most widespread WtE technology with more than 1400 incineration
plants operating around the world [17]. However, even the last generation of waste incin-
erators are limited by low electric efficiency of about 22–25% [18] because of the maximum
steam temperature at the boiler outlet, which is normally lower than 450 ◦C to prevent
corrosion by gaseous HCl [19,20]. Moreover, the incineration process generates a lot of acid
gases, heavy metals, dioxins, and other pollutants [21]. For these reasons, in recent years,
a considerable interest has grown toward other WtE technologies, particularly pyrolysis
and gasification [21]. Pyrolysis and gasification of waste can eliminate dioxin emissions [20].
In fact, the reducing atmosphere that characterizes gasification and pyrolysis processes
strongly limits the emission of pollutants such as dioxins, furans, and NOX, as well as green-
house gas emission [22–32]. Nevertheless, both pyrolysis and gasification processes present
environmental issues that cannot be neglected. Pyrolysis, which can either be used as an
independent process or pretreatment for gasification, produces tar, besides char and gas,
whose proportion depends on both feedstock properties and operating parameters [23,24].
Therefore, in biomass gasification, beyond syngas production and CO2 sequestration, there
are major environmental concerns and problems in downstream equipment caused by
tar production [25,26]. Another relevant problem is the formation of HCl, but also H2S
and NH3, which occurs, for example, during gasification of MSW containing significant
amounts of chlorine (due to the presence of polyvinyl chloride, PVC), sulfur, and heavy
metals [27,28]. Both the liquid product of pyrolysis process, which is an acidic combustible
liquid, and hydrochloric acid cause fouling, severe corrosion to downstream equipment,
like a gas turbine or internal combustion engine, and poisoning of catalysts [29–31].

As for the energetic valorization of waste in WtE plants, it is widely recognized how
a high energetic efficiency can be achieved by coupling pyrolysis and gasification plant
to gas turbine, internal combustion engine, or combined-cycle gas-steam turbine power
plants [22]. Therefore, WtE technologies provide a method to simultaneously address the
problems related to energy demand, waste management, and greenhouse gas emissions.
In addition, they can be included in a circular economy system (CES) [33]. CES refers
to an economic strategy that suggests innovative ways to transform the current mainly
linear consumption system into a circular one achieving economic sustainability through
the necessary material savings [34]. Indeed, CES concept aims to extend the useful life
of materials by promoting recycling while reducing use of resources and environmental
impact [35]. The subject of the proposed research work is part of the problem described
above and focuses on WtE technologies, pyrolysis, and gasification. Specifically, this work
concerns the numerical and experimental analysis of a pyro-gasification plant originally
designed, built, and operated to recover inert metals. Then, with the aim of ensuring a
more flexible plant operation allowing biomass, plastics, metals, MSW, and other different
type of waste to be treated, the capability of converting waste from paper processing (i.e.,
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pulper) into synthesis gas (syngas), that can be profitably burned, has been tested. While
a rigorous and certified composition analysis of the produced syngas was conducted, a
precise composition evaluation of the pulper used during the experimental tests was not
carried out. Hence, pulper waste has been characterized by an average proximate and
ultimate analysis assumed as reference. Then, with the aim of reliably characterizing the
plant operation and estimate the unknown chemical composition of the pulper waste, a
thermochemical model of the process has been setup and then calibrated to simulate the
equilibrium operation of the plant. Similar examples of this modeling approach can be
found within the published literature [36–44]. However, the complex model calibration
phase required the adoption of a specific vector optimization methodology proposed by
the authors. In particular, starting from some of the available data obtained through the
experimental tests, a multi-objective optimization problem has been set up and solved to
reliably calibrate the numerical model and then simulate the real plant operation, obtaining
time and cost savings by avoiding to perform further tests. More specifically, pulper com-
position, along with other process parameters, has been set as model calibration parameter
and decision variables of the optimization problem. The differences between simulated and
measured concentrations of the syngas components have been set as objective functions
to be minimized. A subsequent decision-making process has been finally carried out to
identify the most suitable solution (i.e., the most suitable model calibration) between those
belonging to the Pareto optimal front, which provides reliable composition data for the
adopted pulper waste. In particular, four different identification criteria have been applied
for the selection of a single solution over the 3138 dominant solutions found. Finally, the
solution (i.e., set of calibration parameters) which minimizes the experimental-numerical
difference of the lower heating value of the produced syngas seemed to provide the most
reliable approximation of the real plant operation, also considering the proposed energetic
application consisting in the combustion of the outcoming syngas in a biomass steam
power plant.

2. The MR System: Experimental Setup and Test

The material recovery plant is an indirect atmospheric pyro-gasifier making use of
a methane burner and designed to recover metals and other inert from various types of
solid waste. Being a medium-small scale plant, it has the advantage of local use, reducing
management and transport costs. The plant can also process up to 1000 kg/h of paper
pulper and can regulate the speed of the reactor chamber to adapt to waste variations.
The average residence time of the solid waste in the reactor is about 30–40 min. Its transport
is guaranteed by an internal spiral ring. The overall scheme of the plant is represented
in Figure 3. It consists of the following main components: an open feeding section (1)
through which the pulper is constantly fed together with the air used as gasifying agent,
a methane combustor used to obtain hot gases (2), a rotary pyro-gasifier (3), a metals/inert
discharging outlet (4), syngas/tar combustion chamber (5), and an exhaust gas treatment
unit (6).

The present work is based on the results of an experimental test performed by feeding
the MR pyro-gasification plant with a certain amount of paper pulper to be treated. Paper
pulper is basically composed of polyethylene (PE) [40–42], possible cellulose residue, and
other materials used in paperboards such as aluminum sheets and other plastics. With a
moisture content of about 20% resulting from the wet process of maceration, the pulper,
whose proximate and ultimate analysis derived from literature data [43] are shown in
Table 1, is suitable for thermal treatment.

Some experimental tests have been carried out and the produced syngas has been
object of an accurate composition analysis (Analysis was carried out by the accredited
laboratory, CSA spa, http://www.csaricerche.com/en/laboratori_analisi.php; number of
certification n. 500557-001), conducted with the methodology UNICHIM 542, certified by a
specialized laboratory (Table 2).
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Table 1. Proximate and ultimate analysis of the adopted paper pulper.

Proximate Analysis Mass % Ultimate Analysis Mass %
Moisture 20 Carbon 85.76

Volatile fraction 95.30 Hydrogen 13.86
Fixed carbon 4.50 Nitrogen 0.12
Ash (inert) 0.20 Chlorine 0

Sulfur 0.06
Oxygen 0

Ash (inert) 0.20

Table 2. Composition of the produced syngas.

SYNGAS COMPOSITION

Chemical Species Experimental Value

Carbon dioxide CO2 7.8% v/v
Nitrogen N2 70.1% v/v

Water H2O -
Methane CH4 11.7% v/v
Propene C3H6 0.99% v/v
Propane C3H8 0.19% v/v

1,3 Cyclopentadiene C5H6 0.06% v/v
1,3 Butadiene C4H6 0.11% v/v

Oxygen O2 0.8% v/v
Carbon monoxide CO 7.9% v/v

Hydrogen H2 0.4% v/v
Sulfur dioxide SO2 8.8 mg/Nm3

The three parameters listed in Table 3 have been considered for the plant model
calibration.

Table 3. Range adopted for the three parameters considered for the plant model calibration.

Name Unit of Measurement Parameter Range

Reactor temperature [K] 500–900
CH4 mass flow rate [kg/s] 0.002–0.2
Air mass flow rate [kg/s] 0.08–0.3
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3. The Thermochemical Model

Since the physicochemical phenomena governing the conversion process of waste
are limited to two plant components, the methane combustor and the pyro-gasifier (2 and
3 in Figure 3, respectively), the modeling has been focused on these two components.
The estimation of the heat flow through the reactor walls (

.
Qaux in Figure 4) has been also

taken into account. The combustor (COMB. In Figure 4) is modelled as a reactor which
calculates the exhaust gases properties through mass, energy, and chemical species balances
under the assumption of complete methane combustion. The mass flow rates of air and
methane that generate the inert gasifying environment which activates the gasification
process through the interaction with waste in the first section of the pyro-gasifier repre-
sent two calibration variables of the model. Pulper, as previously discussed, has been
characterized by an average proximate and ultimate analysis assumed as reference. How-
ever, the exact chemical composition was unknown. Assuming a prevalent polyethylene
composition for the pulper and given the impossibility of the model adopted to handle
polymeric raw material, the rotary drum of the pyro-gasifier has been schematized in
two blocks. The pulper feedstock is first fed to a depolymerization block (DEPOLYM. in
Figure 4) where it is decomposed into ethylene. This is a yield-oriented reactor model
in which a prevalent composition of ethylene has been imposed as output according to
the composition reported in Table 4. It is used to model pyrolysis and decomposition of
waste (drying and devolatilization). Since only pulper is considered at the inlet of the
depolymerization block, to take account of the air incoming through the open section of
the feeding system, ultra-lean values of the equivalence ratio (λ in Table 5) have been
considered within the possible operating conditions of the methane combustor to reliably
estimate the whole air mass flow rate involved in the gasification process. The second block
(GASIF. in Figure 4) has been used to model the typical gasification reactions (oxidation,
reduction, and recombination).
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Table 4. Estimated chemical composition for the pulper.

Mass Fraction, kg/1 kg of Pulper

ETHYL-01 0.8415
ASH 0.0015
N2 0.0012
S 0.0006
C 0.1375

H2 0.0177
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Table 5. Decision variables.

Decision Variables
Constrains

Name Unit of Measurement Range

Tdepolym [K] 500–900
[-]

ethylenedepolym [-] 0.1–1
.

mCH4 [kg/s] 0.002–0.2
1 < λ < 14.

mair [kg/s] 0.08–3

Since the residence time of waste in the reactor is very long (30–40 min on average), it
was assumed that this time was long enough to reach chemical equilibrium. Consequently,
an equilibrium reactor that minimizes Gibbs free energy was used for the GASIF. Block.
This model returns the syngas output flow (composition, temperature, pressure, mass
flow rate) and the heat flow

.
Qaux, whether it has positive or negative values, as result.

This schematization allows to model the gasification process by providing a complete
chemical composition of the inlet waste. Since both DEPOLYM. And GASIF. Blocks refer
to the same rotating drum reactor, the equality of the temperatures has been imposed
as a constraint for the two sub-models (Tdepolym = TGASIF). Ultimately, the gasification
process has been ideally split into two stages: the first stage in which polyethylene, that
is the main pulper component, is converted into its basic ethylene molecules. The second
stage in which these molecules and the remaining reagents are further turned into the
typical gaseous components of a syngas such as CO, CO2, H2, CH4. The plant model
includes the calculation of the thermal energy flows that characterize the two blocks. The
first (

.
Q in Figure 4) represents the thermal power that, being generated in the second

stage of the gasification process (GASIF. Block), supports the depolymerization process of
polyethylene into ethylene (DEPOLYM. Block). The second (

.
Qaux in Figure 4), represents

the thermal power generated during the gasification process that is exchanged with the
external environment, and so dissipated, through the walls of the gasification section. The
result is a zero-dimensional stationary thermochemical model consisting of three control
volumes where mass, energy, and chemical elements balances are carried out. Specifically,
the following mass and energy balance equations are used:

• Methane combustor (COMB. in Figure 4):

.
mCH4 +

.
mair =

.
mexh (1)

.
mCH4

[
cp,CH4·Tenv + Hi,CH4

]
+

.
mair·cp,air·Tenv =

.
mexh·cp,exh·Texh (2)

• Depolymerization process (DEPOLYM. in Figure 4):

.
mpulp =

.
methylene (3)

.
mpulp

[
cp,pulp·Tenv + Hi,pulp

]
+

.
Q =

.
methylene·

[
cp,ethylene·Tdepolym + Hi,ethylene

]
(4)

• Gasification process (GASIF. in Figure 4):

.
mexh +

.
methylene =

.
msyn (5)

.
mexh·cp,exh·Texh +

.
methylene

[
cp,ethylene·Tdepolym + Hi,ethylene

]
=

.
msyn·[

cp,syn·TGASIF + Hi,syn
]
+

.
Q +

.
QAUX con Tdepolym = TGASIF

(6)



Processes 2021, 9, 35 8 of 18

4. Thermochemical Model Calibration: The Proposed Multi-Objective Optimization
Approach

As previously said, after the experimental test a precise composition analysis of
the produced syngas has been conducted. However, thorough evaluation concerning the
composition of the pulper used during the experimental tests was not carried out. Therefore,
to reliably calibrate the thermochemical model, a multi-objective optimization methodology
based on the use of a genetic algorithm has been adopted. In particular, according to the
logic scheme represented in Figure 5, starting from the available data obtained through the
experimental tests, a vector optimization problem has been set up and solved to reliably
calibrate the numerical model and simulate the actual plant operation. More specifically,
the average reactor temperature (Tdepolym), air (

.
mair), and methane (

.
mCH4) mass flow rates,

fraction of hydrogen (H2depolym), carbon (Cdepolym), and ethylene (ethylenedepolym) produced
by the depolymerization process have been set as model calibration parameter (as they are
unknown) and decision variables of the optimization problem. The differences between
simulated and measured concentrations of the syngas constituents (i.e., syngas composition)
have been set as objective functions to be minimized.
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The optimization problem has been solved through the genetic algorithm MOGA II (i.e., the
Multi-Objective Genetic Algorithm II), whose main features include directional cross-over and
elitism, that is used to prevent early convergence to local optimum [8,45–48]. Starting from
an initial population providing a set of initial solutions, the MOGA II identifies the best
individuals by mean of classical crossover, directional crossover, mutation, selection, their
predefined operator probabilities, and the use of elitism. Tables 5 and 6 show details con-
cerning decision variables and objective functions adopted for the optimization problem.

The ranges imposed to the decision variables have been set wide enough to include
most of the operating conditions. Carbon and hydrogen concentrations depend on the
ethylene fraction as shown in the following.[

Cdepolym

]
=
(

0.9967−
[
ethylenedepolym

])
∗ 0.885954

[H2depolym] =
(

0.9967−
[
ethylenedepolym

])
∗ 0.114046
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Table 6. Objective functions.

Species Objective Functions

N2 |[N2]− 0.7009|
CH4 _out |[CH4out]− 0.1169|

CO |[CO]− 0.079|
CO2 |[CO2]− 0.078|
C3H6 |[C3H6]− 0.0099|
C3H8 |[C3H8]− 0.0019|
C5H6 |[C5H6]− 0.00059997|
C4H6 |[C4H6]− 0.0011|

O2 |[O2]− 0.0079|
H2 |[H2]− 0.004|

SO2 |[SO2]− 0.00000003|

5. Optimization Results and Decision-Making Problem

The model calibration procedure allowed to find the Pareto front, consisting of a set
of 3138 different optimal solutions. For example, Figure 6 shows the projection of these
solutions on two different planes of the objective functions space. Therefore, a decision-
making problem has been addressed to identify a single optimal solution providing the
most reliable composition data for the adopted pulper waste and plant operation over the
dominant solutions found. In particular, the following four different identification criteria
have been applied:

CR.1: Minimum Euclidean norm of the relative errors vector (i.e., dimensionless objective
functions vector, Figure 7).
CR.2: Minimum total sum of the absolute errors vector (i.e., objective functions vector,
Figure 7).
CR.3: Minimum Euclidean norm of the absolute errors vector (i.e., objective functions
vector, Figure 7).
CR.4: A combination of the criterion n. 3 with the minimum absolute difference between
calculated and experimental LHV of the syngas: min(|LHV− 5.138|).Processes 2021, 9, x FOR PEER REVIEW 10 of 18 
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Figure 7. Example of application of CR.1, CR.2, and CR.3 adopted within the decision-making
process.

The application of these criteria led to the identification of four different optimal
solutions, each of them characterized by specific values of decision variables (Table 7) and
objective functions (namely syngas composition, Table 8). In the first and third case (CR.1
and CR.3), considering the respective axes origin as the single ideal optimal solution, the
Pareto solution that is closest to axes origin is privileged (ID 409 and ID 1933, respectively).
Criteria CR.2 and CR.4 enabled the identification of the solutions labeled ID 372 and ID
1205, respectively. In particular, the last solution is characterized by a LHV of 5.137MJ/kg,
which almost corresponds to the experimental value.

Table 7. Decision-making results: decision variables values.

[Cdepolym] [H2depolym] [ethylenedepolym]
.

mair
.

mCH4 Tdepolym

Mass Fraction [kg/1 kg of
.

methylene, Figure 4]
Mass Fraction [kg/1 kg of

.
methylene, Figure 4]

Mass Fraction [kg/1 kg of
.

methylene, Figure 4] [kg/s] [kg/s] [K]

CR.1 0.152 0.0196 0.825 0.748 0.043 853.15
CR.2 0.157 0.0202 0.820 2.670 0.110 573.15
CR.3 0.0547 0.0070 0.953 2.70 0.120 653.15
CR.4 0.1477 0.0190 0.830 1.91 0.090 753.15

To highlight the predictive capability of the four solutions, the same syngas composi-
tion results shown in Table 8 have been properly represented in Figure 8.

In particular, a more significant representation has been obtained by plotting the
results in terms of relative error between numerical and experimental concentration of each
syngas component. This way, the more the red curve, representing the values provided
by the solutions under investigation, approaches the x-axis, the more the numerical result
is close to the experimental one. It can be noted that the numerical values shown on the
x-axis (i.e., y-axes origins) represent the measured concentrations of the individual chemical
species. Figure 8 clearly shows how solutions 372, 1933, and 1205 provide a more accurate
syngas composition than solution 409.

Considering the energetic application that will be subsequently discussed, consist-
ing in the combustion of the resulting syngas in a biomass steam power plant, a LHV
comparison has been also carried out between the four solutions obtained through the
decision-making process. The LHV calculation implies a weighted average calculation of
the LHV of the individual chemical species which compose the syngas (Table 9):
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LHVtot = ∑
mi

mtot
·LHVi

where mi is the mass flow rate of the individual species which may be affected by combus-
tion phenomena and mtot is the total syngas mass flow rate.

Table 8. Decision-making results: Syngas composition in volume fraction, m3/1 m3 of Syngas.

CR.1
volume fraction,

m3/1 m3 of Syngas

[C3H6] [C3H8] [C4H6] [C5H6] [CH4out] [CO]

1.45 × 10−4 5.60 × 10−6 1.23 × 10−12 0.001484 0.2742 0.2362

[CO2] [H2] [N2] [O2] [SO2]

1.15 × 10−4 0.006835 0.479 0 2.02 × 10−8

CR.2
volume fraction,

m3/1 m3 of Syngas

[C3H6] [C3H8] [C4H6 ] [C5H6] [CH4 _out] [CO]

5.32 × 10−12 2.29 × 10−11 1.32 × 10−28 7.60 × 10−23 0.1179 5.08 × 10−4

[CO2 ] [H2 ] [N2 ] [O2 ] [SO2 ]

0.139 0.0106 0.708 0 4.34 × 10−5

CR.3
volume fraction,

m3/1 m3 of Syngas

[C3H6 ] [C3H8 ] [C4H6 ] [C5H6 ] [CH4 _out] [CO]

1.25 × 10−12 5.86 × 10−11 4.59 × 10−26 2.38 × 10−20 0.11131 4.42 × 10−3

[CO2 ] [H2 ] [N2 ] [O2 ] [SO2 ]

0.137 0.0317 0.694 6.98 × 10−34 4.20 × 10−5

CR.4
volume fraction,

m3/1 m3 of Syngas

[C3H6 ] [C3H8 ] [C4H6 ] [C5H6 ] [CH4 _out] [CO]

1.40 × 10−10 5.86 × 10−10 1.65 × 10−22 2.04 × 10−16 0.1323 4.98 × 10−2

[CO2 ] [H2 ] [N2 ] [O2 ] [SO2 ]

0.117 0.0649 0.6272 4.12 × 10−30 4.37 × 10−5
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Figure 8. Comparison between calculated and measured syngas composition.

Results in Table 9 clearly show how solution 1205 (CR.4) is characterized by a LHV
that is very close to the experimental value. Therefore, this solution shows almost the
same energy content of the actual syngas as well as a reasonable estimation of the syngas
volumetric composition.

To identify the most reliable solution, the four solutions (i.e., model calibration and
related results) found in the previous part have been further compared according to a
secondary level (bottoming) decision-making criteria.

To identify a single optimal solution among those belonging to the Pareto optimal front,
some authors adopted the minimum distance from the origin of a n-dimensions hyperspace,
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considered as an ideal optimum, as decision-making-criteria [49,50]. Furthermore, many
different criteria have been proposed in the literature [51]. In this paper, considering the
specific application consisting in the combustion of the syngas in a biomass steam power
plant and the estimation of its global efficiency, the authors proposed the minimization of
the error between calculated and measured LHV as supplementary (bottoming) decision-
making criteria, thus privileging the energy content of the syngas.

Table 9. Syngas combustible species and reference LHV values adopted for the LHV calculation.

LHV

LHV(CR.1) = 11.850 MJ/kg
LHV(CR.2) = 3.445 MJ/kg
LHV(CR.3) = 3.543 MJ/kg
LHV(CR.4) = 5.137 MJ/kg
LHV(exp) = 5.138 MJ/kg

[MJ/kg]

CH4 50
CO 10.05

C3H6 45.8
C3H8 46.3

H2 120
C4H6 43.55
C5H6 41.79

Since the objective of the optimization problem was to minimize the difference between
calculated and measured syngas composition, a first comparison has been made is in terms
of syngas composition (Figure 8).

While solutions CR.2, CR.3, and CR.4 show a similar syngas composition, which are
also closer to the experimental data (red curve), solution CR.1 (yellow curve in Figure 8)
is characterized by quite different concentrations. Eventually, considering the energetic
application discussed below, which consists in the combustion of the resulting syngas
in a biomass steam power plant, the solution CR.4 (green line) has been preferred. In
fact, besides a favorable value of the average percentage error related to the volumetric
concentrations of the syngas components (about 17%), as previously discussed, solution
CR.4 has also almost the same energy content experimentally measured (5.138 MJ/kg).

It is worth noting that the application of the four decision-making criteria enabled
the identification of solutions characterized by significantly different values of some plant-
operating parameters. Consequently, the four solutions identified are characterized by
wide dispersion ranges of the process parameters. Figure 9, for example, highlights
the dispersion ranges with reference to the average reactor temperature and the energy
efficiency of the conversion process. Figure 9 also shows how solution CR.4 is characterized
by temperature and efficiency values that are closer to the average value calculated from
the four solutions identified.

Starting from the calibration parameters of the model that characterize solution CR.4,
the interaction between the exhaust gas from the methane combustor and the pulper
at ambient temperature (293 K) within the mixing region of the rotary drum has been
analyzed (Figure 10).

This work has been also focused on the estimation of the expected conditions that
occur in the initial section of the pyro-gasification reactor. Results shows a temperature of
1540 K. Therefore, it is assumed that the waste is affected by flash pyrolysis phenomena [52]
leading to rapid heating up to the estimated high temperature.
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Figure 9. Dispersion of efficiency and temperature values of the four identified solutions.
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6. Application: Coupling the Pyro-Gasification Plant with a Biomass Steam Power Plant

To evaluate the efficiency potential of the entire conversion process that starts from
the gasification of pulper waste through the studied pyro-gasification plant ends with the
electric power generation obtained through the combustion of both biomass and resulting
syngas in a biomass steam power plant (BSPP), the plant scheme in Figure 11 has been
considered. The biomass steam power plant used as a reference in this study, whose
main data are summarized in Table 10, has been the object of experimental and numerical
investigation in previous studies [53,54]. Specifically, it is assumed that syngas, and also
char and tar, obtained through the gasification process are used to produce steam in the
BSPP together with biomass; moreover, also the exhaust gas has been directed to the
combustion chamber of the steam power plant to exploit the residual enthalpy at relative
high temperature, thus also mitigating the inherent steam production “instability” of
the BSPP alone [55]. Indeed, biomass has high moisture content variability that causes
fluctuations in LHV, combustion chamber gas temperature, steam production, and electric
power generation. Therefore, the proposed configuration has the advantage of reducing
plant operation fluctuations [55].
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Table 10. Biomass steam power plant (BSPP) characteristics at nominal point operation in the
standard configuration [35].

Biomass Mass Flow Rate 2498 kg/h

Gross electric power 2688 kW
Electric power for auxiliary 320 kW

Net electric power 2368 kW
Electric efficiency 23%

To keep the nominal point operation of the steam cycle section (Section 2 in Figure 11),
the original value of biomass mass flow rate (Table 10) has to be adjusted. Therefore,
the biomass mass flow rate has been reduced to 1481 kg/h (reduction of 40.7%). If the
following equation is used to evaluate the global efficiency of the whole plant:

ηel2
def
=

Pe,net
.

mpulper · Hi,pulper +
.

mCH4 · Hi,CH4 +
.

mbiomass · Hi,biomass
(7)

a value of 0.155 is obtained, which seems a very low value. However, considering that
syngas resulting from the gasification process is produced from waste, whose energy
content would otherwise be lost, a more appropriate efficiency estimation can be done
through the following equation that does not consider pulper waste as energy input to the
thermodynamic cycle:

ηel
∗
2

def
=

Pe,net
.

mCH4 · Hi,CH4 +
.

mbiomass · Hi,biomass
(8)

leading to a value of 0.262 that is 3 per cent higher than the original value shown in Table
10. When it is assumed to supply the pyro-gasification system with biomass the innovative
plant configuration could be classified as a fully renewable power plant. In this context,
the proposed configuration (Figure 11) could be applied to the existing steam power plants
as a solution to increase the global efficiency and, contemporary, to exploit a larger part of
the biomass waste.
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7. Conclusions

The increasingly pressing issue of sustainable waste treatment combined with the
continuous search for new energy resources has led, in recent years, to an increasing
attention to waste energy recovery systems. One of the most efficient and least polluting
technologies is pyro-gasification. This paper described an experimental activity carried
out on a pyro-gasification plant, from which it was not possible to obtain certain values
for the input variables. Therefore, to reliably calibrate the thermochemical model of the
investigated plant, a vector optimization problem, based on the evolutionary genetic
algorithm MOGA II, has been solved. The results from the solution of the proposed
optimization problem allowed for the determination of a Pareto optimal front between
the eleven objective functions, and the adoption of the selection criterion requiring the
minimization of the difference between calculated and experimental value of the LHV of the
syngas allowed the identification of a single optimal solution used for the model calibration.
Results show that the proposed methodology provides a useful and flexible tool for reliable
model calibration. Future works will address more detailed analyses of the process through
a kinetic model allowing the instantaneous simulation of the thermochemical conversion
processes along the entire length of the reactor.
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Acronyms and Abbreviations
11-D Eleven Dimensional
CES Circular Economy System
CHP Combined Heat and Power
MR Material Recovery
MSW Municipal Solid Waste
PES Primary Energy Saving
WtE Waste to Energy
BSPP Biomass Steam Power Plant
CC Combustion Chamber
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Nomenclature
Cdepolym volumetric fraction of carbon in the substance produced by the DEPOLYM block
cp,AIR specific heat of air
cp,CH4 specific heat of methane
cp,EXH specific heat of exhaust flow
cp,pulp specific heat of pulper
ethylenedepolym volumetric fraction of ethylene in the substance produced by the DEPOLYM block
H2depolym volumetric fraction of hydrogen in the substance produced by the DEPOLYM block
Hi,CH4 lower heating value of methane
Hi,ethylene lower heating value of ethylene
Hi,pulp lower heating value of pulper
Hi,syn lower heating value of syngas
Hi,biomass lower heating value of biomass
LHV lower heating value flow
.

mair air mass flow
.

mCH4 methane mass flow
.

methylene mass leaving DEPOLYM block
.

mexh exhaust combustor mass flow
.

mi individual species involved in combustion mass flow
.

mpulp pulper mass flow
.

msyn syngas mass flow
.

mtot total mass flow out
.

mbiomass biomass mass flow
.

Q heat exchanged between DEPOLYM and GASIF blocks
.

Qaux total heat exiting the GASIF block
Tenv environment temperature
ηel electric efficiency
Pe,netta net electric power
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