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ABSTRACT

In certain experimental setups used for proton irradiations at the TOP-IMPLART linear accelerator at the ENEA Frascati Center, the energy
spectrum of the proton beam is measured at the end of a propagation path, which includes transmission through different materials, such
as air, windows, slabs, etc. In this paper, we develop and test an approximate mathematical method to calculate the energy spectrum at the
accelerator exit from such a measured transmitted spectrum. In the first experimental test application, the spectrum measurement exploits
the visible photoluminescence of F2 and Fþ3 color centers generated in lithium fluoride crystals by the interaction of the crystal lattice with
protons. In the second test application, a simulated measurement of a propagated energy spectrum along a transport line is considered. In
principle, the proposed method is applicable to the energy spectra of proton beams measured in any manner.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). https://doi.org/10.1063/5.0241408

I. INTRODUCTION

TOP-IMPLART (Terapia Oncologica con Protoni—Intensity
Modulated Proton Linear Accelerator for RadioTherapy) is a radio
frequency (RF) pulsed linear accelerator (linac) originally developed
at the ENEA Frascati Research Center as a prototype of a full linear
accelerator for protontherapy. It is now evolving toward a facility
available for research and industrial users in various fields of applica-
tion. The system consists of a 425MHz, 7MeV injector—a 3MeV
RF quadrupole (RFQ) + a 7MeV drift tube linac (DTL)—followed
by a high frequency (3 GHz) booster composed of a sequence of
eight side coupled DTL (SCDTL) accelerating modules. The proton
beam can be accelerated to 63 or 71MeV (other energy values can
be achieved by suitable degraders) in 2.5 μs pulses with a typical rep-
etition rate of 25 Hz and a maximum pulse current of 20 μA.

For accelerator-based experiments, particularly for medical
applications such as proton therapy where beam energy directly
translates to range penetration in the body, precise knowledge of
the beam energy is essential. Different methods to measure the
beam energy are used based on either destructive or non-
destructive technique. The most common non-destructive
technique is based on the use of spectrometers, which measure the

particle momentum by precisely determining the angle of deflec-
tion in a dipole magnetic field. Another non-destructive technique
suitable for non-relativistic particles is the time of flight (TOF)
method, which retrieves the particle velocity from the time it takes
to travel between two fixed points whose distance is known.1

Destructive, beam-intercepting techniques retrieve the energy from
the study of the depth-dose distribution in a homogeneous refer-
ence material.

During commissioning of the TOP-IMPLART linac, a method
employed to estimate the beam energy spectrum consisted of irra-
diating lithium fluoride (LiF) crystals at zero-angle grazing inci-
dence and analyzing the luminescent Bragg curve formed by the
emission of laser-active color centers2 (CCs) generated in the mate-
rial by the interaction with the accelerated protons.3–5 Indeed, ion-
izing radiation detectors based on the visible photoluminescence
(PL) of aggregate F2 and Fþ3 CCs in LiF crystals and thin films have
gained a lot of interest in a wide range of applications—such
as dosimetry,6–9 x-ray imaging,10,11 ion-track detection,12–16

and advanced diagnostics of proton beams4,17–23—thanks to their
peculiar characteristics, which include high transparency (14 eV
bandgap), high intrinsic spatial resolution over a wide area, thermal
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stability, no development, or chemical treatment processing, han-
dling in normal lighting conditions and response linearity up to
dose values of � 105–106 Gy under proton irradiation.24,25

On some occasions, e.g., to test the TOP-IMPLART proton
beam for uniformity or to conduct specific experiments and irradi-
ations, the LiF crystal is not positioned close to the linac exit, and a
series of materials—such as windows, slabs, air, etc.—can be inter-
posed between the accelerator exit and the crystal. In such cases,
the LiF crystal records the information regarding an energy spec-
trum that is unavoidably modified by the propagation through
those materials. While the result of this measurement is certainly of
interest, estimating the proton-beam energy spectrum at the very
exit of the linac is also valuable information, particularly for com-
parison with the spectrum calculated using a beam dynamics code.
To this end, we present an approximate method to calculate the
linac-exit energy spectrum of the proton beam from the energy
spectrum at the measurement position.

II. MATERIALS AND METHODS

In the example experimental application of the proposed
method (Sec. V), the proton irradiation was performed in air with
the TOP-IMPLART linear RF accelerator26 at a nominal exit
energy of 35MeV. The irradiated sample was a polished, commer-
cially available LiF crystal by Mateck of dimensions
10� 10� 1 mm3. Before irradiation, the crystal was pre-annealed
at 500 �C for 2 h. The irradiation geometry was such that the
proton beam impinged on one of the crystal’s 1-mm thin sides at
zero-angle grazing incidence, so that protons could propagate
inside the LiF material until they stopped after having deposited all
of their kinetic energy inside it. The irradiation dose amounted to
45 Gy at the LiF entry.

To obtain an estimation of the proton-beam spectrum at the
LiF crystal position, the visible luminescent Bragg curve due the
formation of F2 and Fþ3 CCs in the crystal was detected at 4� mag-
nification using a Nikon Eclipse 80-i fluorescence microscope,
equipped with a Hg lamp and an Andor Neo s-CMOS camera. The
data were subsequently analyzed with a custom best-fit program
coded in MATLAB,27 which utilizes an analytical approximation of
protons’ Bragg curve in LiF4 and takes into account proton-beam
fluence leakage through the crystal faces due to multiple Coulomb
scattering.5

Monte Carlo simulations of energy spectrum propagation
were conducted in FLUKA software28–30 (version 4–4.0) with its
graphic interface Flair31 (version 3.3–1). In FLUKA, the PRECISIO

physics parameters were used. Analytical evaluations of the func-
tions tμ and tσ regulating the transmission of mean value and stan-
dard deviation of the energy spectrum, respectively, were obtained
with the help of WOLFRAM MATHEMATICA.32 All the best-fitting curves
were calculated in ORIGINLAB ORIGIN.33 The LINAC software34 was
used for the beam dynamics simulation shown in Fig. 7.

III. THEORY

Let us assume that the energy spectrum fmeas(E) of the
proton beam of a linac was measured at a certain distance from the
linac exit, E representing the energy coordinate at the measurement
position. Knowing that a series of materials was interposed between

the linac exit and the measurement position, our purpose is that of
estimating the energy spectrum flinac(E0) at the linac exit. Here, E0
is the energy coordinate at the linac exit.

Our method relies on the hypothesis that any perfectly mono-
chromatic beam exiting the linac can be approximately represented
by a Gaussian energy distribution at the measurement position. If
the energy of the linac-exit monochromatic beam is E0, we define
the mean energy and standard deviation of the Gaussian at the
measurement position as tμ(E0) and tσ(E0), respectively. Therefore,
the energy spectrum at the measurement position is a superposi-
tion of such Gaussian distributions weighted by flinac(E0), i.e.,

fmeas(E) ¼
ð1
0
flinac(E0)G E � tμ(E0), tσ(E0)

� �
dE0, (1)

where

G(x, w) ¼ 1ffiffiffiffiffi
2π

p
w
exp � x2

2w2

� �
: (2)

By applying the variable substitution E0 ¼ tμ(E0), being
dE0 ¼ t0μ(E0) dE0, Eq. (1) becomes

fmeas(E) ¼
ð1
0

flinac t�1
μ (E0)

h i
G E � E0, tσ t�1

μ (E0)
h in o

t0μ t�1
μ (E0)

h i dE0, (3)

where t0μ is the derivative of tμ.
Now, let us assume the Gaussian distribution to be narrow

enough that the integral can be approximately evaluated using a
second-order Taylor expansion of the integrand around E. As one
can verify, the result is

fmeas(E) ¼
flinac t�1

μ (E)
h i

t0μ t�1
μ (E)

h i

þ
t2σ t�1

μ (E)
h i

2
d2

dE2

flinac t�1
μ (E)

h i

t0μ t�1
μ (E)

h i
8<
:

9=
;: (4)

If the identities E ; tμ(E0), E0 ; t�1
μ (E), d=dE ;

1=t0μ(E0)
h i

d=dE0 are taken into account and tμ(E0) is assumed to

be enough well behaved that its derivatives with respect to E0 of
order higher than 1 can be neglected, after a few mathematical pas-
sages the following equation is obtained:

fmeas tμ(E0)
� � ¼ flinac(E0)

t0μ(E0)
þ 1
2

t2σ(E0)

t0μ(E0)
h i3 f00

linac(E0): (5)

Equation (5) is a differential equation of order 2 in the
unknown function flinac(E0). Under the further assumption that
the second term in the right-hand member can be considered
much smaller than the others, the equation can be approximately
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solved using the perturbation theory. To this purpose, let us write

flinac(E0) ¼ f(0)
linac(E0)þ ϵf(1)

linac(E0), (6)

where ϵ is a small quantity of the same order of the second term in
the right-hand member of Eq. (5). As usually done in the perturba-
tion theory, ϵ will be set equal to 1 at the end of the process.

Therefore, substituting Eq. (6) into Eq. (5) and equating terms
of the same order, one gets

f(0)
linac(E0) ¼ t0μ(E0)fmeas tμ(E0)

� �
, (7)

f(1)
linac(E0) ¼ � 1

2
t2σ(E0)

t0μ(E0)
h i2 d2

dE2
0

t0μ(E0)fmeas tμ(E0)
� �n o

: (8)

In this latter equation, calculating the right-hand member causes
tμ(E0) derivatives of order higher than 1 to appear. As previously
done, these are neglected under the hypothesis of enough well
behaved tμ(E0). After a few passages, the following approximate
expression for f(1)

linac(E0) is obtained:

f(1)
linac(E0) ¼ � 1

2
t2σ(E0) t

0
μ(E0)f

00
meas tμ(E0)

� �
: (9)

Finally, setting ϵ ! 1, the following first-order perturbative solu-
tion to Eq. (5) can be written:

flinac(E0) ¼ t0μ(E0) fmeas tμ(E0)
� �� 1

2
t2σ(E0)f

00
meas tμ(E0)

� �� �
: (10)

According to this formula, the energy spectrum at the linac
exit can be approximately calculated from the measured one by
applying the energy domain substitution E ! tμ(E0) with a correc-
tion term—the one with t2σ(E0)—that accounts for energy spread-
ing. The multiplication by t0μ(E0) is needed for approximate energy
conservation, which becomes exact in case the energy spreading of
monochromatic components can be neglected, i.e., when
tσ(E0) ! 0. Indeed, if this is the case, Eq. (10) becomes

flinac(E0) dE0 ¼ fmeas(E) dE, (11)

where E ¼ tμ(E0) and t0μ(E0) ¼ dE=dE0 have been used. Integration
of Eq. (11) on both sides results in energy conservation.

As a final consideration, it should be pointed out that if low-
energy components of flinac(E0) are absorbed before reaching the
position where fmeas(E) is measured, they cannot be recovered by
Eq. (10). Therefore, the above-commented energy conservation
regards only the part of the spectrum that is transmitted without
being absorbed.

IV. CALCULATION OF tμ AND tσ

We show two completely different methods to calculate tμ(E0)
and tσ(E0). The first method relies on analytical formulas for the
propagation of the mean value and standard deviation of a
Gaussian energy spectrum. The second method uses Monte Carlo

simulations to propagate a suitably chosen comb-shaped energy
spectrum. We call them analytical method and Monte Carlo
method, respectively.

A. Analytical method

In the Appendix of a recent paper, we provided analytical for-
mulas for the propagation in a medium of the Gaussian energy
spectrum of a proton beam.22 Those formulas, describing how
mean value and standard deviation of the Gaussian change during
propagation, were derived from Bragg–Kleeman’s rule for proton
range in matter and from a formula for range straggling, reported
as Eq. (19) in a paper by Bortfeld.35 We write here the above-
mentioned formulas with a few modified symbols for better clarity.
If z is the propagation distance inside a material, the changes in
mean value and standard deviation of a Gaussian energy spectrum
are described, respectively, by22

μout ¼ μpin �
z
α

	 
1=p
, (12)

σ2
out ¼ α0 αp

3p� 2
μpin þ σ2

in

� �
μin
μout

� �2p�2

�α0 αp
3p� 2

μpout : (13)

Here, α, p, and α0 are characteristic parameters of the material,4,35

μin and σ in are the energy mean value and standard deviation at
the beginning of the propagation, while μout and σout are their cor-
responding values at the end of the propagation.

Knowing the sequence of materials that separate the spectrum
measurement position from the linac exit, the above formulas can
be readily used to evaluate tμ(E0) and tσ(E0). Considering a mono-
chromatic beam of energy E0 exiting the linac, the mean energy
μout and standard deviation σout at the exit of the first material
crossed by the proton beam are calculated by setting μin ¼ E0 and
σ in ¼ 0 in Eqs. (12) and (13). The resulting μout and σout values
can then be used in place of μin and σ in to calculate propagation
across the next material by applying again Eqs. (12) and (13). This
process can be repeated in cascade for all the materials up to the
exit of the last one, in correspondence of which one finally sets
tμ(E0) ¼ μout and tσ(E0) ¼ σout. This calculation can be conducted
for any desired number of energies E0 or even over the full energy
domain by multiple function composition.

B. Monte Carlo method

Using Monte Carlo software, one can simulate the propaga-
tion of monochromatic beams through a sequence of materials that
replicates the actual experimental setup. In particular, in FLUKA, a
comb-shaped energy spectrum can be set at the source by means of
the SPECSOUR and SPOTBEAM cards:28 N monochromatic components
Ei (i ¼ 1, 2, . . . , N) of the spectral comb can be initialized and
suitably spaced to obtain N conveniently separated transmitted
components at the measurement position. Unless particular setups
are considered, the shape of each of these transmitted components
is approximately Gaussian, so that the transmitted energy spectrum
can be best fitted with a Gaussian multi-peak function. The best fit
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result gives the values tμ(Ei) and tσ(Ei) for each energy Ei of the
comb.

V. FIRST EXAMPLE APPLICATION

According to the developed theory, the energy spectrum
flinac(E0) at the linac exit can be approximately calculated from the
measured one, fmeas(E), by applying Eq. (10). Here, we show an
example application of the theory to an experimental case. It con-
cerns the energy spectrum of the already mentioned
TOP-IMPLART linac that was estimated for a cell irradiation
experiment. The estimation was done by analyzing the Bragg curve
extracted from the visible photoluminescent volume distribution of
aggregate F2 and Fþ3 CCs in a 10� 10� 1 mm3 LiF crystal. These
defects were generated in the LiF crystal lattice mainly by ionization
induced by the proton beam, which impinged at zero-angle grazing
incidence onto one of the thin 1-mm sides of the crystal. The
nominal energy of the proton beam at the linac exit was 35MeV,
with an irradiation dose at the LiF entry of about 45 Gy.

This example application is representative of quite a complex
setup due to the presence of several spaced materials in air with a
resulting large distance between the linac exit and the LiF crystal.

A. Evaluation of tμ and tσ

The following sequence of materials was present between the
linac exit and the LiF crystal (thickness between parentheses): Ti
window (50 μm) ! air (22 cm) ! Pb slab (210 μm) ! air
(120 cm) ! 2D ionization chamber (170 μm H2O-equivalent)
! air (45 cm) ! polystyrene flask (1.65 mm). The total mass
thickness of this sequence amounts to about 0.678 g/cm2. The
1-mm thin side of the LiF crystal was placed in contact with the

polystyrene flask. A schematic representation (not to scale) of the
setup is shown in Fig. 1. The values of the material parameters
used in this example application, including mass density ρ, are
listed in Table I. The values of p, α, and α0 in this table were evalu-
ated with the same method previously applied to LiF;4 here,
however, FLUKA simulations were used, rather than SRIM

36 ones, to
estimate proton ranges for energies up to 150MeV. The values of
the mass densities shown in Table I are those used by FLUKA.

The functions tμ(E0) and tσ(E0) were evaluated for
E0 ¼ (33, 34, 35, 36, 37) MeV by applying both the analytical and
Monte Carlo methods illustrated in Secs. IV A and IV B. The trans-
mitted spectrum at the LiF crystal position resulting from a Monte
Carlo transport simulation (5� 106 virtual protons in FLUKA) is
shown in Fig. 2 together with its Gaussian multi-peak best fit. The
parameters of this latter are listed in Table II.

The five tμ(E0) and tσ(E0) points resulting from each of the
two methods are plotted in Figs. 3 and 4. These figures report also
the curves obtained by best fitting the data with the functions

tμ(E0) ¼ EP
0 � Q

� �1=P
, (14)

tσ(E0) ¼ Aexp(� E0=B)þ C, (15)

where P, Q, A, B, and C are fit parameters, whose optimal values
are reported in Table III. Note how the form of the fitting function
of tμ(E0) recalls that shown in Eq. (12), as if the whole propagation
path could be considered as consisting of a single material. Indeed,
this fact is due to the different values of p being mutually similar
for all the involved materials, see Table I, thus allowing the func-
tional form of Eq. (12) to be approximately maintained when the
formula is applied in cascade.

FIG. 1. Schematic representation (not to scale) of the setup considered for the example application of the developed theory.

TABLE I. Parameters of the materials between linac exit and the LiF crystal.

material p α (μm/MeVp) α0 (10−6 MeV2/μm) ρ (g/cm3)

Air 1:788 21 19 119.8 1:022 79� 10�2 1:204 84� 10�3

H2O 1:787 56 20.2399 8:721 50 1.0
Pb 1:679 31 6.326 28 70.5101 11.344
Polystyrene 1:794 13 19.0184 8:954 50 1.06
Ti 1:749 99 7.637 43 32.7630 4.5189
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B. Bragg curve measurement and analysis

As already mentioned, proton-beam irradiation of LiF gener-
ates CCs in it, among which the aggregate F2 and Fþ3 centers emit
visible PL when optically excited in their almost overlapped absorp-
tion bands centered around the wavelength 450 nm. The photolu-
minescent volume distribution of such centers, created in the LiF
crystal by the TOP-IMPLART proton beam, was detected in the
fluorescence microscope by imaging the crystal 10� 10 mm2 top
face. The image of the visible PL detected in this way is shown in
Fig. 5—this figure shows also the irradiation and PL-image detec-
tion geometries. A more luminous vertical strip on the right side of
the image is clearly visible—it corresponds to the Bragg peak. By
integrating along the image vertical axis, the intensities of the
pixels framed within the region of interest (yellow rectangle), a
photoluminescent Bragg curve was obtained. The obtained Bragg
curve is shown in Fig. 6, labeled as experimental, together with
its best-fitting theoretical curve. This latter curve was calculated
with a custom MATLAB code that utilizes an analytical approximate
representation of Bragg curves in LiF4 and takes into account

proton-beam fluence leakage through the crystal faces due to multi-
ple Coulomb scattering.5 In the best fit, a single-band Gaussian
energy spectrum was assumed, for which these optimal parameter
values were found: mean value of (25:55+ 0:17) MeV and stan-
dard deviation of (455+ 15) keV.

FIG. 2. Energy spectrum at the LiF crystal position resulting from the Monte
Carlo (FLUKA) simulated transmission of the comb-shaped spectrum
E0 ¼ (33, 34, 35, 36, 37) MeV through the sequence of materials reported in
the text and its Gaussian multi-peak best fit.

TABLE II. Parameters of the Gaussian multi-peak best fit of Fig. 2. H is the height
of each Gaussian component.

E0 (MeV) H (MeV−1) tμ(E0) (MeV) tσ(E0) (keV)

33 0.2812 ± 0.0005 22.8952 ± 0.0006 281.4 ± 0.6
34 0.2868 ± 0.0005 24.2193 ± 0.0006 274.2 ± 0.6
35 0.2912 ± 0.0005 25.5169 ± 0.0006 270.6 ± 0.6
36 0.2947 ± 0.0005 26.7913 ± 0.0006 267.6 ± 0.6
37 0.2977 ± 0.0005 28.0440 ± 0.0005 261.7 ± 0.5

FIG. 3. Values of the function tμ(E0) calculated at (33, 34, 35, 36, 37) MeV
using the two methods illustrated in Secs. IV A and IV B (points). The best
fitting curves found using Eq. (14) are also shown (solid lines).

FIG. 4. Values of the function tσ (E0) calculated at (33, 34, 35, 36, 37) MeV
using the two methods illustrated in Secs. IV A and IV B (points). The best
fitting curves found using Eq. (15) are also shown (solid lines).
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C. Backpropagation of the measured energy spectrum

The Gaussian energy spectrum found in Sec. V B is assumed
to be the measured one, fmeas(E). According to the developed
theory, it can be propagated back to the linac exit using Eq. (10),
with the functions tμ(E0) and tσ(E0) evaluated in Sec. V A. This
operation, performed with a custom code programmed in
MATHEMATICA, gave the results shown in Fig. 7. Note in the figure
that the two methods of calculation of tμ(E0) and tσ(E0), the analyt-
ical one (Sec. IV A) and the Monte Carlo one (Sec. IV B), lead to
slightly mutually shifted distributions flinac(E0) due to the quite
different approaches the two methods utilize. However, the differ-
ence between the two calculated flinac(E0) is almost negligible, as
witnessed by the value of the parameters of the Gaussian best fits
of these curves reported in Table IV.

Regarding the approximately 1.5% difference in Fig. 7 between
the standard deviations obtained with the two methods as com-
pared with that of about 3% in Fig. 4, which could look like a con-
tradiction, it should be stressed that Figs. 4 and 7 concern different
spectral sources and positions in the setup. Indeed, the data in
Fig. 4 are energy spreads at the measurement distance calculated
from monochromatic beams at the linac exit; on the other hand,
the curves in Fig. 7 are spectra at linac exit calculated from a non-
monochromatic spectrum at the measurement distance.

A more significant difference is visible in Fig. 7 between the
energy spectrum simulated using beam dynamics code34 and the
above-mentioned pair of backpropagated flinac(E0). In addition to
the difference in height, simply due to unitary area normalization,
the most important difference regards the width of this

distribution. This fact is quantified by observing the standard devi-
ations in Table IV, which also reports the Gaussian best-fitting
parameters of the beam-dynamics spectrum. The larger widths of
the two backpropagated flinac(E0) with respect to the beam dynam-
ics simulation are probably only in part due to a tendency of the
model to slightly overestimate the energy spread, as we will discuss
in Sec. IV B and in the Conclusions. Indeed, when propagated with
FLUKA up to the LiF crystal position, these two backpropagated
flinac(E0) agree quite well with the measured energy spectrum, as
later shown in Sec. V D. Instead, such a difference can presumably
be ascribed to some discrepancies between the ideal operating con-
ditions as modeled in the start-to-end beam dynamics simulation
and the real conditions.

As a matter of fact, the energy spectrum in Fig. 7 resulting
from beam dynamics calculations was computed for an ideal beam
in the absence of errors, with a perfect field, and no jitter in field
amplitude and phase. For this reason, the obtained energy spread
must be regarded as a lower limit, because errors in electric field
amplitude and phase in the injector and in the accelerating
modules of the booster can increase the proton energy spread at
the linac output compared to the design value. A detailed descrip-
tion of the accelerator, including all the main design parameters
and beam dynamics, is reported in another paper.26 In it, the
results of an error analysis are also included that focus on setting
accuracy limits for the machine parameters that affect the charac-
teristics of the output beam. Another significant point to consider
is that the start-to-end computation starts from the injector output
rather than the source. The 7MeV injector is a commercial

TABLE III. Fit parameters of tμ(E0) and tσ (E0) (Figs. 3 and 4) as defined in Eqs. (14) and (15).

Method P Q (MeVP) A (MeV) B (MeV) C (MeV)

Analytical 1:765 21+ 0:000 01 40.7436 ± 0.0001 111 ± 63 1.188 ± 0.091 0.1077 ± 0.0013
Monte Carlo 1.7634 ± 0.0024 41.12 ± 0.26 83 ± 48 1.25 ± 0.10 0.1091 ± 0.0013

FIG. 5. Schemes (not to scale) of (a) proton irradiation of the LiF crystal and (b) subsequent PL-image detection at the fluorescence microscope; (c) experimental
PL-image detected at the fluorescence microscope. The Bragg curve in Fig. 6 was obtained by integrating along the image vertical axis the pixel intensities within the
region of interest (ROI) in (c).
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machine (ACCSYS-Hitachi PL7 model), while the following high-
frequency structures of the booster were designed by ENEA and are
included in the code with a detailed model. In the absence of an
injector model, the LINAC code calculations use as input for the par-
ticles’ coordinates the phase-space longitudinal and transverse

parameters given by the injector manufacturer, which might not
accurately describe the actual injector output beam in all operating
conditions.

These considerations could largely justify the difference
between the beam dynamics spectrum and the backpropagated
ones, which, however, is also partly ascribable to a slight overesti-
mation of the width of the backpropagated spectra, as already men-
tioned and later discussed in Sec. VI B and in the Conclusions.
Nonetheless, the almost perfect matching of the Gaussian peak
positions of the three spectra in Fig. 7, quantified by the Gaussian
mean values in Table IV, is quite comforting. Indeed, the largest
difference among them amounts to � 0:2%.

D. Check of the backpropagated energy spectra

To check how well (or not well) the developed theory works
for this example application, the two backpropagated energy
spectra flinac(E0), calculated with the methods illustrated in
Secs. IV A and IV B, were propagated up to the LiF crystal position
along the experimental path of Fig. 1 in two distinct FLUKA simula-
tions using 5� 106 virtual protons. Another propagation in FLUKA

with the same parameters was simulated for the beam-dynamics

FIG. 6. Experimental photoluminescent Bragg curve in the LiF crystal and its
best fit. The experimental curve was extracted from the region of interest in
Fig. 5(c).

FIG. 7. Backpropagated flinac(E0) obtained by applying Eq. (10) to fmeas(E)
with the functions tμ(E0) and tσ (E0) evaluated with the analytical (Fig. 3) and
Monte Carlo (Fig. 4) methods. For comparison, the energy spectrum simulated
using beam dynamics LINAC software is also shown.

TABLE IV. Gaussian fit parameters of the backpropagated spectra in Fig. 7.

Spectrum Mean value (MeV)
Standard

deviation (keV)

Analytical tμ and tσ 35.0734 ± 0.0004 306.9 ± 0.4
Monte Carlo tμ and tσ 35.0250 ± 0.0005 302.3 ± 0.5
Beam dynamics 35.004 ± 0.003 133 ± 3

FIG. 8. FLUKA simulated propagation along the path of Fig. 1 of the three energy
spectra of Fig. 7 and their comparison with fmeas(E) that was experimentally
found by best fitting the Bragg curve of Fig. 6.
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spectrum of Fig. 7. Finally, the propagated spectra resulting from
the above three simulations were compared with the measured
spectrum fmeas(E). The comparison is shown in Fig. 8, while the
corresponding numerical values of the Gaussian best fits of the
four spectra are reported in Table V—the ones regarding the exper-
imental case are those derived from the best fit of the Bragg curve
discussed in Sec. V B.

In addition to the smaller width of the propagated beam-
dynamics spectrum, clearly caused by its smaller width at the linac
exit, one notices that the other two propagated spectra match
the experimental one fairly well, just with some minor differences.
The first minor difference is a slightly smaller height of these
two propagated spectra with respect to fmeas(E), which is ascribable
to a slight overestimation of their standard deviations by less than
5%. The other minor difference regards only the spectrum which
was backpropagated using analytically evaluated tμ(E0) and
tσ(E0)—dashed-line curve in Fig. 8—whose peak energy is larger
by about 50 keV than that of the experimental spectrum, i.e., less
than 0:2% larger. Considering the several approximations and
assumptions made in developing our theory, it can be concluded
that it worked surprisingly well for the present example.

It is worth pointing out that, even though in this example we
made large use of Monte Carlo simulations to gain a more confi-
dent view on the obtained results, one could have operated just
using analytical calculations, as the good results obtained with the
analytical method witness. Additionally, even the final check of
spectrum propagation from the linac exit up to the LiF crystal posi-
tion could have conducted by analytical means. As a matter of fact,
using Eqs. (12) and (13) for the propagation of the linac-exit spec-
trum to the LiF crystal position, one gets Gaussian spectra with
mean value of 25.55MeV and standard deviation of 471 keV for

the case of analytically evaluated tμ(E0) and tσ(E0), and mean value
of 25.55MeV and standard deviation of 467 keV for the case of
Monte Carlo evaluated tμ(E0) and tσ(E0). These values very well
compare with those in Table V, suggesting that Eqs. (12) and (13)
are quite reliable for the propagation of Gaussian-shaped energy
spectra even in the presence of several materials.

VI. SECOND EXAMPLE APPLICATION

Here, we report another example of application of our back-
propagation method. This time, we consider a Monte Carlo simu-
lated measurement of the energy spectrum to directly compare the
backpropagated spectra with a known spectrum at the linac exit. A
collimated beam with a Gaussian energy distribution, with a mean
value of 55:5MeV and standard deviation of 210 keV, is assumed
to be emitted from a proton linac. These values were obtained from
a beam dynamics simulation of the TOP-IMPLART linac

FIG. 9. Schematic representation (not to scale) of the setup considered for the second example application of the developed theory.

TABLE V. Gaussian fit parameters of the spectra in Fig. 8.

Spectrum Mean value (MeV)
Standard

deviation (keV)

Experimental (fmeas) 25.55 ± 0.17 455 ± 15
Analytical tμ and tσ 25.6043 ± 0.0002 476.0 ± 0.2
Monte Carlo tμ and tσ 25.5379 ± 0.0002 471.5 ± 0.2
Beam dynamics 25.5189 ± 0.0002 315.0 ± 0.2

FIG. 10. Energy spectrum at the spectrum measurement plane resulting from
the Monte Carlo (FLUKA) simulated transmission of the comb-shaped spectrum
E0 ¼ (50, 52, 54, 56, 58, 60, 62) MeV through the sequence of materials
reported in the text and its Gaussian multi-peak best fit.
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performed with LINAC software. In the simulation of the propagated
spectrum measurement performed in FLUKA, the beam is trans-
ported to a spectrum measurement plane through a sequence of
materials, as shown in Fig. 9. The transport line depicted in this
figure replicates that of an actual experimental setup, in which the
beam is spatially enlarged by exploiting the scattering caused by
passing through the lead slab to perform cell radiobiology experi-
ments at the distance where the spectrum measurement plane is
located. At this distance, the flux of the beam is uniform within an
area of several square centimeters.

Starting from the linac exit, the sequence of materials before
the spectrum measurement plane in the simulated transport line
is as follows (thickness between parentheses): Ti window (50 μm)
! air (2 cm) ! Al slab (500 μm) ! air (17.5 cm) ! Pb slab
(600 μm) ! air (158 cm) ! 2D ionization chamber (170 μm
H2O-equivalent) ! air (25 cm). For the parameters of these

materials, we used the values reported in Table I, and for alumi-
num—not present in that table—we used the following vales:
p ¼ 1:763 22, α ¼ 10:9118 μm/MeVp, α0 ¼ 20:4350� 10�6 MeV2/
μm, ρ ¼ 2:699 g/cm3. The first three parameters were evaluated
with the same method used for LiF,4 but running FLUKA simulations
instead of SRIM ones. The value of the mass density is the one used
by FLUKA. The total mass thickness of this transport line is about
1.116 g/cm2, which is almost twice that of the experimental
example reported in Sec. V. In view of this significantly larger
value, this test represents a more challenging case to tackle with
our approximate approach.

A. Evaluation of tμ and tσ

The functions tμ(E0) and tσ(E0) were evaluated for
E0 ¼ (50, 52, 54, 56, 58, 60, 62) MeV using the analytical and
Monte Carlo methods discussed in Secs. IV A and IV B. The prop-
agated spectrum at the spectrum measurement plane resulting
from a Monte Carlo transport simulation (2:5� 107 virtual
protons in FLUKA) is shown in Fig. 10 together with its Gaussian
multi-peak best fit. The parameters of the latter are listed in
Table VI.

The seven tμ(E0) and tσ(E0) points resulting from each of the
two methods are plotted in Figs. 11 and 12. In these figures, the
curves obtained by best fitting the data with Eqs. (14) and (15) are
also shown. The optimal values of the parameters of these fits are
listed in Table VII. The large uncertainty associated with parameter
A for the Monte Carlo method has not impacted the fairly good
result shown in the following.

TABLE VI. Parameters of the Gaussian multi-peak best fit of Fig. 10. H is the
height of each Gaussian component.

E0 (MeV) H (MeV−1) tμ(E0) (MeV) tσ(E0) (keV)

50 0.1820 ± 0.0006 41.110 ± 0.001 306 ± 1
52 0.1846 ± 0.0006 43.415 ± 0.001 304 ± 1
54 0.1873 ± 0.0006 45.694 ± 0.001 302 ± 1
56 0.1892 ± 0.0006 47.952 ± 0.001 301 ± 1
58 0.1916 ± 0.0006 50.190 ± 0.001 300 ± 1
60 0.1927 ± 0.0006 52.411 ± 0.001 299 ± 1
62 0.1946 ± 0.0006 54.618 ± 0.001 298 ± 1

FIG. 12. Values of the function tσ (E0) calculated at
(50, 52, 54, 56, 58, 60, 62) MeV using the two methods illustrated in Secs. IV A
and IV B (points). The best fitting curves found using Eq. (15) are also shown
(solid lines).

FIG. 11. Values of the function tμ(E0) calculated at
(50, 52, 54, 56, 58, 60, 62) MeV using the two methods illustrated in Secs. IV A
and IV B (points). The best fitting curves found using Eq. (14) are also shown
(solid lines).
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B. Forward and backpropagation of the energy
spectrum

In a FLUKA simulation, the energy spectrum was propagated
from the linac exit to the spectrum measurement plane through the
transport line depicted in Fig. 9. For this simulation, 2:5� 107

virtual protons were launched. The propagated spectrum was
approximately Gaussian. Then, using the developed theory, this
propagated spectrum was backpropagated using Eq. (10) and the
functions tμ(E0) and tσ(E0), whose parameter values are listed
in Table VII and correspond to the two methods discussed in
Secs. IV A and IV B. These backpropagated spectra were also
approximately Gaussian. The results of this forth-and-back process
are reported in Fig. 13 and Table VIII.

It can be noticed that the backpropagated spectrum obtained
using the Monte Carlo deduced tμ(E0) and tσ(E0) overlaps better
with the starting linac-exit spectrum than the one obtained using
the analytically deduced tμ(E0) and tσ(E0). However, for the latter,
the mean energy differs from that of the linac-exit spectrum by
only 0.36%, which is quite an acceptable error considering all the
involved approximations.

As for the slightly larger standard deviations found with both
methods, we can attribute this overestimation to truncating the

Taylor expansion of the integrand in Eq. (3) to the second order.
Indeed, as already pointed out when commenting on Eq. (10), the
second order of this Taylor expansion determines the spreading of
the energy spectrum. Higher orders beyond the second one would
allow refining the energy spread evaluation. Not considering them
is an approximation whose influence can become more significant
in cases where the mass thickness of the transport line is larger, as
in the present example. Nonetheless, using the second-order
approximation, both the approaches of Secs. IV A and IV B have
provided acceptable, although not ideal, estimations of the energy
spectrum at the linac exit for this example.

VII. CONCLUSIONS

The theory presented in this paper has been developed to
retrieve the energy spectrum of a proton beam exiting from a linac
using a measurement taken at a certain distance. Along the propa-
gation path from the linac exit to the measurement position, a
series of materials—such as windows, slabs, air, etc.—can be
present. To apply the theory, either Monte Carlo propagation simu-
lations of a suitable comb of monochromatic energies or knowledge
of the material parameters p, α, and α0 must be available—this
allows evaluating the functions tμ and tσ on which our approach
relies.

The presented method is clearly an approximate one due to
the several assumptions that were made and the perturbative
approach utilized to solve a differential equation. From the reported
examples, it seems that the method succeeds in estimating the peak
energy with good precision, but that it tends to slightly overestimate
the width of the backpropagated spectra, as also found for another
test case not reported here for space reasons. As commented in
Sec. VI B, this is presumably ascribable to having truncated the
integrand function in Eq. (1) to the second order of its Taylor
expansion. Unfortunately, retaining higher-order terms would lead
to an unmanageable higher-order differential equation in place of
Eq. (5).

FIG. 13. Test Gaussian energy spectrum set at the linac exit with its FLUKA simu-
lated propagation along the path of Fig. 9, and backpropagated spectra esti-
mated using Eq. (10) and the functions tμ(E0) and tσ (E0) deduced by best fitting
the data obtained using the two methods discussed in Secs. IV A and IV B.

TABLE VII. Fit parameters of tμ(E0) and tσ (E0) (Figs. 11 and 12) as defined in Eqs. (14) and (15).

Method P Q (MeVP) A (MeV) B (MeV) C (MeV)

Analytical 1:730 91+ 0:000 07 243.78 ± 0.08 397 ± 15 15.23 ± 0.23 276.3 ± 0.2
Monte Carlo 1.7521 ± 0.0003 275.1 ± 0.4 666 ± 840 12.9 ± 4.9 292 ± 3

TABLE VIII. Gaussian fit parameters of the spectra in Fig. 13.

Spectrum
Mean value
(MeV)

Standard deviation
(keV)

Linac exit 55.5 210
Propagated (Monte
Carlo) 47.3841 ± 0.0003 383.4 ± 0.3
Analytical tμ and tσ 55.3019 ± 0.0007 273.8 ± 0.7
Monte Carlo tμ and tσ 55.4959 ± 0.0008 266.0 ± 0.8
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Despite these facts, the discussed example applications have
provided acceptable quantitative results in the presence of quite
complex transport lines from the linac exit to the measurement
position. The method’s precision is likely to decrease with increas-
ing mass thickness of the transport line due to increasing sources
of energy spreading. The precision level might become even lower
when the approach based on Eqs. (12) and (13) is used because
these equations were derived using approximate formulas for the
penetration range and range straggling.22,35 Nonetheless, settling
for an approximate result, the proposed method can, in principle,
be applied entirely analytically for a quick evaluation without
resorting to Monte Carlo simulations. As already mentioned above,
in such a case, the values of the parameters p, α and α0 for the
involved materials need to be known.

The method has been tested on example cases based on exper-
imental beam delivery lines used for target irradiations with the
proton beam of the TOP-IMPLART linear accelerator in operation
at the ENEA Frascati Center.

ACKNOWLEDGMENTS

This research has been carried on within the TOP-IMPLART
(Oncological Therapy with Protons—Intensity Modulated Proton
Linear Accelerator for Radiotherapy) Project, funded by Regione
Lazio, Italy.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

E. Nichelatti: Conceptualization (lead); Data curation (equal);
Formal analysis (equal); Investigation (supporting); Methodology
(equal); Resources (equal); Software (lead); Supervision (equal);
Validation (equal); Visualization (lead); Writing – original draft
(lead); Writing – review & editing (lead). M. Piccinini: Data cura-
tion (equal); Formal analysis (equal); Investigation (lead);
Methodology (equal); Resources (equal); Validation (equal);
Writing – original draft (equal); Writing – review & editing
(equal). A. Ampollini: Investigation (equal); Resources (equal);
Writing – review & editing (supporting). M. D. Astorino:
Investigation (equal); Resources (equal); Writing – review &
editing (equal). G. Bazzano: Investigation (equal); Resources
(equal); Writing – review & editing (equal). P. Nenzi: Funding
acquisition (lead); Investigation (equal); Project administration
(lead); Resources (equal); Writing – review & editing (supporting).
V. Surrenti: Investigation (equal); Resources (equal); Writing –
review & editing (supporting). E. Trinca: Investigation (equal);
Resources (equal); Writing – review & editing (supporting).
C. Ronsivalle: Conceptualization (supporting); Formal analysis
(equal); Investigation (lead); Resources (lead); Software (lead);
Supervision (lead); Validation (equal); Visualization (supporting);
Writing – original draft (equal); Writing – review & editing
(equal).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1F. Galizzi, M. Caldara, and A. Jef, “A time-of-flight based energy measurement
system for the LIGHT medical accelerator,” J. Phys.: Conf. Ser. 1067, 072019
(2018).
2W. B. Fowler, Physics of Color Centers (Academic Press, New York, 1968).
3E. Nichelatti, M. Piccinini, A. Ampollini, L. Picardi, C. Ronsivalle, F. Bonfigli,
M. A. Vincenti, and R. M. Montereali, “Bragg-curve imaging of 7 MeV protons
in a lithium fluoride crystal by fluorescence microscopy of colour centres,”
Europhys. Lett. 120, 56003 (2017).
4E. Nichelatti, C. Ronsivalle, M. Piccinini, L. Picardi, and R. M. Montereali, “An
analytical approximation of proton Bragg curves in lithium fluoride for beam
energy distribution analysis,” Nucl. Instrum. Methods Phys. Res. B 446, 29–36
(2019).
5E. Nichelatti, M. Piccinini, P. Nenzi, L. Picardi, C. Ronsivalle, and
R. M. Montereali, “Proton-beam energy diagnostics by color-center photolumi-
nescence imaging in LiF crystals: Implementation of multiple Coulomb scatter-
ing into an analytical Bragg-curve model,” Nucl. Instrum. Methods Phys. Res. B
547, 165207 (2024).
6W. L. McLaughlin, “Colour centres in LiF for measurement of absorbed doses
up to 100MGy,” Radiat. Prot. Dosimetry 66, 197–200 (1996).
7W. L. McLaughlin, J. M. Puhl, A. Kováks, M. Baranyai, I. Slezsák, M. C. Saylor,
S. A. Saylor, S. D. Miller, and M. Murphy, “Sunna dosimeter: An integrating
photoluminescent film and reader system; work in progress,” Radiat. Phys.
Chem. 55, 767–771 (1999).
8J. E. Villarreal-Barajas, M. Piccinini, M. A. Vincenti, F. Bonfigli, R. F. Khan,
and R. M. Montereali, “Visible photoluminescence of color centers in LiF crys-
tals for absorbed dose evaluation in clinical dosimetry,” IOP Conf. Ser.: Mater.
Sci. Eng. 80, 012020 (2015).
9M. Piccinini, E. Nichelatti, M. Pimpinella, V. De Coste, and R. M. Montereali,
“Dose response of visible color center radiophotoluminescence in lithium fluo-
ride crystals irradiated with a reference 60Co gamma beam in the 1–20 Gy dose
range,” Radiat. Meas. 151, 106705 (2022).
10G. Baldacchini, F. Bonfigli, F. Flora, R. M. Montereali, D. Murra, E. Nichelatti,
A. Faenov, and T. Pikuz, “High-contrast photoluminescent patterns in lithium
fluoride crystals produced by soft x-rays from a laser-plasma source,” Appl.
Phys. Lett. 80, 4810–4812 (2002).
11G. Baldacchini, F. Bonfigli, A. Faenov, F. Flora, R. Montereali, A. Pace,
T. Pikuz, and L. Reale, “Lithium fluoride as a novel x-ray image detector for bio-
logical μ-world capture,” J. Nanosci. Nanotechnol. 3, 483–486 (2003).
12P. Bilski and B. Marczewska, “Fluorescent detection of single tracks of alpha
particles using lithium fluoride crystals,” Nucl. Instrum. Methods Phys. Res. B
392, 41–45 (2017).
13P. Bilski, B. Marczewska, W. Gieszczyk, M. Kłosowski, T. Nowak, and
M. Naruszewicz, “Lithium fluoride crystals as fluorescent nuclear track detec-
tors,” Radiat. Prot. Dosim. 178, 337–340 (2018).
14P. Bilski, B. Marczewska, W. Gieszczyk, M. Kłosowski, M. Naruszewicz,
M. Sankowska, and S. Kodaira, “Fluorescent imaging of heavy charged particle
tracks with LiF single crystals,” J. Lumin. 213, 82–87 (2019).
15M. Sankowska, P. Bilski, and B. Marczewska, “Thermal enhancement of the
intensity of fluorescent nuclear tracks in lithium fluoride crystals,” Radiat. Meas.
157, 106845 (2022).
16M. Piccinini, E. Nichelatti, G. Esposito, E. Cisbani, F. Santavenere, P. Anello,
V. Nigro, M. A. Vincenti, F. Limosani, C. Ronsivalle, A. Ampollini, C. De
Angelis, and R. M. Montereali, “Detection of fluorescent low-energy proton
tracks in lithium fluoride crystals,” Radiat. Meas. 174, 107140 (2024).
17M. Piccinini, F. Ambrosini, A. Ampollini, M. Carpanese, L. Picardi,
C. Ronsivalle, F. Bonfigli, S. Libera, M. Vincenti, and R. Montereali, “Solid state

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 136, 244901 (2024); doi: 10.1063/5.0241408 136, 244901-11

© Author(s) 2024

 23 January 2025 10:32:22



detectors based on point defects in lithium fluoride for advanced proton beam
diagnostics,” J. Lumin. 156, 170–174 (2014).
18M. Piccinini, C. Ronsivalle, A. Ampollini, G. Bazzano, L. Picardi, P. Nenzi,
E. Trinca, M. Vadrucci, F. Bonfigli, E. Nichelatti, M. A. Vincenti, and
R. M. Montereali, “Proton beam spatial distribution and Bragg peak imaging by
photoluminescence of color centers in lithium fluoride crystals at the
TOP-IMPLART linear accelerator,” Nucl. Instrum. Methods Phys. Res. A 872,
41–51 (2017).
19B. Marczewska, P. Bilski, T. Nowak, W. Gieszczyk, and M. Kłosowski, “Imaging
of proton Bragg peaks in LiF,” Radiat. Prot. Dosim. 178, 333–336 (2018).
20M. Piccinini, E. Nichelatti, C. Ronsivalle, A. Ampollini, G. Bazzano,
F. Bonfigli, P. Nenzi, V. Surrenti, E. Trinca, M. Vadrucci, M. A. Vincenti,
L. Picardi, and R. M. Montereali, “Visible photoluminescence of color centers in
LiF crystals for advanced diagnostics of 18 and 27MeV proton beams,” Radiat.
Meas. 124, 59–62 (2019).
21M. Piccinini, E. Nichelatti, A. Ampollini, G. Bazzano, C. De Angelis, S. Della
Monaca, P. Nenzi, L. Picardi, C. Ronsivalle, V. Surrenti, E. Trinca, M. Vadrucci,
M. A. Vincenti, and R. M. Montereali, “Dose response and Bragg curve recon-
struction by radiophotoluminescence of color centers in lithium fluoride crystals
irradiated with 35MeV proton beams from 0.5 to 50 Gy,” Radiat. Meas. 133,
106275 (2020).
22E. Nichelatti, V. Nigro, M. Piccinini, M. A. Vincenti, A. Ampollini, L. Picardi,
C. Ronsivalle, and R. M. Montereali, “Photoluminescent Bragg curves in lithium
fluoride thin films on silicon substrates irradiated with a 35MeV proton beam,”
J. Appl. Phys. 132, 014501 (2022).
23R. M. Montereali, V. Nigro, M. Piccinini, M. A. Vincenti, A. Ampollini,
P. Nenzi, C. Ronsivalle, and E. Nichelatti, “Bragg curve detection of low-energy
protons by radiophotoluminescence imaging in lithium fluoride thin films,”
Sensors 23, 4779 (2023).
24E. Nichelatti, M. Piccinini, A. Ampollini, L. Picardi, C. Ronsivalle, F. Bonfigli,
M. A. Vincenti, and R. M. Montereali, “Modelling of photoluminescence from
F2 and Fþ3 colour centres in lithium fluoride irradiated at high doses by low-
energy proton beams,” Opt. Mater. 89, 414–418 (2019).
25M. Piccinini, E. Nichelatti, M. A. Vincenti, V. Nigro, C. Ronsivalle,
A. Ampollini, P. Nenzi, G. Bazzano, E. Trinca, and R. M. Montereali, “Dynamic
range and dose linearity of the radiophotoluminescence intensity in lithium

fluoride crystals irradiated with 2.3 and 26MeV protons,” J. Lumin. 259, 119833
(2023).
26L. Picardi, A. Ampollini, G. Bazzano, E. Cisbani, F. Ghio, R. M. Montereali,
P. Nenzi, M. Piccinini, C. Ronsivalle, F. Santavenere, V. Surrenti, E. Trinca,
M. Vadrucci, and E. W. Tafo, “Beam commissioning of the 35 MeV section in
an intensity modulated proton linear accelerator for proton therapy,” Phys. Rev.
Accel. Beams 23, 020102 (2020).
27The MathWorks Inc., MATLAB Version 7.10.0 (R2010a) (The MathWorks
Inc., Natick, MA, 2010).
28

FLUKA website, see https://fluka.cern.
29G. Battistoni, T. Boehlen, F. Cerutti, P. W. Chin, L. S. Esposito, A. Fassò,
A. Ferrari, A. Lechner, A. Empl, A. Mairani, A. Mereghetti, P. Garcia Ortega,
J. Ranft, S. Roesler, P. R. Sala, V. Vlachoudis, and G. Smirnov, “Overview of the
FLUKA code,” Ann. Nucl. Energy 82, 10–18 (2015).
30C. Ahdida, D. Bozzato, D. Calzolari, F. Cerutti, N. Charitonidis, A. Cimmino,
A. Coronetti, G. L. D’Alessandro, A. Donadon Servelle, L. S. Esposito,
R. Froeschl, R. García Alía, A. Gerbershagen, S. Gilardoni, D. Horváth, G. Hugo,
A. Infantino, V. Kouskoura, A. Lechner, B. Lefebvre, G. Lerner, M. Magistris,
A. Manousos, G. Moryc, F. Ogallar Ruiz, F. Pozzi, D. Prelipcean, S. Roesler,
R. Rossi, M. Sabaté Gilarte, F. Salvat Pujol, P. Schoofs, V. Stránský, C. Theis,
A. Tsinganis, R. Versaci, V. Vlachoudis, A. Waets, and M. Widorski, “New capa-
bilities of the FLUKA multi-purpose code,” Front. Phys. 9, 788253 (2022).
31V. Vlachoudis, “FLAIR: A powerful but user friendly graphical interface for
FLUKA,” in Proceedings of International Conference on Mathematics,
Computational Methods & Reactor Physics (M&C 2009) (Saratoga Springs,
New York, 2009).
32Wolfram Research Inc., Mathematica, Version 14.0 (Wolfram Research Inc.,
Champaign, IL, 2024).
33OriginLab Corporation. OriginPro, Version 2021 (OriginLab Corporation,
Northampton, MA, 2021).
34K. R. Crandall and M. Weiss, TERA 94/34 ACC 20 internal note (1994).
35T. Bortfeld, “An analytical approximation of the Bragg curve for therapeutic
proton beams,” Med. Phys. 24, 2024–2033 (1997).
36J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—The stopping and range
of ions in matter (2010),” Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823
(2010).

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 136, 244901 (2024); doi: 10.1063/5.0241408 136, 244901-12

© Author(s) 2024

 23 January 2025 10:32:22


