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A B S T R A C T   

The potential increase in the adoption value of seasonal forecasts is spotlighted in this paper by introducing 
observation-forecast blending for wine-sector indicators over the Iberian Peninsula. The predictions of six 
bioclimatic indicators (temperature and precipitation based) considered highly important from the perspective of 
wine-sector users were prepared for each month of the growing season and combined with previous observations 
as the indicator period progresses. The performance of this approach was then assessed with Pearson’s corre-
lation coefficient and Fair Ranked Probability Skill Score (FRPSS). The results show a marked increase in the skill 
metrics during the growing season from the early combinations for all the indicators. This progressive 
improvement of the forecasting skill offers the users an opportunity to ponder anticipation and confidence in 
their decisions and, thus, facilitate the future uptake of seasonal forecasting in their decision planning.   

Practical Implications  

Climate change poses a major challenge to wine grape growing, 
and thereby unprecedentedly affects the winemaking industry in 
the Mediterranean region. For example, the traditional match 
between locations and grape varieties was found not to be as 
suitable as before in terms of its climate in the condition of the 
observed global warming. As such, policymakers in the sector may 
have to annually estimate the potential benefits and costs of 
shifting the regulated limits of the producing areas to match the 
climate required for their varieties. Alternatively, adjusted regu-
latory strategies are required to fit business models into the 
forthcoming weather by changing modes of production or even 
the categories of viticultural products according to the forecast 
weather. This might mean a relevant change in the markets and 
consumer preferences too. In addition, reliable and advanced 

climate forecasts in seasonal timescale would also need to be re- 
considered because the management of manpower and vineyard 
and winery logistics would be more challenging if unprecedented 
climate extremes and severe interannual variability became a new 
normal. 

Seasonal forecasts have been a readily useful adaptation tool with 
a wide range of applications in fields, including agriculture (Vajda 
and Hyvärinen, 2020). By co-developing the tailored bioclimatic 
indicators based on seasonal forecasts together with the users, the 
customized climatic information could assist decision-making 
months ahead of the critical periods of the growing season. 
However, seasonal forecasts with insufficient skills would prevent 
users from applying it in their decision workflow. Unfortunately, 
the skill of the seasonal forecasts was rather limited outside of the 
tropics (Doblas-Reyes et al., 2013). Consequently, we merged 
forecasts with observations (i.e., the ‘blending’ strategy) in the 
structure of the bioclimatic indicators. By applying this method-
ology, the potential increase in skill could allow the users/ 
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practitioners to achieve an acceptable trade-off between antici-
pation and skill and, hence, to spot the best timing for a decision to 
be made. 

Remarkably, our results show that this ‘blending’ approach im-
plies a steady increase in both of the skill metrics from the early 
stages of the growing season. Specifically, the Growing Season 
Temperature (GST) and Growing Degree Days (GDD) show the 
best skill in the early months among the six indicators. As for the 
precipitation-derived ones, the Spring Total Precipitation (SprR) 
prediction tended to be more skilful than Harvest Total Precipi-
tation (HarvestR) after a one-month observation was included. 
Moreover, the spatial distribution of their performance also varies: 
the south of the Iberian Peninsula (IP) attained more skill for SprR 
while it was easier to forecast HarvestR in the north. Regarding the 
two heat stress indicators (i.e., number of heat stress days - SU35 
and Warm Spell Duration Index - WSDI), the progressive increase 
in skill for SU35 was focused on the southern part of the IP while 
the improvement was more widespread for WSDI. Furthermore, 
WSDI began to be skilful approximately-one month earlier than 
SU35. 

In summary, the practical implication of this paper is that the 
progressive increase in the skill attained with the ‘blending’ 
strategy would ultimately empower decision- and policy-maker to 
use seasonal forecasts in the most favorable moment considering 
their risk profile. 

Data availability 

Data will be made available on request.   

Introduction 

The Mediterranean region is the historical cradle of winemaking 
(Comité Européen des Entreprises Vins, 2015) and the European Union, 
its major producer, contributes to more than 65 % of the global wine 
supply (OIV, 2016). However, since grape growing is sensitive to climate 
conditions (Camps and Ramos, 2012), current and future climate con-
ditions pose a major challenge to this sector, especially as unprece-
dented extreme events become more frequent (Diffenbaugh et al., 
2017). For instance, Jones and Alves (2012) showed that currently 
observed global warming has already shifted the grape-growing land-
scape by making the traditional regions hotter and/or drier and, 
simultaneously, benefiting other areas that have become more suitable 
for this activity. Moreover, Fraga et al. (2014b) also explored this 
behavior at the regional level by studying these effects in one of the 
historical Portuguese wine-making regions, the Douro Valley. Actually, 
this climatic pressure (Blanco-Ward et al., 2019) has been spotlighted by 
several studies stating that by 2070 the Douro Valley would shift 4–5 
categories (out of 16) towards warmer and drier conditions (Fraga et al., 
2014b; Koufos et al., 2014). 

Consequently, climate change has been an important footprint in 
wine-related decision-making (highlighting the overall need to adapt 
strategically to climate change). For example, Jones et al. (2005) found 
more significant warming for seasonal minimum temperatures than for 
the maximum ones and strong correlations (between − 0.4 and − 0.8) 
between the phenological and climatic variables (i.e., maximum tem-
peratures) in the past five decades. Furthermore, the change rate of the 
relevant maturity date was up to three days per year (Petrie and Sadras, 
2008; Tomasi et al., 2011). As such, an advanced and trustworthy sea-
sonal prediction can better inform all the related decisions when the 
harvesting season keeps changing. 

Although physiological adaptations and genetic selection have 
already been explored to cope with the forthcoming severe heat stress 
(Venios et al., 2020), the application of seasonal forecasts is one of the 
powerful adaptation tools as seen in the fields such as renewable 

energies (Torralba et al., 2017), water resource management (Marcos- 
Matamoros et al., 2017; Emerton et al., 2018) and agriculture (Vajda 
and Hyvärinen, 2020; Hansen et al., 2011; Winsemius et al., 2014; 
Malheiro et al., 2010). 

In this framework, the combination of seasonal forecasts with 
bioclimatic indicators tailored for the wine sector could assist decision- 
making months ahead of the critical periods (like the growing season) of 
the year. For this reason, the development of climate services co- 
designed with the end-users maximizes the advantages of seasonal 
predictions on specific bioclimatic indicators (Soares et al., 2019; 
Marcos-Matamoros et al., 2020). A recurrent demand to enable the 
application of seasonal forecasts in the users’ decision workflow is 
having predictions with high enough skill (aimed at risk aversion, as 
described in Giuliani et al., 2020). Although the level of skill needed 
depends on users and their decisions, the skill of the seasonal forecasts 
outside the tropics was rather limited (Doblas-Reyes et al., 2013, and 
references therein). The solution proposed in this paper aims to merge 
observations and forecasts in the bioclimatic indicator structure 
(‘blending’ strategy). This strategy is valuable because it permits the 
users to achieve a trade-off between anticipation and skill to identify 
when a decision can be safely triggered. To our knowledge, there are still 
no studies analyzing this combination of bioclimatic indicators specific 
to the wine sector together with the use of seasonal forecasts and the 
‘blending’ strategy. 

Therefore, our target is to understand the forecast potential of a 
range of sectoral bioclimatic indicators by portraying the balance be-
tween skill and anticipation. To do so we have studied predictions 
initialized at each month of the growing season (from April to October) 
over the IP and integrated them with observations as the growing season 
progressed. From the climate services perspective, this post-processing 
of climate forecasts (e.g., calculations of bioclimatic indicators) needs 
a wide range of efficient and appropriate software: firstly, it should be 
able to take advantage of the available computational resources (e.g., 
parallel computing) given the considerable amounts of daily data 
involved in this kind of analysis; secondly, by confirming the compati-
bility with existing software (e.g., for the skill scores computation); and, 
finally, being flexible to adapt the calculation to different regions, sys-
tems and time periods would be critical too. To fulfill these needs, this 
work also introduced the newly released CSIndicators R-package for the 
calculation of the selected indicators (see Table s1 for the details of the 
functions, Pérez-Zanón et al., 2021c). 

The paper is organized as follows. In the next section, we introduce 
the used data sets and the spatial domain followed by the definitions of 
the selected bioclimatic indicators and the ‘blending’ scheme explained 
in section 3. After that, section 4 presents the results including the 
performance of the forecast indicators for all the initialization dates. 
Finally, the key outcomes of the paper are summarized in section 5. 

Data and spatial domain 

Seasonal prediction model 

In this work, the daily temperature (mean, maximum and minimum) 
and precipitation from the European Center for Medium-Range Weather 
Forecasts (ECMWF) SEAS5 predictions (hindcast from 1993 to 2016) 
have been used. The data was downloaded from the Climate Data Store 
(Raoult et al., 2017) of the Copernicus Climate Change Service (C3S- 
CDS). SEAS5 is the fifth-generation seasonal forecast system of the 
ECMWF. The Copernicus version of the SEAS5 uses the Integrated 
Forecast System (IFS) Cycle 43r1 and provides a 25-member ensemble of 
a variety of Essential Climate Variables (ECVs) at 1-degree spatial res-
olution and up to 7 months ahead (Johnson et al., 2019; Manzanas et al., 
2019; Gubler et al., 2020; Weisheimer et al., 2021). 
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Reference dataset 

The reference dataset, downloaded from the CDS too, comes from the 
ECMWF ERA5 reanalysis with a horizontal resolution of 31 km (Hers-
bach et al., 2018). It provides a variety of land, atmospheric and oceanic 
climate variables from the year 1979 onwards. In some comparison 
studies with station-based observational data sets, data from ERA5 
reanalysis generally reproduced the rainfall patterns at climatic scales 
(annual cycle of monthly mean) but in some places it tended to over-
estimate precipitation all year round (such as in northern Europe and 
southern regions of central Europe, Bandhauer et al., 2022 and North 
America, Xu et al., 2019). As for surface air temperature and the wine- 
sector indicators (i.e., SU35 and WSDI) derived with daily tempera-
ture maximum, station-based observational data provided by SOGRAPE 
(our end-user, see the description in section 3.1) showed that ERA5 was 
generally comparable with other reanalysis data sets such as E-OBS in 
terms of RMSE and correlation (Sanderson et al., 2019). The variables 
used include daily precipitation and temperature (maximum, mean and 
minimum) for the same period as the SEAS5 prediction (1993–2016, the 
hindcast period). This product is based on the IFS Cy41r2 including 137 
levels in the atmosphere on a regular longitude-latitude grid (Hersbach 
et al.,2020). 

ERA5 reanalysis data were used to adjust the bias of SEAS5 predic-
tion and it was also the reference dataset when computing the fore-
casting skill metrics such as the Pearson’s correlation coefficient and the 
Fair Ranked Probability Skill Score (FRPSS). 

Spatial domain 

The spatial domain of this study is one of the most important wine- 
producing areas in the Mediterranean region: the IP encompasses 
widespread viticultural areas in Portugal (31 regions, see https://www. 
ivv.gov.pt/np4/regioes/) and Spain (70 regions) (see https://www. 
foodswinesfromspain.com/). IP is located in south-western Europe and 
it is mainly surrounded by water bodies: the Mediterranean to the east 
and south-east; and the Atlantic Ocean to the north, north-west and 
south-west (see Fig. 1). To its north-east, it is connected to the rest of 
Europe through the Pyrenees. Its geographical situation, orography and 
the influence of surrounding water bodies determine a variety of cli-
matic regimes that imprints characteristic trademarks to its viticulture 
regions (Fraga et al., 2014a). 

In this area the co-variability of climatic variables (e.g., temperature 
and precipitation) depicted varying structures due to different large- 
scale patterns’ composites (Rodrigo et al., 2021; Meehl and Tebaldi, 
2004) in addition to the local-scale land–atmosphere interactions 
(Vidale et al., 2007; Fischer et al., 2007). For instance, it has been 
studied that the North Atlantic Oscillation (NAO) is one of the pre-
dominant large-scale atmospheric modes influencing the climatic vari-
ability over the Iberian Peninsula, in particular winter precipitation over 
the western IP (Goodess and Jones, 2002; Trigo et al., 2004). 

Methodology 

Definition of bioclimatic indicators 

Through the process of co-development with our end-users (SOG-
RAPE), we selected six bioclimatic indicators that are highly relevant to 
vine growth, grape yields and harvest dates (see Jones and Davis 2000, 
Jones and Alves 2012 and the list of indicators in Table II & IV of Fontes 
et al., 2016). SOGRAPE is a large wine company based in Portugal, 
managing vineyards and producing wines across five countries on three 
continents. It has invested significantly in climate science, both by 
equipping itself with a network of vineyard-based weather stations 
providing quality data since 2011 and by partnering in several climate 
science projects at the national and international levels. 

On the one hand, this group of indicators was settled given that the 
temperature-derived indicators fully cover the period of interest (i.e., 
the growing season of grapevines). On the other hand, another impor-
tant ECV, precipitation, was also used to estimate the wetness in the 
early and harvesting stages of the season, which were considered in two 
bioclimatic indicators used. Besides, it is worth noting that indicators 
relating to winter rainfall were not selected in this work considering the 
higher risks and potential losses caused by (high) rainfall in the late 
spring and during the harvest period (Sanderson et al., 2022). 

These indicators are Spring Total Precipitation (SprR), Harvest Total 
Precipitation (HarvestR), Growing Season Temperature (GST), Growing 
Degree Days (GDD), number of heat stress days (SU35) and Warm Spell 
Duration Index (WSDI). All the formulas can be found in the supple-
mentary material along with the corresponding functions in the CSIn-
dicators R-package. In the following sections, they are categorized into 
three subsections according to the climate variable used and their def-
initions are summarized along with the meaning and importance in 

Fig. 1. Iberian Peninsula’s relief. Elaborated from GMTED2010 (Danielson and Gesch, 2011).  
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terms of viticulture management. Note that the seasons considered by all 
the following indicators are for the Northern Hemisphere. 

Precipitation-related indicators 
SprR represents the accumulated precipitation during springtime, 

referring to the period from 21st April to 21st June. In dry springs, there 
will be a lower pressure of fungal diseases which, in turn, reduces costs 
related to the application of protective treatments/operations. In addi-
tion, the amount of precipitation during this period also affects the level 
of vigor, translating to the grapevine’s water requirements and the 
quality of grapes. 

In addition to spring precipitation, the accumulated rainfall in the 
harvest season, referring to the HarvestR indicator, is also important and 
this indicator is defined as the total precipitation from 21st August to 
21st October. Moderate precipitation in summer, for example, can be 
beneficial because the cost for additional irrigation is avoided while 
ensuring a correct hydric state of grapevines. However, heavy rainfall 
during this period increases the fungal (Botrytis) infection risks, spoiling 
berries, and favoring the development of acetic and gluconic acids 
(among other compounds) that are detrimental to wine quality (Toit and 
Pretorius, 2002). Furthermore, if heavy rainfall is received during the 
harvest period, there will be potential disruptions for both vineyard and 
winery logistics (e.g., labour availability and scheduling), translating to 
higher costs. 

Average temperature-related indicators 
GST is the 7-month average of daily mean temperatures over the 

entire growing season from 1st April to 31st October. Since many of the 
most used grapevine varieties have been classified according to their 
optimum ranges of GST, this intuitive indicator is frequently used in the 
wine sector (Karoglan et al., 2018) at least in two ways. On the one hand, 
for a given location, the anomalies in the predicted GST can be used to 
plan the possible outcomes of the season in terms of grape quality and 
phenology. On the other hand, according to the suitable range of GST for 
a specific variety, the end-user can look for the best locations to grow 
specific grapevine varieties and rootstocks. In this context, beyond the 
seasonal timescale, the GST indicator also helps to determine/adjust the 
varieties for the predicted climate of the coming years/decades. 

The GDD indicator is defined as the daily sum of mean temperature 
exceeding 10 ◦C over the entire growing season from April to October. 
Although this indicator is highly correlated with GST, it is better linked 
with plant phenology and, hence, is often used for strategic decision- 
making (i.e., monitoring the phenological phases and the emergence 
of plagues). Like the GST indicator, GDD also characterizes the wine- 
growing regions by the suitability to a given type of grapes/wines. 

Maximum temperature-related indicators 
WSDI is the total count of days with ≥ 6 consecutive days when the 

daily maximum temperatures exceed the 90th percentile for the period 
from 1st April to 31st October. The WSDI compares the prediction with 
the 90th percentile in the observation with the additional criterion of the 
length of ‘warm spell’. As such, WSDI signals the span of a heatwave, 
which is associated with water depletion, flowering disruption, dehy-
dration and scalding of berries and leaves. 

SU35 is the total count of days when daily maximum temperatures 
exceed 35 ◦C over the growing season. For grapevines, 35 ◦C is the 
average threshold for photosynthesis to stop occurring. Above this 
temperature, the plant closes its stomata, so the SU35 indicator hints at 
the number of days in which the photosynthesis process would be 
limited. Furthermore, if this situation continues after veraison (i.e., the 
moment when the grape berries stop vegetative growth, change their 
colors and mature), maturation will be arrested for as long as the con-
dition holds. In such circumstances, all essential components for grape 
and wine quality such as sugar, polyphenol and aroma precursor levels 
decrease. 

In other words, SU35 is valuable in two aspects: first, when the 

indicator is lower (higher), the quality of the grape/wine would be ex-
pected to increase (decrease); second, it reflects the need for correction 
approaches (e.g., additional water for cooling grapevines and acidity 
correction of grape musts and wines) that require more resources. 

Due to the systematic bias of the dynamic prediction model (in this 
case as well), it could happen that the predicted temperatures do not 
follow the same statistical distribution as that observed. Therefore, 
instead of using an absolute threshold (e.g., 35 ◦C for the SU35 indica-
tor), we have worked with the percentile in the prediction that corre-
sponds to the percentile position of the 35 ◦C value in the observational 
data. This modification is shown in the formula (see Table s1) and 
implicitly incorporates a bias correction (Casanueva et al., 2018). The 
basis of this approach is to compare the percentile corresponding to the 
predicted (maximum) temperature with the observational percentile 
corresponding to 35 ◦C for each day to determine whether the predicted 
temperature is above the threshold or not. After that, the SU35 indicator 
can be obtained by summing all the days exceeding the threshold over 
the 7-month period. 

Steps from seasonal forecasts of ECVs toward bioclimatic indicators and 
the subsequent verification 

In order to maximize the adoption of seasonal forecasts in users’ 
decision-making workflows, we introduced the ‘blending’ approach to 
all the bioclimatic indicators. By combining observations and forecasts, 
this key strategy aims to increase users’ confidence in the reformed 
predictions. Each step, from the seasonal forecasts of the variables to the 
tailored indicators (and the subsequent verification), is described in the 
following list as well as in Fig. 2 (taking GST as an example).  

1. Match the resolutions of datasets (forecast and observation). To this 
aim, regridding (or other methods of post-processing) could be 

Fig. 2. Flowchart of the general workflow for the blending approach (by taking 
the GST indicator as an example): (1) regridding SEAS5 predictions to ERA5 
grid (from 1◦ to 0.25◦), (2) continuously combining observations and forecasts 
except for the first start month (i.e., ‘Apr’ column), (3) computing the GST 
indicator for each month of the growing season from April to October, (4) 
applying bias correction and (5) conducting the verification. The inner figure 
shows step 2: the yellow (blue) squares represent observed (predicted) data, 
respectively. In detail, since the GST was defined from April to October (i.e., the 
target months), we first used the prediction issued in April (it lasts until 
October, see the ‘Apr’ column) and computed the indicator (i.e., based purely 
on prediction in this case). In May (see the ‘May’ column), we then used the 
predictions issued in May and obtained the indicator based on observations 
(April) and predictions (from May to October); when the month of June arrived, 
we combined predictions from June-October and the 2-month observations 
(April and May) to obtain the indicator. In the last month (see the ‘Oct’ column) 
predictions for October and observations from April to September were used for 
the calculation of the indicator. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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applied before or after the calculation of an indicator. However, the 
impact of their sequence on the outcomes has rarely been investi-
gated. Some (Zhang et al., 2011) are in favor of remapping the cli-
matic variable as the first step while others (Diaconescu et al., 2015) 
compute the indicator before interpolating it to another resolution. It 
was emphasized that the smoothing of extreme values (Diaconescu 
et al., 2015) as well as the comparability between prediction and 
observation (Zhang et al., 2011) should be taken into account when 
deciding the order. In this work, the interpolation was applied to the 
variables (temperature or precipitation) before computing the in-
dicators to avoid the smoothing of extreme values  

2. Combination of observations and forecasts (“blending”). The basis 
for this strategy is that the predictions of ECVs are progressively 
replaced with observational data as soon as they become available (i. 
e., when entering the indicator definition period).  

3. Computation of the bioclimatic indicators. This was performed with 
the ‘blended’ observation-forecast series for each start date 
considered.  

4. Bias correction. Seasonal predictions show biases due to a mixture of 
uncertainties such as the imperfect initial and boundary conditions, 
parametrizations of non-resolved phenomena or internal errors, 
among others (Slingo and Palmer, 2011). Therefore, a bias adjust-
ment has often been required to adjust the forecasts before any 
practical application. Here, the Simple Bias Correction (SBC here-
after) method (Leung et al., 1999) was applied individually to each 
grid point (see the formula in the supplementary material).  

5. Verification. The variability of the skill metrics obtained in this step 
indicates the improvement/deterioration seen as the weight of the 
observations within the indicator increases. In this work, both the 
ensemble mean Pearson’s correlation coefficient (r) and FRPSS have 
been computed with a cross-validation strategy. The former repre-
sents the linear relationship between the data sets, so it is not ex-
pected to see a decrease when more observations are included. 
Furthermore, the decisive month(s) that plays a key role in the in-
dicators could probably be perceived when a marked increased 
correlation is found. As for the FRPSS, it is a good measure to eval-
uate the performance of a tercile-based forecast product (commonly 
used in climate services) when compared to a baseline (i.e., clima-
tology) that also improves as the season progresses (to ensure a fair 
comparison as well as to understand the added value that this fore-
casting approach could bring). Specifically, the ensemble clima-
tology data that acted as the baseline reference was generated by 
resampling ERA5 with the bootstrap (with replacement) and cross- 
validation (leave-one-out) methods. That is, for the start months 

from May to October (i.e., May to Oct columns), when computing the 
FRPSS, the same blending approach was applied to the baseline 
climatology (i.e., the available observations were combined with the 
climatology of the remaining months). For instance, for the ‘May’ 
column in Fig. 2, the observed April data was combined with the 
climatology of May-October before calculating the GST baseline for 
FRPSS. When the season progressed to October, the observations 
from April to September were merged with the October climatology 
for generating the GST baseline. It is worth noting that the (past) 
observed data could benefit both the baseline climatology as well as 
the prediction. As a result, the FRPSS is expected to drop over some 
places in the latter months of the defined period. These cases do not 
mean that the forecasts worsened the quality, instead, they represent 
that the blended predictions have not outperformed the blended 
climatology. 

To perform the above steps efficiently, we used three main R pack-
ages. Firstly, the CSTools (Pérez-Zanón et al., 2021b) can retrieve the 
data from netCDF files (and internally regrid it by using the Climate Data 
Operator developed by Schulzweida, 2020) in addition to applying bias 
adjustment. Secondly, we used the CSIndicators to combine observa-
tions and forecasts before calculating the indicators. Lastly, the 
computation of the skill metrics was conducted with the easy-
Verification (MeteoSwiss, 2017). The interoperability of these packages 
is granted by the fact that the three packages use multidimensional ar-
rays as inputs. Moreover, the functions in CSTools and CSIndicators 
benefit from multiApply R-package (BSC-CNS et al., 2019) by making 
them flexible to work with data arrays of any number of dimensions (e. 
g., to calculate the indicator for station-level or gridded data) and by 
triggering parallel computation (by simply indicating the required 
number of cores). 

On top of that, the CSIndicators and its sister R-packages within the 
Climate Forecast Analysis Tools framework (Pérez-Zanón et al., 2021a) 
simplified the development of climate services by enabling developers to 
easily compute and analyze the indicators with a high degree of flexi-
bility. For instance, the function PeriodAccumulation(), which calcu-
lates the sum of a variable provided in the data array over a user- 
specified period, was used in this work to compute both SprR and 
HarvestR thanks to the parameters ‘start’ and ‘end’ that permit users to 
specify the period of interest (e.g., when considering specific grape va-
rieties). Furthermore, users are capable of optimizing the use of their 
computational resources with the documentation that has been prepared 
specifically for a wide range of critical agriculture-related indicators (see 
https://cran.r-project. 

Fig. 3. ERA5 climatology for (a) SprR and (b) HarvestR indicators (accumulated precipitation from 21st April to 21st June and from 21st August to 21st October, 
respectively) over the Iberian Peninsula considering the 1993–2016 period. 

C. Chou et al.                                                                                                                                                                                                                                    



Climate Services 30 (2023) 100343

6

org/web/packages/CSIndicators/vignettes/AgriculturalIndicators. 
html). 

Results and discussion 

Three statistics of the six bioclimatic indicators were shown below 
for evaluation: (1) the observational climatology, (2) ensemble-mean 
Pearson’s correlation coefficient and (3) FRPSS (Fricker et al. 2013; 
Ferro, 2014) of the bias-adjusted predictions. In addition, the remaining 
bias for all the indicators can be found in the supplementary material 
(Fig. s1, s2&s4). Taking into account the similarities of the indicators, 
the results and discussion were grouped into four subsections as below. 

Spring total precipitation (SprR) and harvest total precipitation (HarvestR) 

Fig. 3 shows that both the SprR and HarvestR indicators have a 
gradient along the latitude with their maximum values in the northern 
(especially in the Pyrenees, 300–400 mm/season) and the northwest 
regions (ranging 200–300 mm/season) of the IP. 

The quality and yield of grapes are significantly (usually negatively) 
influenced by excessive precipitation in the late spring and harvesting 
periods. For instance, up to one-fourth of the grape yield loss could be 
caused by precipitation variability as found in a decadal climate-yield 
relationship study (Agosta et al., 2012). As such, a progressive provi-
sion of seasonal forecasts of SprR and HarvestR with improving skills 
would be helpful for risk management decisions (e.g., spraying against 
fungal risks due to excess rainfall). 

Positive correlations of the start month 04 (08) predictions (see 
Fig. 4a-c for SprR and Fig. 4d-f for HarvestR) when no observations were 
included, were limited in the south-central (north-central) IP for SprR 
(HarvestR), respectively. As the season progressed with more 

observations being combined, the correlation markedly increased to 
0.5–0.7 over wider regions (southern areas for SprR and northern areas 
for HarvestR) in May (September) and above 0.9 in June (October). 

As for their FRPSS (see Fig. 4g-i for SprR and Fig. 4j-l for HarvestR), 
the areas showing better skills were overall consistent with that of the 
correlations: up to 0.2 in the southern half (northwestern regions) of the 
IP for the start month 04 (08) when only predictions were used. As the 
observations begin to be included, the FPRSS for SprR shows a wide-
spread increase, reaching 0.2–0.4, for the start month of May. On the 
other hand, in the start month of September, the increase of FRPSS for 
HarvestR is relatively constrained to the northern areas. This result is 

Fig. 4. (a-c & d-f) Ensemble-mean Pearson’s correlation coefficient (r) and (g-i & j-l) FRPSS for the SprR and HarvestR indicators for the start months from April to 
June and from August to October, respectively. For the correlation coefficients, the statistical significance has been computed with the one-sided student-T distri-
bution (the points referred to p-value below 0.05). 

Fig. 5. ERA5 climatology for (a) GST (Growing Season Temperature from April 
to October) and (b) GDD (Growing Degree Days accumulated from April to 
October) indicators over the Iberian Peninsula considering the 
1993–2016 period. 
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consistent with Crespi et al. (2021) in which a lower RPSS can be seen in 
the south in SON. 

Growing season temperature (GST) and growing degree days (GDD) 

These two indicators are positively correlated with each other, thus 
their spatial patterns of climatology are relatively similar. The highest 
values lie in the south-western areas of the Iberian Peninsula - with GST 
of above 25 ◦C and GDD ranging between 2500 ◦C and 3000 ◦C - namely 
the Guadalquivir Valley, the Ebro Valley and the Mediterranean coasts 
as seen in Fig. 5. The coolest areas are seen in the northern peninsula. 

Both skill metrics GST and GDD also show similar spatial patterns 
and changes. Therefore, only the figures of GDD are shown hereafter 
(see GST in Fig. s3). Regarding the correlation in April forecasts (no 
observation included), the values range between 0.2 and 0.5 throughout 
the IP (except for its southwestern coast). From June onwards, the entire 
peninsula is covered by correlation coefficients above 0.6 and this skill 
metric steadily increases until October (fully above 0.9). On the other 
hand, the change of FRPSS is similar to that of the correlation described. 
More specifically, the FRPSS shows widespread increases, from 0.4 to 
0.6 in the early months such as May and June to above 0.6 in October, 
Fig. 6h-n. When more observations are combined in the calculation of 
GDD, it can be seen that in some scattered places there is a decrease in 
FRPSS (especially from the July start month). This reduction could be 

partially due to the use of the ‘blending’ approach in the climatology 
reference. In fact, as the growing season progresses and the reference 
begins to include more observations, its performance also improves and, 
therefore, the FRPSS becomes noisier. 

The difference between the smooth spatial patterns of Pearson’s 
correlation coefficients and the irregular patterns of FRPSS could also be 
a consequence of the relatively larger effect of individual ensemble 
members in determining the exact collocation of each forecast in the 
corresponding tercile. For Pearson’s correlation coefficient, the signal is 
dominated by the observation included in the blended indicator. 
Instead, the computation of FRPSS is based on casting data into terciles, 
which implies that the use of the tercile thresholds can have a larger 
sensitivity to the behavior of individual ensemble members that produce 
random patterns in the skill score. 

The magnitude and spatial pattern of GDD obtained in this work are 
comparable to Fig. 3 of Spinoni et al. (2015) in which the authors 
emphasized its usefulness in estimating grape production as well as 
indicating the potential new locations with preferable climate in the 
forthcoming decades. Moreover, in the management of vineyards, GDD 
plays an important role in assessing the level of grape maturity, expected 
wine quality and the timing for harvest (Read et al., 2020) as it well 
correlates temperature with the plant metabolic processes at different 
stages of growth such from bud dormancy, flowering, veraison to the 
harvest (Lombard et al., 2013). Thus, the promising increase in skills 

Fig. 6. (a-g) Ensemble-mean Pearson’s correlation coefficient (r) and (h-n) FRPSS for the GDD indicator for the start months from April to October. For the cor-
relation coefficients, the statistical significance was computed with the one-sided student-T distribution (the points referred to p-value below 0.05). 
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from May onwards described above gives more confidence in making a 
variety of decisions (Lombard et al., 2013) such as estimating the 
schedules of maturations for the cultivars grown depending on the 
commercial targets of winemaking as well as planning the labor hirings 
for the subsequent harvest months especially for the enterprises relying 
more on part-time labor (Hickey, 2020). 

Number of heat stress days (SU35) 

The SU35 climatology in Fig. 7a shows that the highest values can be 
found in the Guadalquivir Valley (more than 30 days/season with a 
maximum of 60 days/season), and the surrounding areas to its north/ 
west (10–30 days/season). In Ebro Valley, the values are up to 20 days 
while the rest show values below 10. These outcomes are consistent with 
the station-based work by Fernández-Montes and Rodrigo (2012). Their 
study, performed with SU30 (an indicator with a 30 ◦C threshold) over 
the Iberian Peninsula, reported a similar summer-day distribution (i.e., 
more hot days in the south) and magnitude (up to 75 days) for the period 
from 1929 to 2005. 

As for its Pearson’s correlation coefficient, the predicted SU35 in-
dicator shows limited skill (up to 0.3) in the south-eastern IP in April and 
May. When the season progresses into June and July (see Fig. 8c&d), the 
correlation shows a marked increase in the southern half of the IP, with a 
maximum reaching 0.6 in the Guadalquivir Valley. Furthermore, this 

Fig. 7. ERA5 climatology for (a) SU35 (total number of days with daily 
maximum temperatures above 35 ◦C from April to October) and (b) WSDI (total 
number of days counted when 6 consecutive days have maximum temperatures 
above the temperature corresponding to their 90th percentile from April to 
October) indicators over the Iberian Peninsula considering the 1993–2016 
period. Grey shading indicates grid points that are never above 35 ◦C in the 
observation. 

Fig. 8. (a-g) Pearson ensemble-mean correlation (r) and (h-n) FRPSS for the SU35 indicator for the start months from April to October. For the correlation co-
efficients, the statistical significance was computed with the one-sided student-T distribution (the points referred to p-value below 0.05). 
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correlation continues to increase to more than 0.9 in October across the 
entire southern half of the peninsula and the Ebro Valley. 

As regards FRPSS shown in Fig. 8h-n, positive FRPSS starts to appear 
in the central, southwestern and southeastern regions of the IP, when the 
first-month observations are included (i.e., in May). As seen in the cor-
relation, the FRPSS increases from 0.1 to 0.4 to above 0.4 in the southern 
part of the peninsula from June to August. However, FRPSS remarkably 
decreases from September onwards partially because there are fewer hot 
days after summertime. In addition, this reduction of FRPSS may hint 
that the inclusion of the key-month (in which most of the hot days occur) 
observed values in the climatology raised the quality of the reference 
‘baseline’ when computing this skill metric. 

The increase in the skill metrics observed for SU35 throughout the 
season (except for FRPSS in September and October) is important 
because flowers and grapes are extremely vulnerable to unfavorable 
heat. Thus, with this information, a number of field interventions could 
be implemented to improve yield and quality. For instance, an early 
preparedness of a suitable canopy would adjust the radiation received by 
berries (Hayman et al., 2009) at the early month of veraison (usually in 
July and August). Additionally, the timely use of drip irrigation water 
would cool the vineyard by enhancing evapotranspiration. This strategy 
would be applied when plants are already in a stress condition (to avoid 
attaining severe stress) but simultaneously keeping them moderately 
stressed to favour grape quality. 

Warm Spell Duration Index (WSDI) 

The spatial pattern of the climatological WSDI (see Fig. 7b) is centred 
in the eastern interior of the IP, ranging 12–20 days/season while the 
rest, falls between 8 and 12 days/season. The variability of warming in 
the vineyard plays a key role in the level of the quality-associated sugar 
and flavour compounds (Greer and Weedon 2013), and in turn, de-
termines the need for field intervention and the harvesting date. As such, 
an advanced skilful estimate of WSDI for the coming months would 
better inform the relevant decisions including the sunburn and leaf 
senescence prevention (and the relevant costs required). 

The ensemble-mean correlation and FRPSS shown in Fig. 9 are pos-
itive but constrained over some of the north-western regions of the IP in 
April. Nevertheless, it is worthy to remark that the southeast of the 
peninsula has a correlation up to 0.7 and a widespread increase in FRPSS 
in May when only one-month observation is included. When the season 
progresses to June, the correlation remains well above 0.6 and attains 
values above 0.9 throughout the entire peninsula in October (see Fig. 9c- 
g). However, the FRPSS increases over the eastern half of the IP in June 
and the areas with positive values start to decrease slightly and 
sporadically from July onwards. Still, in the October start month, FRPSS 
of 0.4–0.8 can be seen in most of the central areas of the studied domain. 
As explained previously, those reductions in FRPSS could be partially 
due to the improving baseline set when more observations become 

Fig. 9. (a-g) Ensemble-mean Pearson’s correlation coefficient (r) and (h-n) FRPSS for the WSDI indicator for the start months from April to October. For the cor-
relation coefficients, the statistical significance was computed with the one-sided student-T distribution (the points referred to p-value below 0.05). 
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available and are combined in the calculation of WSDI. 

Conclusions 

Regional weather and climate are key elements in the vineyard 
growth cycle and, hence, in the quality of wines. The IP, home of world- 
known wine regions, faces several challenges due to climate change such 
as an increasing risk of temperature extreme events and unprecedented 
variability of seasonal rainfall (Viceto et al., 2017). 

With the potential value of using seasonal forecasts, this work pre-
sented a user-driven approach that could become the basis of future 
climate services. First, six bioclimatic indicators, which are valuable 
from the perspective of the wine-sector users, were chosen to assess the 
effect of the proposed approach on the prediction quality of seasonal 
forecasts: two (four) precipitation- (temperature-) derived indicators, 
respectively. Second, the ECMWF SEAS5 predictions were interpolated 
to ERA5 grid to avoid smoothing the observed extreme values. After 
that, the new approach aimed to improve the forecasting skill of the 
predictions by continuously blending the past observations with the 
latest predictions as the growing season progressed from April to 
October. Finally, after computing the indicators using the ‘blending’ 
ECVs from the previous step, the Simple Bias Correction method was 
applied for bias-adjustment and followed by the verification. 

Remarkably, the ‘blending’ approach is proven to be of great benefit 
for seasonal forecast service adoption in view of the fact that increases in 
both correlation coefficient and FRPSS could be seen from the early 
stages of the growing season. Regarding the skill of prediction initialized 
in April (early months of the growing season), the GST and GDD show 
better skill than the other indicators. Additionally, the higher correla-
tions for GDD in the southern IP as shown in Fig. 6c-e are generally 
consistent with the spatial pattern of forecasting quality reported before 
(Crespi et al., 2021). 

Regarding precipitation-related indicators, the SprR predictions 
tended to be more skilful than HarvestR after a one-month observation 
was included. Besides, concerning their spatial distributions of the skill 
metrics, the skills are higher for SprR (HarvestR) over the southern 
(northern) IP as shown in Fig. 4. This difference in the spatial patterns 
could be associated with the varying qualities of the SEAS5 precipitation 
in different seasons as indirectly shown in Crespi et al. (2021). In this 
work, Crespi et al. showed that the correlation in MAM was higher in 
southern IP, whereas the northern part attained higher correlations in 
SON. 

As for the two heat stress indicators (i.e. SU35 and WSDI), the pro-
gressive increase in skill for SU35 is focused on the southern half of the 
peninsula while the improvement for WSDI is more widespread. More-
over, WSDI starts to be skilful approximately-one month earlier (June, 
see Fig. 9c&j) than SU35 (July, see Fig. 8d&k). 

To sum up, this paper has shown that the adoption of the ‘observa-
tion-forecast blending approach’ on the tailored bioclimatic indicators 
in seasonal forecast climate services offers a new opportunity to wine- 
sector users. On top of that, the CSIndicators and its sister R-packages 
within the Climate Forecast Analysis Tools framework (Pérez-Zanón, 
2021a) simplified the development of climate services by enabling de-
velopers to easily compute and analyze the indicators with a higher 
flexibility of these tools. 

The systematic assessment carried out throughout all the start dates 
of the growing season highlights the progressive increase in the fore-
casting quality that would ultimately allow the user to find the best 
moment to make a specific decision considering both anticipation and 
performance. In other words, this work demonstrates the improved 
performance and leaves the decision of using either skill metric or both 
to the users according to their needs and decisions. One of the near 
future works is to prove the transferability by appling this ‘blending’ 
strategy to indicators in other areas. Furthermore, it is also worthwhile 
to keep cooperating with end-users to understand to what extent this 
strategy could benefit specific decisions in ‘real-world’ circumstances. 
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