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Abstract: There is a growing need for more systematic, robust, and comprehensive information on
the value-add of climate services from both the demand and supply sides. There is a shortage of
published value-add assessments that focus on the decision-making context, involve participatory
or co-evaluation approaches, avoid over-simplification, and address both the quantitative (e.g., eco-
nomic) and qualitative (e.g., social) values of climate services. The 12 case studies that formed
the basis of the European Union-funded SECLI-FIRM project were co-designed by industrial and
research partners in order to address these gaps while focusing on the use of tailored sub-seasonal
and seasonal forecasts in the energy and water industries. For eight of these case studies, it was
possible to apply quantitative economic valuation methods: econometric modelling was used in five
case studies while three case studies used a cost/loss (relative economic value) analysis and avoided
costs. The case studies illustrated the challenges in attempting to produce quantitative estimates of
the economic value-add of these forecasts. At the same time, many of them highlighted how practical
value for users—transcending the actual economic value—can be enhanced; for example, through
the provision of climate services as an extension to their current use of weather forecasts and with the
visualisation tailored towards the user.

Keywords: climate services; energy; water; seasonal forecasts; value-add; co-production; relative
economic value

1. Introduction

The development of European and international markets for climate services [1–4]
is driving increased interest in understanding and quantifying their socioeconomic bene-
fits [5–7], including those providing seasonal forecast information [8]. The growing need
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for more systematic, robust, and comprehensive information on the value-add of climate
services comes from both the demand (pull) and supply (push) sides [6,8,9]. On the demand
side, users want evidence of the potential benefits before committing to the procurement
and integration of climate services into their business activities and decision making. On the
supply side, developers and providers need to know how best to tailor their climate services
to maximise user value [8,9]. At the same time, funders and investors, whether of services
freely provided as a public good/merit good [5,6] or through commercial subscriptions,
need to plan, measure, and justify their financial investment.

Despite this growing need, there is a shortage of publicly available value-add assess-
ments that avoid oversimplifying the decision-making process(es), involve participatory or
co-evaluation approaches, and address both the quantitative (e.g., economic) and qualita-
tive (e.g., social) value of climate services [5–8,10]. The 12 case studies (CS) (Table 1) that
formed the basis of The Added Value of Seasonal Climate Forecasts for Integrated Risk
Management (SECLI-FIRM) project addressed these gaps. SECLI-FIRM was a European
Union (EU) Horizon 2020-funded project that was active between February 2018 and Octo-
ber 2021 (http://www.secli-firm.eu accessed on 20 August 2022). It aimed to demonstrate
how the use of improved, tailored sub-seasonal and seasonal forecasts—from several days
out to several months ahead—can add value in both the energy and water sectors [11]. In
this context, value-add refers to the potential benefits associated with the use of tailored
(sub)seasonal forecasts for specific user decision making and outputs.

Table 1. Overview of the SECLI-FIRM case studies from the perspective of value-add assessment.

Case Study and
Co-Design Partners Climate Input Source of

Observed Data
Forecast

Information
Forecast

Verification

Economic
Valuation
Approach

Economic
Valuation
Metric and
Data Used

Case study 1: Heat
waves in Italy—July

2015
Case study 2a: Mild
conditions in Italy—

October–December 2015
(drought) and

January–March 2016
(wet)

Case study 3: Wind
variability in Southern

Italy—March 2016
strong/weak winds

Case study 4a:
High/low winds in

Spain—January–March
2014 (strong winds)

and December
2014–January 2015 (low

winds)
Case study 5a: El Niño
and Colombia energy
mix—January–March

2015 and 2016
ENEL

Temperature,
precipitation, and

wind speed.
Energy demand
and generation
estimated from
climate input by

means of
proprietary

models and link
functions,

respectively.

ERA5

Deterministic.
ECMWF SEAS5
(weighted mean

of ensemble
members).

Multi-model
average: ECMWF,

Météo-France,
Met Office, and

Deutscher
Wetterdienst
(average of

boosted mean of
each model—

calculated from
ensemble
members).

Monthly averages
forecast with lead

times of 1/3/5
months.

Simple biases
(forecast minus
observations).
Mean absolute

error.

Econometric
modelling

using Enel’s
in-house
models,

including
hedging

strategy on
market risks
and weather

exposure.

Profit-company
data.

Indicators of
Performance
(IP) = margin

minus profit at
risk (millions of

Euros).

Case study 2b
Hydropower in Italy

Alperia

Inflow estimated
from weather

variables using
downscaling and
machine learning.

ERA5 and local
gauges

Probabilistic.
ECMWF SEAS5.

Monthly averages
forecast at lead

times of 1–6
months.

Mean error,
mean absolute

error, root-
mean-square

error.
Continuous

Ranked
Probability Skill
Score (CRPSS).

Three different
input

configurations
evaluated for
estimation of

inflow,
hydropower

production, and
total

production.

Potential value
of profits.

Results not
presented in
this paper.
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Table 1. Cont.

Case Study and
Co-Design Partners Climate Input Source of

Observed Data
Forecast

Information
Forecast

Verification

Economic
Valuation
Approach

Economic
Valuation
Metric and
Data Used

Case study 4b
Wind prediction in

Spain—January–March
2014 (strong winds)

and December
2014–January 2015 (low

winds).
UL

Wind flow
estimated using
random forest
models with

various
predictors.

Local
observations from

the State
Meteorological

Agency of Spain
(AEMET).

Deterministic.
ECMWF SEAS5.

Monthly averages
forecast at lead

times of 1–5
months.

Time series
correlation and

root-mean-
square
error.

Performance of
different

forecasting
approaches

assessed. No
valuation

assessed as
there was no

partner with an
economic

model.

Results not
presented in
this paper.

Case study 5b
Colombia hydropower

UL/Celsia

Inflow estimated
(a) directly from

forecasts, (b)
using

teleconnections
based on sea

surface
temperature, and
(c) random forest

models with
various

predictors.

Inflow measured
at Celsia’s hydro

plants,
precipitation from

nearby
observations of

the State
Meteorological

Agency of
Colombia

(IDEAM) and
ERA5,

ERA5-LAND,
and GPCC
datasets.

Deterministic/
probabilistic,

depending on the
forecast model.
Forecast source
using (a) best

model
combination

selected from 11
independent
forecasting
models, (b)

ERA5S.
Monthly averages

forecast at lead
times of 1–3

months.

Time series
correlation and

root-mean-
square error.

Brier Skill Score
(BSS).

Performance of
different

forecasting
approaches

assessed and
compared with
analog forecasts

based on
synoptic

conditions of
the last 3–6

months.
Confidentiality

issues
precluded

formal
economic

assessment. An
estimate based

on forecast
performance

was attempted
instead.

Results not
presented in
this paper.

Case study 6
Offshore maintenance

KNMI/TenneT

Probability of
exceedance of
user-specified
thresholds for

significant wave
height and wind

speed.

ERA5

Probabilistic.
ECMF SEAS5.
Daily averages
forecast at lead
times of 46 days
to seven months
(also used in the

trial climate
service: ECMWF
extended-range

and
medium-range
forecasts; see

Section 5).

Root-mean-
square error.
Continuous

Ranked
Probability Skill
Score (CRPSS).

Avoided costs.
Direct vessel

hire cost
savings

investigated
jointly with and
reported in case

study 7.

Vessel hire daily
rates allow

estimation of
avoided costs.

Results not
shown in this

paper.

Case study 7
Offshore maintenance

Met Office/Shell

Probability of
exceedance of
user-specified
thresholds for

significant wave
height.

Estimated directly
from forecast

values and using
weather patterns.

Local
observations.

Probabilistic.
ECMWF

extended range
forecast.

Daily values
forecast up to 30

days ahead.

Brier Skill Score
(BSS).

Receiver
Operating

Characteristics
Skill Score
(ROCSS).

Relative
Economic

Value. Avoided
costs.

Relative
Economic

Value.
Avoided costs

based on vessel
hire daily rates

used in the
Beast from the

East case study.
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Table 1. Cont.

Case Study and
Co-Design Partners Climate Input Source of

Observed Data
Forecast

Information
Forecast

Verification

Economic
Valuation
Approach

Economic
Valuation
Metric and
Data Used

Case study 8
Winter Outlook for
energy demand and

generation
Met Office/National

Grid

Temperature
including average

cold spell,
precipitation, and

wind.
Forecasts used to

adjust
climatological
distributions

presented in the
Winter Outlook.

Local
observations.

Probabilistic.
Met Office

three-monthly
outlook (based on

GloSea5).
Seasonal

(3-monthly)
means and daily

standard
deviations

forecast at lead
times of 1–3

months.

Comparison of
distributions.

Qualitative,
including

survey. See
Section 5.

National Grid
demand

simulations.
Results not

shown in this
paper.

Case study 9
Water demand and

asset mainte-
nance/management
Met Office/Thames

Water

Probability of
exceedance of
user specified
water demand

thresholds.

User-demand
data.

Probabilistic.
ECMWF

Extended-range
forecast.

Daily values
forecast up to 30

days ahead.

Brier Skill Score
(BSS).

Receiver
Operating

Characteristics
Skill Score
(ROCSS).

Relative
Economic

Value. Avoided
costs

(regulatory
fines).

Relative
Economic

Value.
Cost

estimates/fines,
costs of extreme
weather events,

maintenance
associated with
the Beast from
the East case

study.

The SECLI-FIRM case studies provided an opportunity for micro-level (i.e., company-
level) assessment and detailed evaluation of value-add for individual users within concrete
decision contexts while focusing on verifiable forecasts [5]. In most cases, the value-add
assessment was performed ex ante (i.e., based on estimates rather than actual results), but
in the later stages of the project, when some of the trial climate services were close to opera-
tional, some attempts at post ante assessment (i.e., based on actual results) were possible.

This paper describes the application and assessment of selected valuation approaches
(Table 1) to the SECLI-FIRM case studies. The emphasis was on the value and quality
of the resultant decision making rather than the quality of the outputs or the quality
of co-production and user engagement [12–15]. The quality of the seasonal forecasts
and the trial climate services developed for the case studies are discussed in more detail
elsewhere [16,17].

Section 2 outlines the co-production approach adopted in SECLI-FIRM (Section 2.1)
and the process of selecting the specific value-add assessment methods adopted (Section 2.2)
before introducing the twin experiment approach and baseline used (Section 2.3). It
also outlines the two main metrics—Indicators of Performance (Section 2.4) and Relative
Economic Value (Section 2.5)—used in SECLI-FIRM to quantify economic value, the results
of which are summarised in Section 3. The discussion of these results in Section 4 considers
the relationship between forecast quality and forecast value (Section 4.1) as well as the
benefits of event case studies (Section 4.2) and the challenges associated with quantitative
valuations (Section 4.3). The more qualitative and practical value of seasonal forecasts for
the case studies is discussed in Section 5 while focusing on how this value can be enhanced
through co-design of climate services. A summary and recommendations are presented in
Section 6.
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2. The SECLI-FIRM Methodological Approaches
2.1. Co-Production of the SECLI-FIRM Case Studies

The SECLI-FIRM case studies (Table 1) were co-designed, co-developed, and co-
evaluated by research and industrial partners following established co-production princi-
ples [13,18–21]. For all case studies, research institutes were paired to an industrial partner.
Three of the original nine case studies had two pairings, effectively presenting 12 case
studies overall. In addition, several of the case studies focused on past extreme events that
were identified as having been problematic for the industrial partner (see the first column
of Table 1).

Decision trees were developed to understand and specify the concrete decision-making
context for each case study (Decision trees for each of the case studies are shown in a series of
non-technical summary documents at: http://www.secli-firm.eu/case-studies) (accessed
on 8 October 2022). These provided an important tool for visualisation and engagement
within the project and also helped the seasonal forecast experts within the SECLI-FIRM
team to best tailor the seasonal forecast information for each case study in terms of the
required temporal and spatial resolution, relevant variables, and location of interest.

The climate inputs provided for the case studies were identified through iterative
engagement between the project scientists and industry practitioners. These extended
beyond the ‘standard’ ones of temperature and precipitation to include river discharge,
solar radiation, onshore and offshore wind speed, and significant wave height (Table 1).
They also included derived sector-specific variables such as water and energy demand and
hydropower production.

The forecasting models used for each case study are indicated in Table 1, together
with the forecast horizon and the temporal resolution. The forecast lead times ranged from
several days to several weeks ahead (considered here as sub-seasonal forecasts)-to more
than 1.5 months ahead (seasonal forecasts). The temporal resolution varied from daily
(typically using rolling averages) to monthly or three-monthly averages. The different
characteristics of the forecast information used reflect both the case study application and
the levels of awareness and capacity of the industrial partners.

2.2. Selection of Valuation Methods

The start point for the identification of appropriate valuation methods for each case
study was an overview of economic assessment methods [22] based on detailed existing
review information [8,9,23]. The most appropriate method(s) for each case study was
identified through discussions between the case-study teams and the SECLI-FIRM economic
expert while drawing on the individual case study decision trees (Decision trees for each
of the case studies are shown in a series of non-technical summary documents at: http://
www.secli-firm.eu/case-studies accessed on 20 August 2022). The outcomes of this iterative
process, which were discussed in more detail by Vasilakos et al. [22], are summarised in the
final two columns of Table 1. The choice of method(s), particularly the use of avoided costs
and cost/loss models for company-level assessments where direct verification of forecasts
was possible, are supported by a more recent review of relevant valuation methods [5].

2.3. Baseline and Economic Approaches for Value-Add Assessment

The central concept underpinning forecast value is that services only have value if
a user takes action as a result and the action saves that user money [24]. Therefore, to
assess the value-add of using seasonal forecasts (the test case), an appropriate baseline or
control case must be identified. The ‘twin experiment’ approach adopted by SECLI-FIRM is
represented in Figure 1 and can be considered as an example of the ‘differential’ approach,
which endeavours to identify the benefits of using climate forecasts/services (or better ones)
compared with using no forecasts/services (or inferior ones) [6,8]. At the beginning of the
SECLI-FIRM project, the case studies’ industrial partners did not frequently or routinely
use seasonal forecasts. In order to represent existing practice, the most appropriate baseline
for the SECLI-FIRM case studies was therefore long-term averages of modelled or observed
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values (climatology) as typically constructed using ERA5 reanalysis [25] or in some cases
local observational records (Table 1).
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climatological baseline (control case) augmented by seasonal forecasts (test case).

The observed conditions associated with the events of interest were also used. These
can be considered as a ‘perfect’ forecast [9]. In reality, a ‘perfect’ forecast does not exist, but
the observational data provide an indication of the potential upper value of using seasonal
forecasts [26,27]. This principle is embodied in the two main approaches to quantitative
assessment used in SECLI-FIRM (Table 1) exemplified by: (i) the Indicators of Performance
approach in CS1-5a (with Enel, an Italian-based energy company; Section 2.4); and (ii) the
Relative Economic Value approach in CS7 (with Shell, a multi-national energy company)
and CS9 (with Thames Water, a large private utility company responsible for the public
water supply and wastewater treatment in the southeast of the UK) (Section 2.5).

2.4. Econometric Indicators of Performance

For CS1 to CS5a, Enel implemented an approach that was based on its business
processes that included the use of econometric models [22] to produce strategies to reduce
the exposures to the markets and the weather (Table 1). The details of the decision-making
process and the in-house modelling are commercially sensitive, but were based on so-called
Indicators of Performance (IPs). IPs are calculated at the end of the decision-making process
as profit margin (M) minus profit at risk (R) in units of millions of Euros and are defined as:

IPk = Mk − Rk (1)

where k is the k-th set of input data.
IPs linked to historical average weather data (climatology), the trial seasonal forecast

services under investigation, and the actual weather data (perfect forecasts) are denoted
by IPc, IPf , and IPp, respectively. The impact of a seasonal climate forecast has added
value if:

|Ipf − Ipp| < |Ipc − Ipp| (2)

This approach is based on the assumption that seasonal forecasts add value when the
decision taken is as similar as possible to the one that would be taken knowing exactly the
weather variables associated with the event of interest.

2.5. Relative Economic-Value-Based Verification

For CS7 (offshore maintenance with Shell as the industrial partner) and CS9 (water
asset management with Thames Water as the industrial partner), the Met Office imple-
mented a Relative Economic Value approach, which assumes that value (V) is achieved
if the forecast helps the user to make a better decision than they otherwise would have.
A simplified expression for the Relative Economic Value can be presented in terms of the
mean expense of the best climate-based option, Ec; the mean expense of a perfect forecast,
Ep (derived from contingency table hits and correct rejection terms); and the mean expense
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of the actual forecast, Ef, when considered over a number of events (such as comprising four
years of archived biweekly forecasts here). The maximum value (V = 1) would be obtained
from a ‘perfect’ forecast in which the correct decision is always made (i.e., decision to
protect only made when the adverse weather event occurs). In contrast, using climatology
would have a baseline of V = 0. The Relative Economic Value, V, of this system compared
to a climatological baseline and expressed as a fraction of the maximum value achieved by
using a perfect forecast can therefore be defined as [28,29]:

V =
Ec − E f

Ec − Ep
(3)

For an ensemble forecast, the Relative Economic Value is estimated for a range of
probability thresholds in terms of the user cost/loss ratio, which allows parameterisation
of the risk within the framework [28,30]. This cost/loss ratio is obtained using the (known)
monetary cost (C) and loss (L) associated with the specific binary decision made by the
operator (e.g., choosing to postpone a planned task). For example, a decision for which the
cost of mitigation is low and/or the loss is substantial is characterised by a low cost/loss
ratio (C/L << 1), whereas a decision for which the cost of mitigation is high and/or the
loss is not substantial will be characterised by a high cost/loss ratio (C/L~1). It is always
assumed that C << L [31].

3. Economic Valuation Results
3.1. Econometric Indicators of Performance

The results of the economic valuation for case studies CS1 to CS5a (with Enel) are
summarised in Table 2 and expressed in IPs calculated in terms of millions of Euros (see
Section 2.4 and Equation (2)). These are shown for three different forecast lead times (five
months, three months, and one month ahead) and for a single forecast model (European
Centre for Medium-range Weather Forecasts’ SEAS5 [32]) as well as a multi-model average
of four models (see Table 1).

Table 2 shows the difference between the IPs computed using the forecast (test;
columns A and E) and the climatology (control; columns B and F) with respect to the
actual data (see Equation (2)). Columns D and H show the difference between the perfor-
mance of the seasonal forecast and the climatology; i.e., the capability of the forecasts to
provide scores closer to the actual data than by means of climatology. A ‘YES’ in columns C
and G means that the seasonal forecast provided a better performance in the very complex
value chain of the Enel business process than the traditional method using climatology.

According to Equation (2), the aim was to obtain an IP based on the forecast as close
as possible to the one obtained using the actual data. Table 2 suggests that some economic
value was achieved in the majority (70%) of cases. However, in several cases, this benefit
was relatively low; i.e., the difference between the left-hand side and right-hand side of
Equation (2) was small. Such differences ranged between about −40 (an improvement in
performance) up to about +25 (a degradation in performance)—as shown in columns D and
H—but many of them were quite small. This could be partly attributed to the weakness of
the signals coming from the seasonal forecasts, especially in the deterministic approach
(see discussion in Sections 5 and 6) and partly due to the consolidated output of a complex
decision process that involved many tasks and other non-weather-related factors such as
availability of the plants, markets, and non-linear internal combined processes.
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Table 2. Summary of results for the quantification of value-add in the Enel evaluation process for
case studies CS1 to CS5a. Results are shown for different lead times (five (M-5) months, three (M-3)
months, and one (M-1) month) and for a single model (ECMWF—columns A–D) and a multi-model
average (Columns E–H). Indicators of Performance (IP) expressed in millions of Euros (millions of
US dollars for CS5): IPf = seasonal forecast IP (test); IPp = actual IP (perfect forecast using actual
data); IPc = climatology IP (control). Columns C and G show: YES—Equation (2) was fulfilled;
NO—Equation (2) was not fulfilled. Columns D and H show the differences between the forecast and
climatology performances; the value shows an improvement (−) or degradation (+) in the IP.

Single Model ECMWF Multi-Model Average

A B C D E F G H

Mni EUR/Mni
USD

IPf −
IPp

IPc −
IPp

|IPf − IPp| <
|IPc − IPp|

|IPf − IPp| −
|IPc − IPp|

IPf −
IPp

IPc −
IPp

|IPf − IPp| <
|IPc − IPp|

|IPf − IPp| −
|IPc − IPp|

CS1
M-5 −3.7 −9.0 YES −5.3 −3.7 −9.0 YES −5.3
M-3 −5.2 −9.0 YES −3.8 −4.7 −9.0 YES −4.3
M-1 −7.5 −9.0 YES −1.5 −0.8 −9.0 YES −8.2

CS2a-Period 1
M-3 20.0 22.0 YES −2.0 21.3 22.0 YES −0.7
M-1 15.0 22.0 YES −7.0 21.5 22.0 YES −0.5

CS2a-Period 2
M-3 1.0 4.4 YES −3.4 2.0 4.4 YES −2.4
M-1 −22.5 4.4 NO 18.1 −30.4 4.4 NO 26.0

CS3
M-5 4.8 −1.0 NO 3.8 0.8 −1.0 YES −0.1
M-3 −2.7 −1.0 NO 1.7 −5.9 −1.0 NO 4.9
M-1 −0.4 −1.0 YES −0.6 −1.9 −1.0 NO 0.9

CS4a-Period 1
M-3 45.1 53.6 YES −8.5 52.2 53.6 YES −1.4
M-1 74.9 53.6 NO 21.3 56.3 53.6 NO 2.7

CS4a -Period 2
M-3 0.5 −3.4 YES −3.0 −5.1 −3.4 NO 1.7
M-1 −18.4 −3.4 NO 14.9 −17.6 −3.4 NO 14.1

CS5a Period 1
M-3 −28.4 −37.0 YES −8.5 6.6 −37.0 YES −30.4
M-1 8.6 −37.0 YES −28.4 23.6 −37.0 YES −13.4

CS5a Period 2
M-3 6.8 −44.4 YES −37.6 −23.8 −44.4 YES −20.6
M-1 −37.4 −44.4 YES −7.0 −4.0 −44.4 YES −40.5

Enel explored the underlying reasons for each of these outcomes. As noted above,
many related to the generally weak forecast signals even when the multi-model signal was
boosted using an approach developed by SECLI-FIRM The calibration boost (or boosted
mean) was developed to attempt to overcome the often weak signal of the forecast ensemble
mean. In essence, a sample of members was selected based on the confidence of the forecast.
For example, if more than 70% of ensemble members agreed on the sign of the anomaly,
then these ensemble members were retained and the ‘boosted mean’ was computed using
only these members. For the Enel case studies, this approach was applied to each of the four
forecast model ensembles (Table 1) before averaging. Due to time constraints, a simpler
weighted mean approach was used for the single model (ECMWF) forecasts. This was
particularly the case for extreme events, including the heat wave event associated with
CS1 and the drought event associated with CS2a. For CS3, the average wind speed for
March 2016 was predicted reasonably well but the forecast failed to capture the week of
high wind speed followed by the week with very weak wind. Ideally, Enel would have
adopted two different hedging strategies for each of these weeks. When forecasts are very
close to climatology (whether due to forecast errors or because it was actually the case) as
determined by confidence intervals based on sampling from the observations, the decision
based on the forecast will be the same as for climatology.

In other cases, decisions based on the weather input were confounded by non-weather
related factors such as the wider energy mix. The performance at one-month lead time
for CS2a, for example, showed a very low value (Table 2) because the prevalence of
thermoelectric production caused a rise in the estimated price and reduced the profit
margin. For CS5a, power prices depended on the performance for the whole of Colombia,
whereas Enel only operates hydropower plants at two locations. In the latter case, it
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emerged that it would be preferable to have forecasts with a time horizon of 10–12 months
in advance because the basins in Colombia are very large with long response times.

3.2. Relative Economic-Value-Based Verification

For CS7, with Shell as an industrial partner (Table 1), the Relative Economic Value
(Section 2.5 and Equation (3)) of both a weather-pattern downscaling [30] and direct
ECMWF wave forecasts were estimated. The latter approach was also chosen by KNMI for
CS6 with TenneT (a European electricity transmission system operator) as the industrial
partner and also addressed similar questions for offshore maintenance planning in a
different area of the North Sea.

Relative Economic Value considers the choice facing a hypothetical decision maker
who, depending on the assessment of likelihood of an adverse weather event, must seek
to minimise their overall expense as guided by the forecast. For example, in the case of
offshore operations, the user must choose to protect a planned period of maintenance (or
not) depending on the forecast probability of the significant wave height (Hs) exceeding a
given wave height threshold (e.g., 2.5 m). Expressed in this way, the Relative Economic
Value is therefore analogous to a skill score of expected expenses [28]. A typical choice of
C/L ratio by an offshore industry user for whom the cost of taking preventative action is
low but the loss would be substantial is often considered as being around 0.1 [33]. However,
while this is a generic estimate used for the parameterisation of risk within the decision
model, it is acknowledged that depending on the desired framing of the decision by a
different user, then they may select a different C/L ratio for their analysis accordingly.

The results suggested the value of both the direct and weather-pattern-derived wave
forecasts were dependent not only on the C/L ratio, but also on the Hs threshold of interest.
For example, using a typical C/L ratio for offshore operations of 0.1, the Relative Economic
Value for a decision limited by a threshold of Hs < 3.5 m at one particular North Sea
location of interest to Shell was shown to be ~0.3 at a sub-seasonal lead time of between 10
and 30 days ahead (Figure 2) while recognising that there was a considerable variability
(oscillations) in the exact estimates as a consequence of the small sample size. There was
still a small benefit over climatology (i.e., V > 0) when using these approaches for a decision
limited by a threshold of Hs < 2.5 m for the same period, albeit with a lower value of ~0.05,
whereas it was shown these achieved a negligible value over climatology for a decision
limited by a threshold of Hs < 1.5 m—possibly as a consequence of the location being
characterised by a higher typical wave climate.

The ability of the forecasts to discriminate between exceedance and non-exceedance
events for different Hs thresholds, and therefore the Relative Economic Value, also varied
with season. Again, despite oscillations as a consequence of the small sample size, results
for the C/L ratio of 0.1 and the same example location showed that both forecast methods
offered a greater Relative Economic Value in spring than autumn at a lead time of up to
30 days ahead with value for using the forecasts in decision making at Hs thresholds of both
2.5 m and 3.5 m. In the context of planning offshore operations in the seasonal ‘shoulder’
months on either side of the traditional summer work season, this suggested that these
forecasts have more use in planning an early start to tasks than in scheduling an extension
to an operation that perhaps experienced delays.

A similar approach to evaluation was taken in CS9 (Table 1). Much like the offshore
equivalent, maintenance planning of a water treatment plant is an important consideration
because decisions must be balanced to ensure these are able to continue to operate at full
capacity when required and to minimise expenses from last-minute task cancellations.
Amongst other factors, water companies such as Thames Water must schedule maintenance
plans during periods of low water demand because water treatment capacity will be
reduced during any scheduled maintenance windows. The costs of deferring maintenance
increase closer to the planned period of maintenance; therefore, there is an economic
advantage in making a decision as to whether to proceed or not as early as possible.
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Figure 2. Relative Economic Value of ensemble significant wave height (Hs) forecasts with lead times
up to 30 days calculated for a cost/loss (C/L) ratio of 0.1 at a North Sea location corresponding to
Hs thresholds of 1.5 (green), 2.5 (orange), and 3.5 (purple) meters. Direct forecasts (dashed lines) are
shown together with those for the weather pattern (WP)-derived forecasts (solid lines).

In this case, the cost of action three weeks ahead was minimal; i.e., a high C/L ratio. If,
however, the action had to be cancelled less than three weeks ahead, the loss was much
greater; i.e., a low C/L ratio. The decision to cancel a maintenance plan at a longer lead
time was dependent on the perceived risk of high water demand putting strain on the
system; i.e., the risk of water demand exceeding a user-specified threshold.

As for CS7, the Relative Economic Value varied with the season, although for CS9 the
greatest value was observed in winter and spring for the particular threshold and C/L ratio
combination considered. Again, the shape of the Relative Economic Value curves were
similar across lead times. Figure 3 suggests that value was maintained with C/L ratios
between ~0.1 and ~0.4, out to the full 30 days (note that only discrete lead time results are
shown in Figure 3). These results suggested that averaged over time, making a decision
based on the forecast will provide more benefit than using climatology regardless of the
lead time considered. Moreover, the value was highest for decisions with a low C/L ratio,
with a peak at 0.2 (Figure 3).

These two examples demonstrated that economic value could be achieved if the
forecast helped the user to make a better decision than they otherwise would have.



Climate 2022, 10, 152 11 of 21

Climate 2022, 10, x FOR PEER REVIEW 11 of 21 
 

 

time was dependent on the perceived risk of high water demand putting strain on the 
system; i.e., the risk of water demand exceeding a user-specified threshold. 

As for CS7, the Relative Economic Value varied with the season, although for CS9 the 
greatest value was observed in winter and spring for the particular threshold and C/L 
ratio combination considered. Again, the shape of the Relative Economic Value curves 
were similar across lead times. Figure 3 suggests that value was maintained with C/L ra-
tios between ~0.1 and ~0.4, out to the full 30 days (note that only discrete lead time results 
are shown in Figure 3). These results suggested that averaged over time, making a deci-
sion based on the forecast will provide more benefit than using climatology regardless of 
the lead time considered. Moreover, the value was highest for decisions with a low C/L 
ratio, with a peak at 0.2 (Figure 3). 

 
Figure 3. Relative Economic Value (vertical axis) for different cost/loss ratios (horizontal axis) and 
forecast intervals of 3 to 28 days (coloured lines) estimated for water treatment maintenance plan-
ning (CS9). 

These two examples demonstrated that economic value could be achieved if the fore-
cast helped the user to make a better decision than they otherwise would have. 

4. Discussion of Economic Valuation Results 
4.1. Forecast Quality/Skill vs. Economic Value 

The focus in SECLI-FIRM was the value-add for decision making (Sections 2 and 3). 
It was not intended to conduct a comprehensive assessment of how seasonal forecast qual-
ity affected value and it was beyond the scope of this paper to present all the comparisons 
of quality and value that were undertaken. These two aspects are, however, clearly related 
and forecast quality (or performance) cannot be ignored when considering value or barri-
ers to uptake of seasonal forecasts [8,26,34]. 

Several different approaches were used within SECLI-FIRM to verify or assess the 
quality of the tailored seasonal forecasts developed for each case study with respect to a 
climatological baseline—in many cases it was ERA5 reanalysis data, while in others it was 

Figure 3. Relative Economic Value (vertical axis) for different cost/loss ratios (horizontal axis)
and forecast intervals of 3 to 28 days (coloured lines) estimated for water treatment maintenance
planning (CS9).

4. Discussion of Economic Valuation Results
4.1. Forecast Quality/Skill vs. Economic Value

The focus in SECLI-FIRM was the value-add for decision making (Sections 2 and 3). It
was not intended to conduct a comprehensive assessment of how seasonal forecast quality
affected value and it was beyond the scope of this paper to present all the comparisons of
quality and value that were undertaken. These two aspects are, however, clearly related
and forecast quality (or performance) cannot be ignored when considering value or barriers
to uptake of seasonal forecasts [8,26,34].

Several different approaches were used within SECLI-FIRM to verify or assess the
quality of the tailored seasonal forecasts developed for each case study with respect to a
climatological baseline—in many cases it was ERA5 reanalysis data, while in others it was
local observations (Table 1). The approaches used were established through interaction
between the project scientists and industrial partners. These ranged from presentation of
simple biases for deterministic forecasts (i.e., forecast minus observations; CS1 to CS5a)
to simple evaluation of anomaly correlation and root-mean-square error (CS4b and CS5b)
and comparison of distributions (CS8) to more complex metrics for the verification of
probabilistic forecasts (Table 3) such as the use of the Continuous Ranked Probability Skill
Score (CRPSS) (CS2b and CS6), as well as the Brier Skill Score (BSS) (CS5b, CS7 and CS9)
and Receiver Operating Characteristic Skill Score (ROCSS) (CS7 and CS9).
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Table 3. Metrics used to verify performance of probabilistic seasonal forecasts in SECLI-FIRM
case studies.

Verification Measure Method Description Use in SECLI-FIRM

Skill Brier Skill Score (BSS)

A measure of the mean squared error of the
ensemble forecast. How skilful is the forecast
relative to climatology? Maximum score is 1,
while negative values indicate less skill than

climatology.

CS5b
CS7
CS8

Skill
Continuous Ranked

Probability Skill Score
(CRPSS)

A measure of the difference between the
forecast and observed cumulative

distributions, equal to the integral of the
Brier score over all possible thresholds. How
skilful is the forecast relative to climatology?

CS2b
CS6

Discrimination
Receiver Operating

Characteristics Skill Score
(ROCSS)

A measure of the ability of the forecast to
discriminate between observations; that is, to

have a higher prediction frequency for an
outcome whenever that outcome occurs.

Does the forecast discriminate between true
positives (hits) and false positives

(false alarms)?

CS7
CS8

Many of the latter metrics tend to be more complex for users to understand and inter-
pret and encompass very specific meanings for terms such as ‘skill’ (Table 3) and ‘reliability’.
This can cause issues in communication between different communities. Therefore, the
term forecast ‘quality’ was used here. Nonetheless, metrics such as BSS and ROCSS have
much utility. This is illustrated in the context of CS7 and CS9 below.

For CS7 (Table 1), the skill of probabilistic forecasts of significant wave height ex-
ceedance for various thresholds for North Sea locations of interest to the industrial part-
ner Shell was assessed in terms of the BSS and ROCSS (Table 3). These metrics demon-
strated that:

• The direct model output had more skill than weather-pattern-derived wave forecasts
at lead times less than 10 days ahead, whereafter both methods converged and tended
towards climatology.

• Both methods successfully discriminated between exceedance/non-exceedance events.
At lead times less than 10 days ahead, the weather-pattern-derived wave forecasts were
less able to differentiate hits and false alarms than the direct simulations, although
they exhibited a similar skill beyond that.

• The results indicated a strong dependence on the site, season, and Hs threshold
of interest.

Importantly, however, forecast skill (as assessed through traditional performance
metrics such as those shown in Table 3) was not the same as value to the user [35]. Forecast
value was assessed in terms of the Relative Economic Value based on the cost/loss impact
of a decision to proceed or postpone a planned operation (Sections 2.5 and 3.2). The Relative
Economic Value results demonstrated that despite the BSS indicating overall that there was
less skill in the forecast beyond approximately 15 days, there was still value in the forecast
at longer lead times (Figure 2). The reason for this apparent discrepancy was that measures
such as the BSS or ROCSS present a summary of performance rather than being specific
to a particular user decision or application, as is achieved by using the Relative Economic
Value. In the latter case, ‘usefulness’ was defined by the user.

Similar conclusions were reached with respect to water demand thresholds for CS9. In
this case, the demand forecast performed much better at longer lead times in winter than
in summer. The ROCSS showed that the forecast was able to better discriminate between
events above and below critical demand thresholds than climatology for all lead times out
to 30 days ahead.
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The value-add for CS9 was derived from understanding the cost/loss implications of
the operational control teams within the water sector making decisions at different lead
times combined with an understanding of the skill in the demand forecast at these different
lead times. As seen in the other forecast performance metrics, the Relative Economic Value
varied with the season, with the greatest values being observed in winter and spring. The
Relative Economic Value curves, however, showed a greater similarity across different lead
times than did the skill scores. This suggested that despite performance metrics indicating
limited skill beyond ~15 days, value was maintained, with C/L ratios between ~0.1 and
~0.4 out to the full 30 days (Figure 3).

These examples from CS7 and CS9 illustrated that forecast quality (as assessed through
metrics such as skill and discrimination—Table 3) was not the same as forecast value;
therefore, verifying forecasts using classical skill scores would not necessarily result in
the most useful model or decision point being selected, but only provided (in a general
sense) a condensed view of the available skill without knowledge of the operation-specific
requirements [30].

4.2. The Value of Event-Based Case Studies

Many of the SECLI-FIRM case studies focused on specific extreme events identified
by the industrial partners. During the preparation of the SECLI-FIRM proposal, Enel, for
example, identified a number of historical events that had affected its operations (Table 1).
These events provided the basis for Enel’s work in SECLI-FIRM, which co-developed its
case studies in conjunction with economic and seasonal forecast experts.

While it is instructive to assess the performance of seasonal forecasts for single events
such as those considered in CS1 to CS5, it is clear that no general conclusions about the
performance of a (probabilistic) seasonal forecasting system can be drawn from just a single
event. At the same time, however, it is essential to learn how seasonal forecast systems can
behave under single critical events because they significantly affect the management and
business decisions of large corporations such as Enel. Single events also provide a good
opportunity to learn about the nuances of seasonal forecasting and how to embed it in an
operational system without the burden of extensive datasets. They ease the communication
with users because they can often relate better to such case studies than to statistical metrics.
Therefore, they provide a highly beneficial step towards the long-term uptake of seasonal
forecasts by industrial users (Section 5).

Event-based case studies and real-time data were also used in CS7 and CS9 (Table 1)
to demonstrate the tangible benefits of integrating the sub-seasonal climate services
developed with both Shell and Thames Water into the decision processes. Following
cold weather at the end of February/start of March 2018 (the so-called ‘Beast from the
East’ event (https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/
weather/learn-about/uk-past-events/summaries/uk_monthly_climate_summary_201802
.pdf; https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/
learn-about/uk-past-events/summaries/uk_monthly_climate_summary_201803.pdf; and
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-
about/uk-past-events/summaries/uk_monthly_climate_summary_202102_v1.pdf, all ac-
cessed on 20 August 2022), freezing temperatures affected many offshore platforms with
adverse wave conditions compounding access (Shell). Similarly, more than 200,000 cus-
tomers were left without water for more than four hours and tens of thousands had their
supply cut off for days due to a spike in water demand caused by increased leakage due to
burst pipes (Thames Water). A case study analysis showed that prior to this event the new
sub-seasonal climate services would have provided the user with a warning of an increased
risk of adverse weather in terms of both the significant wave height (Shell) and spike in wa-
ter demand (Thames Water) up to three weeks ahead of the incident. Following the ‘Beast
from the East’, water companies reported paying around GBP 7 million in compensation.
As such, this case study suggested the potential for a cost-saving benefit to the water sector
that could be achieved through the earlier identification of severe demand events in winter.
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The benefits of integrating (sub-)seasonal forecast data into both the Shell and Thames
Water planning were also assessed in real-time; i.e., an ex post assessment [5,8], with a
trial forecast set up at the start of November 2020. The forecast was updated twice a week
with the latest ECMWF extended-range (30-day) forecast and disseminated to Thames
Water. At the start of February 2021, the UK experienced similar weather to that observed
in 2018 during the ‘Beast from the East’. Although not as significant for Shell (since it was
not accompanied by adverse wave conditions), the cold weather in the second week of
February particularly impacted Thames Water because it resulted in an increased number
of burst pipes, leading to a spike in demand. However, earlier preparation in response to
the forecast meant that Thames Water was able to build resilience in their network and as
such, despite experiencing similar weather to the ‘Beast from the East’, the impact of the
event was much smaller. For example, in 2018, almost 57,000 Thames Water customers
experienced prolonged supply interruptions during the incident, whereas no customers
were impacted during the 2021 event.

4.3. Challenges for Quantitative and Economic Valuation

The extent to which quantitative economic valuation could be implemented in practice
varied among the case studies (Table 1). In large part, this depended on factors such as
the availability of appropriate in-house modelling tools and historical economic data [22],
existing use of weather information, and the ability of the industrial partners to share
sensitive and commercial information with the case studies’ research partners. Several of
these factors or challenges, particularly those relating to data, were also identified in earlier
reviews of value-add assessment [6,8]. Vasilakos et al. [22] provided an example of how
issues with available vessel hire costs were overcome for CS7.

The nature of the case studies, which focused on specific user decisions and applica-
tions, inevitably meant that even when quantitative assessments could be made, the results
were in quite diverse forms; were based on different assumptions, inputs, and modelling
tools (Table 1); and could not be directly intercompared.

Nonetheless, even when appropriate economic data were available, all of the case
studies faced a number of challenges in producing economic estimates of value-add.
These included:

• Weak seasonal forecast signals close to climatology;
• Limited forecast quality, particularly for extreme events;
• Averaging of intra-season and intra-month variability, particularly for extreme events

(see Section 3.1);
• Non-weather-related confounding effects (e.g., energy mix, impacts of dam operations

on inflow, and market effects beyond company control—see Section 3.1);
• Changes in sector-specific models precluding long-term evaluation (e.g., National

Grid energy demand models are updated annually);
• Changes in forecasting systems confounding long-term verification and valuation

assessment.

For the case studies that used deterministic approaches (albeit based on ensemble
information (Table 1)), the first three challenges could be addressed, at least in part, by
moving to fully probabilistic approaches (see Sections 5 and 6) and considering shorter-term
variability rather than monthly averages.

5. Enhancing the Practical Value of Seasonal Forecasts

Given the challenges associated with implementing economic valuation approaches
(Section 4.3), many of the SECLI-FIRM case studies also took a more qualitative stance—
either to complement the economic valuation (Table 1) or in place of it. These qualitative
approaches gave consideration to the practical value of seasonal forecast information
and could identify aspects of value not captured by the more quantitative approaches
(Section 1 [8]).
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While a number of user surveys were undertaken to gain feedback on the trial climate
services co-developed for each of the SECLI-FIRM case studies, a systematic evaluation of
practical value was not undertaken. Nonetheless, the experiences of co-developing these
services highlighted several ways in which the uptake of seasonal forecast services and
therefore practical value could be enhanced; e.g., by providing seasonal forecasts that are:

• Usable: in formats that easily integrate with the user’s existing tools, systems, and
approaches

• Useful: as part of a seamless approach to the provision of information on different
timescales, particularly if gradually extending the existing approach of the current
user, who may already be basing decisions on weather forecasts as in the case of the
SECLI-FIRM users.

• User-friendly: in formats such as Teal Tool visualization (a tailored in-house version of
the public Teal Tool (https://www.wemcouncil.org/wp/teal accessed on 20 August
2022) was developed by WEMC for Enel during SECLI-FIRM) that are easy to use,
even for users unfamiliar with many of the intricacies of weather/climate data.

The three factors listed above all help to increase the fitness for purpose and reduce
the usage costs of climate services, thereby enhancing their practical value [5].

This seamless approach to information provision was exemplified by the web inter-
faces/dashboard (Figure 4; for further information, please contact gertie.geertsema@knmi.nl
or folmer.krikken@climateradar.com) developed by KNMI for CS6 with TenneT as the indus-
trial partner and a complementary focus to CS7 (Table 1). During co-design discussions, the
industrial partner TenneT expressed the need for a forecasting system for significant wave
height and wind speed with a consistent presentation across the full period relevant to plan-
ning of offshore operations. In this case, the availability of uniform information helped to in-
crease the usability of the service [8]. In order to construct such a seamless multi-time-scale
product ranging from hours to a year, KNMI combined four different probabilistic prod-
ucts from ECMWF (https://www.ecmwf.int/en/forecasts/documentation-and-support
accessed on 20 August 2022):

1. Medium-range ensemble forecasts for day 0 to 14 (ENS).
2. Extended-range ensemble forecasts for day 15 to day 46 (ENS Extended).
3. Seasonal forecasts beyond 46 days and up to seven months ahead (SEAS5).
4. The remaining period up to one year ahead was provided by climatology based on

ERA5 data over the period 1981–2020.

The approach taken in CS6 acknowledged that existing offshore maintenance planning
decisions are typically made with an expectation of the conditions likely to be encountered
for the time of year combined with the use of short-range (three days ahead) deterministic
forecasts to support the final decision to proceed or not with an operation as an event
draws nearer in time. Similarly, the developments pursued in CS7 focused only on the
sub-seasonal period of between 10 and 32 days ahead, again with a focus on significant
wave height as the key variable limiting the viability of these types of operations.
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Discussions between the industrial and research partners and with seasonal forecast
experts and developers of the trial climate services highlighted the importance of enhancing
practical value by providing seasonal forecasts in such a way that users do not need to
substantially change their decision-making processes or tools.

For the Enel case studies (CS1 to CS5a), this implied the use of single deterministic
values (based on ensemble information derived from a single model or an average of four
models–Table 1) as input to in-house modelling tools. Through participation in SECLI-
FIRM, Enel now appreciates the benefits of a probabilistic approach (and indeed has been
moving towards such a system with the development of in-house tools for Monte Carlo
analysis of market scenarios now also incorporating weather information following SECLI-
FIRM). Nonetheless, Enel acknowledged that this is still a challenge to adopt for many of
the management decisions made by the company.

Moreover, although seasonal forecast models do not currently offer performances that
are able to perfectly reproduce the extreme events of relevance, the use of these models for
Enel represented an important intermediate step. Discussions such as those about the use
of ensemble and probabilistic forecasts encourage users to think beyond the present and
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consider how their systems could be upgraded in the longer term. Enel also highlighted
that innovation plays a key role within any company that wants to stay tuned into a very
competitive market such as the Italian one. In a long-term view, attention needs to be given
to the development of scientific research and to promising new research technologies. The
expectation is that when seasonal forecast models improve their skill in the mid-/high
latitudes, then they will be well placed with more awareness of their usage, strengths, and
caveats, providing a further intangible benefit.

Work associated with CS8 (Table 1) with National Grid (one of the world’s largest
publicly listed utility companies focused on the transmission and distribution of electricity
and gas) as the industrial partner also highlighted the wider practical value of using
seasonal forecasts to support decision making. The National Grid winter energy demand
forecast is published in the Winter Outlook, a document that presents the company’s view
of the security of supply for UK electricity systems for the winter ahead. The Winter
Outlook has a broad range of users, from energy traders to utility companies. Despite
challenges with engagement resulting from the COVID-19 pandemic, qualitative research
was conducted to understand the requirements of these different decision makers and to
understand the value-add of integrating seasonal forecast data into the Winter Outlook. The
latter step was met with unanimous approval from the participants interviewed in the study.
In general, seasonal forecasts are not skilful in the same way as short-term forecasts and
have accepted limitations within the energy industry. For most potential users interviewed
for CS8, this new data source would therefore contribute to influencing thinking rather
than acting as a trigger for a specific decision or action. In this case, National Grid can be
considered as a provider of climate information rather than as a final end-user, so there
is potential value to National Grid in terms of reputation as a supplier of improved and
useful seasonal forecast information.

6. Summary and Recommendations
6.1. Summary

The SECLI-FIRM case studies used several different approaches to assess the value-add
of sub-seasonal and seasonal forecasts for decision making (Table 1) based on established
co-production principles (Section 1). For the two groups of case studies, it was possible to
apply quantitative economic valuation methods (Section 2): econometric modelling with
Indicators of Performance to assess the outcomes (Enel CS1 to CS5a—Sections 2.4 and 3.1);
and both cost/loss (Relative Economic Value) analysis and avoided costs (CS7 with Shell
and CS9 with Thames Water—Sections 2.5 and 3.2, as well as CS6 with TenneT). Despite
the generally low forecast skill typical of mid-latitudes and a tendency towards relatively
weak seasonal forecast signals (particularly in the case of extremes such as heat waves,
droughts, and high offshore winds and waves), a positive economic value was able to be
established in the majority of cases (Table 2; Figures 2 and 3). In particular, the event case
studies illustrated that such forecasts can help the user make better decisions than they
otherwise would have (Section 4.2).

These results highlighted that forecast quality/skill (Table 3) and value were not
the same, although the skill may be a limiting factor for value (Section 4.1). They also
illustrated the importance of assessing value from the perspective of specific user decisions
and applications. Forecast quality and skill varied not only with the forecast and forecast
method selected, but also by season, location, and variable and forecast lead times. This
variability was also evident to some extent in the case study results for value-add. However,
value-add also varied with user aspects such as attitude to perceived risk and acceptable
cost/loss ratios (Section 3.2).

Similarly, it was evident that metrics such as Indicators of Performance and Relative
Economic Value did not capture the full value-add for decision makers, particularly in terms
of early adoption of seasonal forecasts. Many of the SECLI-FIRM case studies highlighted
how practical value can be enhanced by providing seasonal forecasts as part of a seamless
approach to using weather information (from short-term forecasts a few days ahead to
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seasonal forecasts a few months ahead) and in formats that do not require users to make
major changes in their decision-making tools and processes (Section 5).

For industrial users who themselves supply derived weather-related information to
downstream users, the ability to produce the best possible seasonal forecast information
may bring value in the form of enhanced reputation and more uptake. For industrial
users such as Enel that are working in highly competitive markets, early adoption of new
technologies is also considered advantageous (Section 5).

The most frequent situation with respect to the Enel case studies (Table 1) was that
the seasonal forecast models could follow the evolution of an extreme event but with a
magnitude that had a very low influence on the portfolio management (Section 3.1). In
other words, in many cases the business process would need stronger signals to be clearly
influenced by the seasonal forecasts. For example, at the present time, Enel considers that
while seasonal forecast models can be useful for a qualitative assessment of future scenarios,
it is difficult to use them within an automated numerical process due to the weakness of
the signals. Nonetheless, the company will continue to use seasonal forecasts and, with
the development of their own economic models based on a probabilistic approach, will
eventually be able to make the most of the seasonal forecast model information directly in
their decision-making process. This shift in perspective by Enel is considered as one of the
successes of SECLI-FIRM and was achieved through extensive and deep mutual dialogue.

Implementing each of the SECLI-FIRM case studies was time-consuming. It required
the development of trust and understanding between the industrial and research partners
in order to effectively co-design, co-develop, and assess the value-add for specific decisions
and applications. It is encouraging that all industrial partners considered this investment
worthwhile and remained on board despite the additional COVID-19-related challenges
faced during a substantial part of the project.

6.2. Recommendations
6.2.1. Early Adopters and Champions

The sharing of the narratives and experiences of several of the industrial partners
with their broader communities in meetings, workshops, and webinars, for example, was
particularly valuable in helping to raise awareness and interest and therefore in helping
to build the potential market for climate services [36]. Building relationships with such
individuals who can be considered as early adopters and champions within their respective
sectors is highly recommended.

6.2.2. Economic Expertise

As well as benefitting from the active involvement of early adopters and champions,
the involvement of economic experts was beneficial and also recommended. Nonetheless, a
number of challenges were identified in attempting to produce economic estimates of value-
add (Section 4.3), particularly with respect to the availability of appropriate non-confidential
economic data and when extreme events were not predicted with confidence. In general,
all case studies found that economic value was harder to assess than was anticipated.
Recommendations on future work to address the challenges relating to economic data
availability were discussed by Vasilakos et al. [22].

6.2.3. Qualitative Approaches

The SECLI-FIRM experience supported the view that more qualitative approaches
can identify aspects of value not captured by the more quantitative approaches (see
Section 1 [7,8]). The examples of practical value and how to enhance this value presented
in Section 5 were, however, obtained in a rather ad hoc way. A clear recommendation
from SECLI-FIRM was the need to develop a more systematic framework for capturing
the practical value of seasonal forecasts for decision making. Such a framework would
facilitate a more robust and transparent approach. Due to the complex interactions and
factors that influence the use of new services, it would require the strong involvement of
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social scientists. It should be seen as a complementary or parallel approach rather than
replacing more quantitative approaches.

6.2.4. Forecast Performance

Forecast errors identified in the mid-to-high latitudes can be significant, especially
for precipitation and wind associated with individual case study events (Section 4.1). A
key recommendation from the industrial partners that were involved in the SECLI-FIRM
case studies was that, while acknowledging the potential benefits of adopting probabilistic
approaches, there remains a need to improve the forecast quality and increase performance
through improved model physics while recognising that there are inevitably limits to
predictability and that this is an enduring research challenge for the international scientific
community [17].

6.2.5. Focus on the Decisions

The SECLI-FIRM case studies helped to fill a gap in the availability of comprehensive
value-add assessments that focus on the decision-making context, embrace the principles of
co-production, consider both the quantitative (e.g., economic) and qualitative (e.g., social)
value of climate services, and provide examples of both ex ante and post ante assessment.
They provide real-world demonstrations of how many of the challenges discussed in these
previous studies can be addressed; for example, by using decision trees (Decision trees for
each of the case studies are shown in a series of non-technical summary documents at: http:
//www.secli-firm.eu/case-studies accessed on 20 August 2022) to engage and to initiate
sustained conversations with users and to identify the most appropriate points in specific
decision-making processes at which to embed climate information and to assess value. The
use of tools such as decision trees as a focus for co-production is highly recommended.

6.2.6. Building the Climate Services Market—From Micro to Macro Scale

SECLI-FIRM considered the value to individual users of climate services tailored to
their specific needs; i.e., on the micro (company level) rather than macro scale. More efforts
will be needed in the future in order to conceive climate services able to optimise energy
efficiency—for overall value and socio-economic/environmental benefit—for the national
and European markets. Furthermore, in order to fully assess value in the context of the
wider climate services market and from a business model perspective, additional factors
need to be considered such as the costs of providing and learning to use the services as well
as any feedback or second-order effects associated with the increased uptake of climate
services [5,6,36].

6.2.7. Building the Climate Services Market—Transferability to Other Sectors

The SECLI-FIRM case studies primarily considered the energy and, to a lesser extent,
the water sectors, both of which can be considered as early adopters in the European climate
services market [2,3,37,38]. Nonetheless, key insights and learning from the SECLI-FIRM
case studies are potentially transferable to other sectors; notably, the broader energy and
water sectors, as well as agriculture, forestry and timber, infrastructure, insurance, logistics
and transport (particularly offshore and river), and retail including food and drink.
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