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Abstract: The monomiality principle is based on an abstract definition of the concept of derivative
and multiplicative operators. This allows to treat different families of special polynomials as ordinary
monomials. The procedure underlines a generalization of the Heisenberg–Weyl group, along with the
relevant technicalities and symmetry properties. In this article, we go deeply into the formulation and
meaning of the monomiality principle and employ it to study the properties of a set of polynomials,
which, asymptotically, reduce to the ordinary two-variable Kampè dè Fèrièt family. We derive the
relevant differential equations and discuss the associated orthogonality properties, along with the
relevant generalized forms.

Keywords: special functions 33C52, 33C65, 33C99, 33B10, 33B15; Hermite polynomials 33C45;
operators theory 44A99, 47B99, 47A62

1. Introduction

Significant efforts have been made in the past to provide a more efficient view to
the theoretical foundations of special functions and polynomials. Most of the proposed
methods trace back to the Lie algebraic technicalities, summarized in the Wigner Princeton
lectures (see Refs. [1–3]). In this article we describe more recent developments, which yield
interesting results worth being underscored.

The Heisenberg–Weyl group (HWG) has played a central role in the development
of quantum mechanics (QM) [4–6], which represents a fairly direct way of embedding
position and momentum operators to disclose invariance properties associated with the
specific problems under study. At a more fundamental level, the HWG provides quite
a natural environment to place questions related to the connection between QM and
Fourier analysis [7–9]. The wealth of their properties allows the understanding of the
transition from a classical to quantum mechanics phase space evolution [10], along with the
relevant formulation in terms of Liouville or Von Neumann Equations [11]. Furthermore
a non-secondary role is played in the study of special functions, and indeed the Hermite
polynomials, and the associated orthogonal functions as well are directly associated with
the HWG generators and the relevant exponentiation [12–16]. For a deeper insight on the
previous points, see the recent papers reported in [17,18], where the interplay between
HWGs and generalized Hermite functions has been studied in depth.

The differential realization of the HWG may occur through the use of operators not
straightforwardly recognized as the ordinary position and momentum. The search for
generalized forms of HWG generators has offered the possibility of exploiting new tools to
construct families of orthogonal polynomials and study their properties to solve integro-
differential equations, useful for the study of problems in optics, electromagnetism, and
astrophysics [19].

The key element to accomplish this research program has been the formulation of
the monomiality principle [19–21] and a revisitation of the umbral calculus [22] originally
developed in [23–26]. Monomiality and umbrality are, within certain limits, complementary.
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The former can be viewed as an abstract theory of the Heisenberg commutation bracket
through non-trivial realizations of the derivative and position operators.

This point of view has been the main motivation in Ref. [19] and of the study of the
Appèll/Sheffer polynomials [27] as images of ordinary monomials [28,29]. Monomiality
is a modern formulation of a point of view, not only tracing back to Steffensen [30–32]
but even to older studies by Jeffery (for a recent account see Ref. [33]), Boole [34], and other
speculations developed almost two hundred years ago. These studies deepened their roots
into the calculus of differences [35], and were the first to be recognized as amenable for
a symbolic interpretation. The rules underlying monomiality are fairly simple and can be
formulated as reported below [28,29,36,37].

The purpose of this article is to go through the theory of quasi-monomiality and exploit
the associated formalism to construct derivative and multiplicative operators, which are
used to define a new family of orthogonal Hermite-like operators.

Properties 1. ∀x ∈ R, ∀n ∈ N, if a couple of operators P̂, M̂ are such that:

(a) They do exist along with a differential realization [38,39];
(b) They can be embedded to form Weyl algebra [15,38,40], namely, if the commutator is such that

[P̂, M̂] = 1̂;
(c) It is possible to univocally define a polynomial set such that:

(i) p0(x) = 1, (ii) P̂p0(x) = 0, (iii) pn(x) = M̂n1, (1)

then it follows that

(d)
M̂pn(x) = M̂n+11 = pn+1(x), (2)

(e)
P̂pn(x) = P̂M̂n1 = npn−1(x) (3)

and the polynomials pn(x) are said quasi-monomials.

Proof. Equation (3) needs few lines of comment. We rearrange the operator product P̂M̂n

as (we remind that [P̂, M̂] = 1⇒ P̂M̂− M̂P̂ = 1) (see [41])

P̂M̂M̂n−1 = (M̂P̂ + 1)M̂n−1 = M̂P̂M̂n−1 + M̂n−1

= M̂2P̂M̂n−2 + 2M̂n−1 = · · · = M̂n P̂ + nM̂n−1,
(4)

which eventually yields

P̂M̂n1 =
(

M̂n P̂ + nM̂n−1
)

1 = M̂n P̂ 1 + nM̂n−11. (5)

Being M̂n P̂ 1 = 0 as a consequence of the (ii) of Equation (1), and using property (iii) too,
we state the correctness of Equation (3).

Remark 1. The important point we like to convey is that the essence of the discussion on monomial-
ity is the existence of the operators M̂ (multiplicative), which univocally define the set of polynomials
pn(x) (not vice versa), and P̂ acting on the polynomials, as an ordinary derivative.

According to the above statement, polynomial sets such as Appéll, Sheffer [42], and
Boas Buck [43] can be ascribed to the monomial family, while others, e.g., Legendre,
Chebyshev, and Jacobi [39,44], are not yet framed within such a context.
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After these remarks, aimed at clarifying the environment in which we are going to
develop our speculations, we remind that the M̂ and P̂ operators that define the Appèll
family are specified by

M̂ = x +
A′(σ)
A(σ)

|σ=∂x , P̂ = ∂x , (6)

where A(σ) is assumed to be an analytic function.
According to our introductory remarks, the explicit form of the Appéll polynomials is

obtained from the identity (property iii) of Equation (1))

an(x) =
(

x +
A′(∂x)

A(∂x)

)n

1. (7)

The use of standard operational rules allows us to cast Equation (7) in a more conve-
nient form.

Corollary 1. We note that [45,46]

an(x) =
(

x +
A′(∂x)

A(∂x)

)(
x +

A′(∂x)

A(∂x)

)n−1

1 (8)

and noting that

x +
A′(∂x)

A(∂x)
= A(∂x)x(A(∂x))

−1, (9)

we can write, by iteration

an(x) =
(

A(∂x)x(A(∂x))
−1
)n

= A(∂x)xn (10)

According to Equation (10), the generating function of Appèl polynomials reads

∞

∑
n=0

tn

n!
an(x) = A(∂x)etx = A(t)etx. (11)

It is evident that it consists of two contributions: the exponential term and A(t), which will be
defined as the “amplitude”.

Corollary 2. In the case of the two variable Hermite polynomials (HP), we have that the amplitude
is specified by

A(t) = eyt2
(12)

with the multiplicative operator being explicitly specified as

M̂ = x + 2y∂x . (13)

The associated polynomial family is, accordingly, provided by [22]

Hn(x, y) = (x + 2y∂x)
n1. (14)

The use of the Crofton identity [47]

ey∂m
x f (x) = f

(
x + m y ∂m−1

x

)
ey∂m

x (15)

(or of identities (10) and (11) as well) allows to cast Equation (14) in the form

Hn(x, y) = ey∂2
x xn. (16)
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The expansion of the exponential operator in Equation (16), along with the relevant action on the mono-
mial xn, yields the explicit form of the two variable Hermite Kampè dè Fèrièt polynomials [27,38], namely,

Hn(x, y) = n!
b n

2 c

∑
r=0

xn−2ryr

(n− 2r)!r!
. (17)

The operational identity in Equation (16) is particularly pregnant from the mathe-
matical point of view. It states that the two variable Hermites (17) are solutions of the
heat equation and can be used as a pivotal tool to prove the orthogonal properties of this
polynomial family [22,38].

In this article we consider the polynomial family generated by

A(p) =
(

1 +
y
N

p2
)N

, ∀N ∈ N, (18)

study the relevant properties, and look at the possibility of defining an associated orthogo-
nal set.

2. Quasi-Hermite and Appéll Sequences

In this section, we exploit the general properties of the Appéll polynomials, discussed
in the introductory remarks, to state the properties of the associated polynomials.

Definition 1. Appéll polynomials with amplitude (18) are explicitly defined through the identity

Hn(x, y; N) =
(

1 +
y
N

∂2
x

)N
xn (19)

and they will be called quasi-Hermite polynomials (QHP) .

(Remark: According to the discussion of the previous section, it should be noted that)

Properties 2. The relevant recurrences of QHP are obtained after noting that, for this specific case,
we obtain

A′(∂x)

A(∂x)
=

2 y ∂x(
1 +

y
N

∂2
x

) , (20)

so

(1) ∂x Hn(x, y; N) = n
(

1 +
y
N

∂2
x

)N
xn−1 = nHn−1(x, y; N),

(2) Hn+1(x, y; N) =

(
x +

2 y ∂x

1 + y
N ∂2

x

)
Hn(x, y; N),

(3) Hn+1(x, y; N)− xHn(x, y; N)− 2nyHn−1(x, y; N) =
y
N

n(n− 1)(xHn−2(x, y; N)− Hn−1(x, y; N)).

(21)

Proof. Properties (1) and (2) are obtained from the realization of the derivative and
multiplicative operators given in Equation (6), and the third one is the result of some
algebraic steps (we simplify the writing for brevity by omitting the Hermite arguments):

(i) From property (2), we write(
1 +

y
N

∂2
x

)
Hn+1 =

(
1 +

y
N

∂2
x

)
xHn + 2y∂x Hn

which provides, from property (1),
(ii)

Hn+1 +
y
N

n(n + 1)Hn−1 = xHn +
y
N
(2nHn−1 + n(n− 1)xHn−2) + 2nyHn−1
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and finally
(iii)

Hn+1 − xHn − 2nyHn−1 =
y
N

n((2− (n + 1))Hn−1 + (n− 1)xHn−2)

=
y
N

n(n− 1)(xHn−2 − Hn−1).

Proposition 1. The explicit form of the QHP is inferred from Equation (19), which yields

(a) Hn(x, y; N) =

min[N, b n
2 c]

∑
r=0

(
N
r

)( y
N

)r n!
(n− 2r)!

xn−2r, ∀x, y ∈ R, ∀n, N ∈ N (22)

and the relevant differential equation is

(b)

(
x +

2 y ∂x

1 + y
N ∂2

x

)
∂x Hn(x, y; N) = nHn(x, y; N). (23)

Proof. (a) ∀x, y ∈ R, ∀n, N ∈ N, we use binomial Newton to write

Hn(x, y; N) =
N

∑
r=0

(
N
r

)( y
N

)r
∂2r

x xn =

min[N, b n
2 c]

∑
r=0

(
N
r

)( y
N

)r n!
(n− 2r)!

xn−2r.

(b) The relevant differential equation is easily obtained by applying Equation (21) in
Properties 2.

Corollary 3. After a few algebraic manipulations, Equation (23) can be reduced to the following
third-order ODE

y
N

xz′′′ + y
(

2− n− 2
N

)
z′′ + xz′ = nz, z = Hn(x, y; N) (24)

which evidently tends to the ordinary (two variables) Hermite equation, producing large N values.

Proof. By starting from Equation (23), we proceed as outlined below((
1 +

y
N

∂2
x

)
x + 2y∂x

)
∂xz =

(
1 +

y
N

∂2
x

)
nz

→ x∂xz +
y
N

∂2
xx∂xz + 2y∂2

xz = nz +
y
N

∂2
xnz

→ xz′ +
y
N

∂x(z′ + xz′′) + 2yz′′ − y
N

nz′′ = nz

→ y
N

xz′′′ + y
(

2− n− 2
N

)
z′′ + xz′ = nz

Corollary 4. The PDE satisfied by the QHP (expected to be an extension of the heat equation) is
obtained by keeping the partial derivative with respect to y of both sides of Equation (19), namely,

∂y Hn(x, y; N) = ∂2
x

(
1 +

y
N

∂2
x

)N−1
xn. (25)
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Example 1. Equation (25) can eventually be written as ∂y Hn(x, y; N) =
∂2

x

1 + y
N ∂2

x
Hn(x, y; N)

Hn(x, 0; N) = xn
(26)

The relevant (formal) solution can be obtained as

Hn(x, y; N) = Ûy,N xn, Ûy,N = exp

{∫ y

0

∂2
x

1 + ξ
N ∂2

x
dξ

}
, (27)

where Û is a kind of evolution operator. To be eventually written as in Equation (19), after explicitly
working out the integral in the exponent of Equation (27), we find

Ûy,N = exp
{

N log
(

1 +
y
N

∂2
x

)}
=
(

1 +
y
N

∂2
x

)N
. (28)

According to the previous definition, the QHP satisfies the composition rule

Ûy,NÛz,N =

(
1 +

y + z
N

∂2
x +

yz
N2 ∂4

x

)N
. (29)

Therefore, unlike the two variable HP specified by an amplitude that is an exponential , the composi-
tion property Ûy,NÛz,N = Ûy+z,N does not hold; therefore,

Ûy,NÛz,N 6= Ûy+z;N . (30)

An important (albeit naive) consequence of Equation (29) is the following composition rule

Û−y,NÛy,N xn =

(
1− y2

N2 ∂4
x

)N

xn, (31)

which suggests the necessity of a suitable extension of QHP, possibly involving higher-order forms,
as discussed in the forthcoming section.

Observation 1. The non exponential nature of the QHP amplitude determines the further worth
to be noted as a consequence

Û−y,N 6= Û−1
y,N =

1
Γ(N)

∫ ∞

0
sN−1e−s(1+ y

N ∂2
x)ds, (32)

where the r.h.s. has been obtained after exploiting standard Laplace transform methods.

We will see in the following that Equation (32) is of pivotal importance for the defini-
tion of the orthogonal properties of the QHP.

Observation 2. Before closing this section, we notice that Equation (23) can be generalized
∀m ∈ N such that (

x +
m y ∂m−1

x

1 + y
N ∂m

x

)
∂x H(m)

n (x, y; N) = nH(m)
n (x, y; N). (33)

and by following the same procedure provided in Corollary 3, it is possible to deduce the relative
differential equation.
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3. Multivariable QHP

Higher-order Hermite polynomials (also called Lacunary HP) are defined through the
operational rule [38,47]

H(m)
n (x, y) = ey∂m

x xn, ∀m ∈ N (34)

and, in analogy, the higher-order QHPs are specified byHn(x, y; N) and the notation
H(2)

n (x, y; N); however, we drop the superscript for m = 2 and add it whenever ambi-
guities arise.)

H(m)
n (x, y; N) = Û(m)

y,N xn, Û(m)
y,N =

(
1 +

y
N

∂m
x

)N
. (35)

Example 2. According to Equation (31), we find

Û−y,NÛy,N xn = Û(4)
−y2,N xn = H(4)

n

(
x,−y2; N

)
(36)

and, more in general,

Û(m)
−y,NÛ(m)

y,N xn = Û(2m)
−y2,N xn = H(2m)

n

(
x,−y2; N

)
(37)

Example 3. Before going further, we consider the definition of the QHP of order one, which will be
referred to as quasi-binomial polynomials (QBP), namely,

H(1)
n (x, y; N) =

(
1 +

y
N

∂x

)N
xn. (38)

For large N, they reduce to (x + y)n, hence the name. The explicit form of this family of polynomials
can be written as

H(1)
n (x, y; N) =

N

∑
r=0

(
N
r

)( y
N

)r
∂r

xxn =
min[N, n]

∑
r=0

(
N
r

)( y
N

)r n!
(n− r)!

xn−r. (39)

The same strategy adopted in Corollary 3, by exploiting Equation (33), yields for the QBP, the ODE

y
N

xz′′ +
[
(x + y)− (n− 1)

y
N

]
z′ = nz, z = H(1)

n (x, y; N) (40)

and the PDE  ∂yF(x, y) =
∂x

1 + y
N ∂x

F(x, y)

F(x, 0) = xn
. (41)

The last identity can also be cast in the integro-differential form

∂yF(x, y) = ∂x

∫ ∞

0
e−sF

(
x− y

N
s, y

)
ds (42)

where the Laplace transform provides the integral representation

1
1 + y

N ∂x
=
∫ ∞

0
e−s(1+ y

N ∂x)ds (43)

which when inserted into Equation (41) yields

∂yF(x, y) = ∂x

∫ ∞

0
e−se−

ys
N ∂x dsF(x, y) (44)

and after exploiting the shift operator identity ea∂x f (x) = f (x + a) [38], we obtain Equation (42).
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Example 4. We can combine the various definitions given before to introduce three variables QHP as

H(1,2)
n (x, y1, y2; N) : =

(
Û(1)

y1,N Û(2)
y2,N

)
xn =

(
1 +

y1

N
∂x

)N(
1 +

y2

N
∂2

x

)N
xn

=
(

1 +
y1

N
∂x

)N
Hn(x, y2; N)

= n!
min[N,n]

∑
r=0

(
N
r

)(y1

N

)r Hn−r(x, y2; N)

(n− r)!
.

(45)

Further generalizations can easily be obtained. For example, the m-th variable extension reads

H(1,...,m)
n (x, y1, . . . , ym; N) =

(
n

∏
s=1

Û(s)
ys ,N

)
xn. (46)

The examples we have just touched on in this section yield an idea of the possi-
ble extensions of this family of polynomials, which will be more carefully discussed in
forthcoming research.

4. Final Comments

We have already mentioned the possible orthogonal nature of the QHP, and in this
section we address the problem by the use of the techniques developed in Refs. [48,49].

Proposition 2. We assume that a given function f (x) can be expanded in terms of QHP, according
to the identity

f (x) =
∞

∑
n=0

an Hn(x,− | y |; N) (47)

which can be inverted, thus yielding

1(
1− | y |

N
∂2

x

)N f (x) =
∞

∑
n=0

anxn. (48)

(Note: The reasons of “−| y |" will be clarified below.)
The use of Equation (32) allows to cast the l.h.s. of Equation (48) in the form

1
Γ(N)

∫ ∞

0
sN−1e−s

(
1− |y|N ∂2

x

)
ds f (x) =

∞

∑
n=0

anxn. (49)

Corollary 5. Equation (49) can be further elaborated:

1. We apply the Gauss–Weierstrass transform [22] to write

es |y|N ∂2
x f (x) =

1

2
√

π s |y|N

∫ ∞

−∞
exp

{
− (x− ξ)2

4 s |y|N

}
f (ξ)dξ

=
1

2
√

π s |y|N

∫ ∞

−∞
e
− 1

4 s |y|N

ξ2

e
x

2s |y|N

ξ

e
− x2

4s |y|N dξ.

(50)

It holds for s |y|N ≥ 0 (hence the choice of the sign in the expansion (47)).
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2. We use the two variable Hermite-generating functions (we have ∑∞
n=0

tn

n! Hn(x, y) = ext+yt2
) [38]

to write

es |y|N ∂2
x f (x) =

1

2
√

π s |y|N

∞

∑
n=0

xn

n!

∫ ∞

−∞
Hn

(
ξ

2s |y|N

,− 1

4s |y|N

)
e
− ξ2

4 s |y|N f (ξ)dξ. (51)

3. We insert the result of Equation (51) into Equation (49) and compare the similar x powers,
thus eventually finding

an =
1

Γ(N)n! 2

√
π
| y |
N

∫ ∞

0
sN− 3

2 e−s
nGy,N(s)ds,

nGy,N(s) =
∫ ∞

−∞
Hn

(
ξ

2s |y|N

,− 1

4s |y|N

)
e
− ξ2

4 s |y|N f (ξ)dξ.

(52)

According to the above results, the expansion holds only if the integrals appearing in Equation (52)
are converging. In order to provide an example we consider the generalization of the Glaisher
formula [47]. Namely, Equation (48) for f (x) = e−x2

becomes

F(x, y; N) =
1(

1− | y |
N

∂2
x

)N f (x) =
1

Γ(N)

∫ ∞

0
sN−1e−s

(
1− |y|N ∂2

x

)
e−x2

ds

=
1

Γ(N)

∫ ∞

0
sN−1e−s e

− x2

1+4 |y|N s√
1 + 4

| y |
N

s
ds.

(53)

For very large N, 1(
1− |y|N ∂2

x

)N e−x2
reduces to the ordinary Glaisher identity

lim
N→∞

F(x, y; N) = e|y|∂
2
x e−x2

=
1√

1 + 4y
e−

x2
1+4y . (54)

In Figure 1, we have reported F(x, y; N) vs. x for different values of N and y.

-4 -2 0 2 4
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N=36

N=9

N=2
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Figure 1. F(x, y; N) vs. x for different values of N and y. (a) y = 0.3, (b) y = 1.3.

The definition of higher-order QHPs is not unique, and another possibility is offered
by the relation

H(q,p)
n (x, y, z; N) =

(
1 +

y
N

∂
q
x +

z
N

∂
p
x

)N
xn (55)
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where q < p are relatively prime integers. The definition in Equation (55) allows to write
the composition identity (29) as

Ûy,NÛz,N xn = H(2,4)
n (x, y + z, yz; N)N xn. (56)

In this article we have looked at the properties of polynomials using the monomiality
principle and the classification in terms of Appèll/Sheffer polynomials [42,50–52]. In this
respect, Laguerre polynomials cannot be considered members of this family, and notwith-
standing that they can be treated using the formalism of quasi-monomials, the associated
derivative and multiplicative operators are realized in terms of differential and integral
operators [29], namely,

P̂ =
d

dx
x

d
dx

, M̂ =

(
d

dx

)−1
(57)

where M̂ is an integral operator such that

M̂ ◦ f (x) =
∫ x

0
f (ξ)dξ, M̂n ◦ f (x) =

1
(n− 1)!

∫ x

0
f (ξ)(x− ξ)n−1dξ. (58)

As easily checked, the operators (57) and (58) realize the generators of the HWG, and what
is remarkable is that it allows the generalization of new families of Hermite polynomials
and of Hermite functions defined no longer by ordinary differential equations, with non-
constant coefficients, but by integral Equations [53].

In a forthcoming investigation we will reconsider the concepts associated with the
monomiality realization in terms of integral operators to provide a new generalization of
the HWG and draw further consequences on new families of Laguerre-type polynomials.

Author Contributions: Authors contributed to the paper equally. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The work of S. Licciardi was supported under the auspices of INDAM’s GNFM
(Italy) and by the following funders: Project funded under the National Recovery and Resilience Plan
(NRRP), Mission 4 Component 2 Investment 1.3—Call for tender No. 1561 of 11 October 2022 of
Ministero dell’Università e della Ricerca (MUR); funded by the European Union—NextGenerationEU.
Award Number: Project code PE0000021, Concession Decree No. 1561 of 11 October 2022 adopted by
Ministero dell’Università e della Ricerca (MUR), CUP—B73C220012800006, according to attachment
E of Decree No. 1561/2022, Project title “Network 4 Energy Sustainable Transition—NEST”. Spoke 7
‘Smart sector integration’.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wigner, E.P. Application of Group Theory to the Special Functions of Mathematical Physics; Lecture Notes; Princeton University:
Princeton, NJ, USA, 1955.

2. Vilenkin, N.J. Special Functions and the Theory of Group Representation; American Mathematical Society: Providence, RI, USA, 1968.
3. Cartan, E. Sur la détermination d’un système orthogonal complet dans un espace de riemann symétrique clos. Rend. Circ. Matem.

Palermo 1929, 53, 217–252. [CrossRef]
4. Heisenberg, W. Erinnerungen and die Zeit der Entwicklung der Quantenmechanik. In Theoretical Physics in the Twentieth Century;

A Memorial Volum to Wolfgang Pauli; Interscience: New York, NY, USA, 1960.
5. Weyl, H. The Theory of Groups and Quantum Mechanics; Dover: New York, NY, USA, 1950.
6. Wolf, K.B. The Heisenberg-Weyl ring in Quantum Mechanics. In Group Theory and Its Applications; Loebl, E.M., Ed.; Academic

Press: New York, NY, USA, 1975.
7. Thangavelu, S. Lectures on Hermite and Laguerre Expansions; Mathematical Notes; Princeton Univ. Press: Princeton, NJ, USA, 1993;

Volume 42.
8. Thangavelu, S. Harmonic Analysis on the Heisenberg Group; Birkhauser: Boston, MA, USA, 1998.



Symmetry 2023, 15, 1254 11 of 12

9. Dattoli, G.; Torre, A.; Mazzacurati, G. An Alternative point of view to the theory of Fractional Fourier Transform. IMA J. Appl.
Math. 1998, 60, 215–224. [CrossRef]

10. Kim, Y.S.; Noz, M.E. Phase Space Picture of Quantum Mechanics: Group Theoretical Approach; World Scientific Lecture Notes in
Physics; World Scientific: Singapore, 1991.

11. Bogolubov, N.N.; Bogolubov, N.N., Jr. Introduction to Quantum Statistical Mechanics; World Scientific: Singapore, 1982. [CrossRef]
12. Wilcox, R.M. Exponential Operators and Parameter Differentiation in Quantum Physics. J. Math. Phys. 1967, 8, 962–982.

[CrossRef]
13. Talman, J.D. Special Functions, a Group Theoretic Approach; Benjamin: New York, NY, USA, 1968.
14. Eriksen, E. Properties of Higher-Order Commutator Products and the Baker-Campbell-Hausdorf formula. J. Math. Phys. 1968, 9,

790–796. [CrossRef]
15. Dattoli, G.; Gallardo, J.C.; Torre, A. An algebraic view to the operatorial ordering and its applications to optics. Riv. Del Nuovo

Cim. 1988, 11, 1–79. [CrossRef]
16. Dattoli, G.; Loreto, V.; Mari, C.; Richetta, M.; Torre, A. Biunitary Transformations and Ordinary differential Equations. Nuovo Cim.

1991, 106B, 1357–1374. [CrossRef]
17. Celeghini, E.; Gadella, M.; Dell’Olmo, M.A. Generalized Heisenberg-Weyl Groups and Hermite Functions. Symmetry 2021, 13,

1060. [CrossRef]
18. Celeghini, E.; Gadella, M.; Dell’Olmo, M.A. Symmetry Groups, Quantum Mechanics and Generalized Hermite Functions.

Mathematics 2022, 10, 1448. [CrossRef]
19. Dattoli, G.; Levi, D.; Winternitz, P. Heisenberg algebra, umbral calculus and orthogonal polynomials. J. Math. Phys. 2008, 49,

053509. [CrossRef]
20. Dattoli, G.; Torre, A.; Mazzacurati, G. Quasi Monomials and Isospectral Problems. Nuovo Cim. 1997, 112B, 133–138.
21. Smirnov, Y.; Turbiner, A. Lie algebraic discretization of differential equations. Mod. Phys. Lett. A 1995, 10, 1795–1802. [CrossRef]
22. Licciardi, S.; Dattoli, G. Guide to the Umbral Calculus, a Different Mathematical Language; World Scientific: Singapore, 2022.
23. Roman, S.; Rota, G.C. The umbral calculus. Adv. Math. 1978, 27, 95–188. [CrossRef]
24. Roman, S. The Umbral Calculus; Academic: New York, NY, USA, 1984.
25. Rota, G.C. Finite Operator Calculus; Academic: New York, NY, USA, 1975.
26. Di Bucchianico, A.; Loeb, D. A Selected Survey of Umbral Calculus. Electron. J. Comb. 2000 , 2, 28.
27. Appéll, P.; Kampé de Fériét, J. Fonctions Hypergeometriques and Hyperspheriques. Polynomes d’Hermite; Gauthiers-Villars: Paris,

France, 1926.
28. Bell, E.T. The History of Blissard’s Symbolic Method, with a Sketch of its Inventor’s Life. Am. Math. Mon. 1938, 45, 414–421.

[CrossRef]
29. Dattoli, G. Generalized polynomials, operational identities and their applications. J. Comput. Appl. Math. 2000, 118, 111–123.

[CrossRef]
30. Steffensen, J.F. Interpolation; The Williams & Wilkins Company: Baltimore, MD, USA, 1927.
31. Steffensen, J.F. On the definition of the central factorial. J. Inst. Actuar. 1933, 64, 165–168. [CrossRef]
32. Steffensen, J.F. The Poweroid, an Extension of the Mathematical Notion of Power. Acta Math. 1941, 73, 333–366. [CrossRef]
33. Dowker, J.S. Poweroids revisited—An old symbolic approach. arXiv 2013, arXiv:1307.3150.
34. Boole, G. Calculus of Finite Differences, 2nd ed.; MacMillan: Cambridge, MA, USA, 1872.
35. Jordan, C. Calculus of finite Differences, 3rd ed.; AMS Chelsea: New York, NY, USA, 1965.
36. Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. In Advanced Special

Functions and Applications, Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 9–12 May 1999;
Cocolicchio, D., Dattoli, G., Srivastava, H.M., Eds.; Aracne Editrice: Rome, Italy, 2000; pp. 147–164.

37. Dattoli, G. Laguerre and generalized Hermite polynomials: The point of view of the operational method. Int. Trans. Spec. Funct.
2004, 15, 93–99. [CrossRef]

38. Babusci, D.; Dattoli, G.; Licciardi, S.; Sabia, E. Mathematical Methods for Physics; World Scientific: Singapore, 2019.
39. Abramovitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 9th ed.; Dover:

New York, NY, USA, 1972.
40. Dattoli, G.; Ottaviani, P.L.; Torre, A.; Vazquez, L. Evolution operator equations: Integration with algebraic and finitedifference

methods. applications to physical problems in classical and quantum mechanics and quantum field theory. Riv. Nuovo Cim. 1997,
20, 3–133. [CrossRef]

41. Louisell, W.H. Quantum Statistical Properties of Radiation; John Wiley and Sons: Hoboken, NJ, USA, 1973; Chapter 2.
42. Sheffer, I.M. Some Properties of Polynomial Sets of Type Zero. Duke Math. J. 1939, 5, 590–622. [CrossRef]
43. Boas, R.P.; Buck, R.C. Polynomial Expansions of Analytic Functions; Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge,

19; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1958.
44. Andrews, L.C. Special Functions For Engeneers and Applied Mathematicians; Mc Millan: New York, NY, USA, 1985.
45. Dattoli, G.; Germano, B.; Martinelli, M.R.; Ricci, P.E. Sheffer and Non-Sheffer Polynomial Families. Int. J. Math. Math. Sci. 2012,

2012, 323725. [CrossRef]
46. Dattoli, G.; Zhukovsky, K. Appél Polynomial Series Expansions. Intern. Mathem. Forum 2010, 5, 649–662.



Symmetry 2023, 15, 1254 12 of 12

47. Dattoli, G.; Khan, S.; Ricci, P.E. On Crofton-Glaisher type relations and derivation of generating functions for Hermite polynomials
including the multi-index case. Int. Transf. Spec. Funct. 2008, 19, 1–9. [CrossRef]

48. Dattoli, G.; Germano, B.; Ricci, P.E. Comments on monomiality, ordinary polynomials and associated bi-orthogonal functions.
Appl. Math. Comput. 2004, 154, 219–227. [CrossRef]

49. Dattoli, G.; Germano, B.; Ricci, P.E. Hermite polynomials with more than two variables and associated bi-orthogonal functions.
Integr. Transf. Spec. Funct. 2009, 20, 17–22. [CrossRef]

50. Appell, P. Sur une classe de polynômes. Ann. Sci. Éc. Norm. Supéer 1880, 9, 119–144. [CrossRef]
51. Costabile, F.A.; Gualtieri, M.I.; Napoli, A. Towards the Centenary of Sheffer Polynomial Sequences: Old and Recent Results.

Mathematics 2022, 10, 4435. [CrossRef]
52. Dattoli, G.; Migliorati, M.; Srivastava, H. Sheffer polynomials, monomiality principle, algebraic methods and the theory of

classical polynomials. Math. Comput. Model. 2007, 45, 1033–1041. [CrossRef]
53. Dattoli, G.; Arena, A.; Ricci, P.E. The Laguerrian Derivative and Wright functions. Math. Comput. Model. 2004, 40, 877–881.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


