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Abstract: Along with the development of FEL X-ray sources, the design and the construction of
Compton Back-Scattering (CBS) devices for different applications are being pursued. These sources
are designed to provide monochromatic, high peak brightness tunable light beams, with photon
energies above 10 KeV. The source brightness is the most significant figure of merit, which specifies
the suitability of X-ray beams for their application in a specific field of interest and also reflects
the quality of the electron beam itself, which in turn depends on the charge, emittance, energy
spread, etcetera. This article is intended as an introductory review to the field and we embed a few
theoretical considerations and analytical formulae to develop simple tools for the design of CBS X-ray
sources. The present attempt is analogous to previous efforts, put forward to model Free Electron
Laser devices, using scaling relations accounting for the entanglement between the different physical
quantities contributing to the output beam performances. We comment on the reliability of our
analysis by a comparison with the wealth of results (either numerical and analytical) reported in the
dedicated literature.

Keywords: RF wave undulator; free electron laser; Thomson back scattering; linac; X-ray; Compton
back scattering

1. Introduction

Free Electron Laser (FEL) [1] and Compton Back Scattering (CBS) [2] devices are
complex systems, which embed different physical environments, characterized by a large
number of specific parameters. The relevant theoretical description, necessarily non trivial,
requires massive numerical simulations to explore the associated phenomenology and the
design details. The use of scaling formulae [3–6] has played an important role in the design
of FEL devices operating in the SASE and oscillator configurations and has been recently
employed to discuss the feasibility of FELs driven by plasma-accelerated beams.

The logical steps underlying the reported strategy are summarized in Figure 1. Namely,
scaling/empirical formulae are used to determine the space of parameters fixing the
working point, and home-made/commercially available codes are used to refine the first
evaluation and eventually to benchmark the first step.

CBS X-ray devices aim at providing sources of photons with energy above tens of keV
with adequate luminosity. In this review, we collect different ideas, provided in the past,
by several Authors, regarding Compact Light Sources and present the basic tools for fixing
the working point of an actual CBS-based device.

The elementary physical mechanism underlying devices of this type is the head-on
collision of a (sufficiently) energetic beam with a (sufficiently) intense and coherent optical
source [7]. The latter may also be provided by the field of an undulator, which is seen by
the electrons as a coherent ensemble of photons [8,9].
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Figure 1. FEL design strategy flow chart: (1) Input data (beam and undulator parameters and
the desired wavelength emission) (2) S/E −→ WP = use of Scaling/Empirical formula to find the
working point (3) Numerical Simulations (NS) = use of numerical codes to refine the details of the
preliminary definition of the space parameters (4) Loop the process, changing the input data and/or
the working point, until the benchmark with semi-analytical model is true.

The geometry of the CBS process is reported in Figure 2. The energy of the backscat-
tered photon (Es) in terms of the laser/electron energies(El , Ee), of the electron kinematic
variables (β, γ) and of the scattering angles (ϑi, f see Figure 2) is specified by (the polariza-
tion of the scattered photons is essentially that of the input field)

Es =
(1− β cos(ϑi))El

(1− β cos(ϑ f )) +
El
Ee

(1− cos(ϑ f − ϑi))
. (1)

For the details of the symbols, notations and abbreviations see Nomenclature, if not
explicitly mentioned in the text.

Figure 2. Kinematic and geometric variables of Compton Backscattering: input (~p) and output (~p′)
electron momenta,~k,~k′ wave vectors of incident and scattered photon, respectively; orientation and
amplitude of the incident θi, scattered θ f photon angles and φ = θi − θ f relative difference.
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The wavelength of the scattered radiation for a head-on diffusion (ϑi
∼= π, ϑ f

∼= 0),

for (ultra-)relativistic electrons (β ∼= 1− 1
2γ2 ) and in the Thomson limit (assuming Ee � El) is

λs =
λl

4γ2 . (2)

For further comments on the scattering geometry and the relevant kinematics, we
address the reader to ref. [10].

It should be mentioned that, albeit we refer to the process under study as “Compton”
scattering, most of our forthcoming discussion applies to the Thomson scattering, namely
the physical conditions in which the quantum recoil and hence the ratio El/Ee does not
play any role. We find indeed that the “quantum” term correction El/Ee = λc/(γλl) << 1
is negligible for the experimental conditions discussed here.

The mechanism, underlying the emission of bremsstrahlung photons by relativistic
electrons moving inside a magnetic undulator, can be traced back to the same microscopic
process (see Figure 3).

Figure 3. Emissionin undulator macroscopic picture (left) and microscopic picture (right); IP stands
for interaction point.

The undulator is a device characterized by an alternating magnetic field, with a spatial
period λu. The use of the Fermi-Weiszacker-Williams [11–13] approximation was the
starting point of the Madey seminal paper [1], which signed the modern point of view to
the FEL. In more practical terms, the process of photon emission in the undulator can be
considered as the head-on collision of a “pseudo” photon with wavelength

λ∗ = 2λu, (3)

and an electron with the relativistic factor defined as

γ∗ =
γ√

1 +
K2

u
2

. (4)

According to Equation (2), we find for the wavelength of the radiated photons

λs =
λu

2γ2

(
1 +

K2
u

2

)
. (5)

From the point of view of the elementary mechanisms, the role of the undulator-
strength parameter is that of including, in the scattering process, the contribution of the
scattered wave photon density [14–25]. It is evident that an analogous term (sometimes
called Kibble shift) should also appear in Equation (2). The laser field strength parameter is
of noticeable importance for our discussion and, in terms of the laser intensity, reads (we
use Kl instead of a0 to denote the laser strength parameter either for continuity reasons
with the notation of our previous papers or to underline the quasi complete equivalence
with the undulator parameter)

Kl =
eElλl

2πmec2 , (6)
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where El is the peak electric field associated with the laser. In practical units, the Equation (6)
is usually written as

Kl
∼= 8.5× 10−15λl [nm]

√
Il

[
W
m2

]
, (7)

with λl and Il being the laser wavelength (expressed in nanometer) and the intensity
expressed in W/m2, respectively.

The laser strength parameter Kl is a key quantity determining the regime of operation
of the scattering process itself (for further comments see the second part of the paper).
In order to give an idea of the involved orders of magnitude, we note that for an Infrared
Laser, (λ ≈ 1 µm) Kl = 0.1 corresponds to a laser intensity slightly larger than 1018 W/m2.

Even though the process shown in Figure 2 reports a single photon-single electron
scattering, in a CBS device, the interaction occurs between the Ne (non interacting) electrons
composing the electron bunch and the Nl photons contributing to the laser field. The flux of
the scattered X-ray photons (Ṅx) in a head-on scattering depends on the total cross section
of the process and on the luminosity (L0), a pivotal quantity including the numbers of
electrons and photons, namely

Ṅx ∼= σTh · L0, (8)

where σTh is the Thomson cross section [26], and L0 writes

L0 ∼=
f

2π

Nl Ne

Σe,l
,

Σe,l = σ2
e + σ2

l ,

(9)

being σe the r.m.s. electron bunch transverse section, σl the r.m.s. laser beam transverse
section and f the rate of the collisions. We have considered a round beam, otherwise Σe,l ,

should be replaced by
√
(σ2

e,x + σ2
l,x)(σ

2
e,y + σ2

l,y).

The previous relationships suggest the naïve, but importantly, consideration that the
output flux is optimized by increasing the number of electrons, (and therefore the electron
bunch charge) the number of photons (and thus the laser intensity) and finally by matching
and minimizing the electron and laser transverse sections.

We can handle Equation (8) in order to obtain a more convenient form, for practical
purposes. If we replace the number of electrons with the bunch charge divided by the
electron elementary charge (Ne = Qe/e) and the number of photons in the laser pulse as
the laser energy divided by the single photon energy, we find from Equation (8)

Ṅx ∼= k f
ẼlQeλl
(1 + d)

,

k =
8
3

π
r0

h̄I0
,

Qe =
Qe

2π σ2
e
≡ electron beam charge density,

Ẽl = NlEl ,

d =
σ2

l
σ2

e
.

(10)

It should be noted that in SI units k reads

k[m/JAs] = 1.317× 1016. (11)
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As already underlined, the key parameters of our discussion are the bunch charge,
the laser energy, the transverse cross sections of laser/electron bunches and the collision
repetition frequency. Regarding the design strategy, we cannot define (at least on the basis
of the elements provided so far) any effective optimization criteria, except that of keeping
the largest values of Qe, Ẽl and f and the smallest values of σe,l . Furthermore, regarding the
collision frequency we note that the combined use of recirculated beams and of laser pulse
stacking in high Q-cavities provides values exceeding the tens of MHz (for more details
see Refs. [27,28]).

Albeit fairly elementary, what we have accomplished so far is sufficient to get prelimi-
nary indications regarding the working point of an X-ray CBS source. In order to operate
in the hard X-ray region (7–8 KeV) with laser wavelength of 1 µm, an e-beam with 25 MeV
energy is sufficient. In order to proceed we use Equation (10) to specify the amount of
charge density to get a definite X-ray flux. If we assume that the laser and electron r.m.s.
beam transverse sections are matched (d ∼= 1), we find

Qe
∼=

2
k f Ẽl λl

Ṅx. (12)

In Table 1 we have reported the normalized emittance (εn), namely the electron beam
phase space area at the cathode. The corresponding value when the beam is brought to
relativistic energies is εn/γ. It should furthermore be noted that βT (the Twiss parameter)
and εn reported in the table refers to radial and vertical components.

Table 1. Reference Parameters for CBS X-ray Source.

Ṅx
[
s−1] 1.6× 1014

f [Hz] 108

Ẽl [J] 10−2

λl [m] 10−6

γ 50

βT [m] 5× 10−3

εn[mm mrad] 0.1

Furthermore, using for the other quantities on the r.h.s. of Equation (12) the values
reported in Table 1 [29–32], we end up with Qe

[
C/m2] ∼= 0.025, which is a reasonable value,

as we will see below.
Taking into account that the e-beam transverse sections are linked to emittance and

beam parameters by the relationship

σ2
e = βT

εn

γ
, (13)

we can derive from Equation (12) the total charge as

Qe ∼=
2

k f Ẽl λl
2π

βTεn

γ
Ṅx. (14)

The use of the parameters in Table 1 yields for the amount of the bunch charge
Qe = 1.579 pC, consistent with the assumptions in ref. [29].

A key point, loosely mentioned in the previous discussion, is the striking request on
the smallness of the electron and laser beam sections at the interaction point (IP). This can be
realized by exploiting beams with small normalized emittance and small beta parameters.
The realizations of these conditions pass through two bottlenecks: the design of an adequate
RF gun producing an electron beam with a small emittance at the cathode and an extremely
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challenging beam transport at the IP (see below for further comments). Within this respect,
the parameters reported in Table 1 are challenging and are an example of the design
paradigm, we mentioned before: the large collision rate, and the small transverse section
area, achieved through a small normalized emittance of 0.1 mm mrad (a factor 10 below
those used for the operation of SASE FEL linacs) and βT (for both the x, y components) of
5 mm. Further details on the design of the electron gun foreseen to achieve the electron
beam performances can be found in ref. [29].

Furthermore, introducing the electron bunch peak current using the definition

Îe =
Qe√
2πστ

στ ≡ e- bunch duration,

(15)

we find from Equation (14)

Îe ∼=
2
√

2π

k f στ Ẽlλl

βTεn

γ
Ṅx, (16)

which links together the macroscopic parameters characterizing the whole device.
Furthermore, using the definition of beam power asa product of e-beam current and

energy, we find from Equation (16) the following relation

P̂e[W] ∼=
1.944 · 10−10

f στ Ẽlλl
βTεnṄx, (17)

which yields the beam power in terms of the X-ray photon flux.
Before concluding this introductory section it is worth mentioning some points relevant

to the calculation of the brightness. To this aim, we remind the reader that

(a) For the photons emitted per 0.1% bandwidth (bw), we define (see Ref. [10])

Ṅx,0.1% = 1.5× 10−3Ṅx. (18)

(b) For the range of parameters discussed in this paper, the backscattered X-ray beam is
not “non-diffraction-limited”, namely the normalized emittance does not satisfy the
condition

4πγεn < λl , (19)

as it can be checked using the parameters in, e.g., Table 1
(c) For a non diffracted beam the brightness is defined as

B[s−1/(mm mrad)2/(0.1%bw)] =
Ṅx,0.1%γ2

4π2εn,xεn,y
. (20)

The previous considerations are the 0-th-order tools to start any discussion on the
“dimensioning” of a CBS X-ray source.

It is evident that, albeit reasonable, the present description misses non secondary
features, to be considered reliable:

(i) The effect of electron and “optical” beams (laser and X-ray ) longitudinal and trans-
verse distributions.

(ii) The inhomogeneous broadening associated with e-beam energy spread and emit-
tances.

In the following sections, we will see how the previous considerations, of pure common
sense, can be corroborated by a more thoughtful model. We develop also a computational
scheme to account for the interplay between electron beam qualities and CBS spectral
details and we comment on its use for the design of an actual photon source.



Appl. Sci. 2023, 13, 2645 7 of 24

2. Fixing a More Realistic Model

In this section we put the “theoretical frame” of the introductory section on a more
firm basis, including the details associated with electron and laser beam distribution details.

The assumption underlying the definition of brightness in Equation (20) is that the
laser spot envelopes the electron beam (see Figure 4). Furthermore, it implicitly contains
the hypothesis that the transverse phase space angular divergence of the scattered X-rays
matches that of the electron beam.

Figure 4. Laser and scattered X-ray beam longitudinal profiles. The screen in green represents the
detector and zd is the relevant longitudinal coordinate. (see Ref. [33] for further details).

In the numerical example presented in the previous section, we have assumed a large
repetition rate, a small emittance and a very low βT value at the IP.

We have accordingly followed a naïve optimization procedure, which simply maxi-
mizes the repetition rate and minimizes the laser and electron transverse dimension at IP.
The electron bunch length should be furthermore sufficiently short to avoid the hour-glass
effect, as understood by inspecting Figure 4.

The weakness of the discussion developed in the introductory section is displayed in
Figure 4, where we have reported the CBS collision region, indicating the hour-glass effect
associated with the incoming laser and output X-ray beam diffraction behavior [33]. Any
reasonable model should therefore include the spatial and temporal dependence of the
laser and electron distribution. Assuming a cylindrical symmetry we can write the number
of photons scattered per unit volume and unit time as

d3Nx

c dVdt
= σTh(1 + β0)Ñl(r, z, t)Ñe(r, z, t), (21)

with dV = 2πrdrdz as the volume element in cylindrical coordinates, Ñl,e as the laser and
electron number distribution and β0 as the average electron on axis reduced velocity.

It is evident that Equation (21) is substantially equivalent to our starting Equation (8),
with the only difference that, in order to evaluate the number of scattered X-photons, it is
necessary to perform an integration on the transverse volume and on the
longitudinal coordinate.

We will follow the indications in Ref. [33] to model the electron and laser photon
distributions by the use of the same formalism. We exploit indeed the fact that the relevant
longitudinal and transverse envelopes can be viewed as equivalent, if the transport is
provided by linear optical elements (lens, quadrupoles, etcetera) where aberrations do not
play any significant role [34,35]. We write therefore

Ñp(r, z, t) =
Np

Ap

1
σp(z)2 e

−
r2

σp(z)2
e
−

tp(z)2

∆τ2
p ,

p ≡ l, e.

(22)

The previous function is nothing but a Gaussian in time and transverse coordinate,
the quantities σp(z) and ∆τp are the r.m.s. of the longitudinal and temporal distributions
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and Ap is the normalization constant. The specific forms for the e/l dependence on z is
given below

σe(z) = σe

√
1 +

(
z

βT

)2
,

σl(z) = σl

√
1 +

(
z

ZR

)2
,

(23)

where σe, βT are the already introduced electron-beam section and Twiss parameter,
respectively. The laser section σl and ZR are associated with the beam waist and Rayleigh
length, namely

σ2
l =

W2
0

2
, W0 ≡ laser beam waist,

ZR =
π W2

0
λl

Ae = π3/2c∆τ,

Al = 2
(π

2

)3/2
c∆t.

(24)

In passing, we remind the reader of close analogy between the Rayleigh length and
the βT parameter [34–36]. We carry out the integration on the transverse coordinate,
without specifying (see below) tp(z), we get therefore

d2Nx

c dtdz
=

2πσThNl Ne(1 + β0)

σl(z)2σe(z)2 Ae Al
e
−

tl(z)2 + te(z)2

∆τ2
∫ ∞

0
e
−

σe(z)2 + σl(z)2

σe(z)2σl(z)2

r2

rdr =

=
πσTh(1 + β0)

Ae Al
L̃0(z),

∆τe = ∆τl = ∆τ,

L̃0(z) =
Nl Ne

[σe(z)2 + σl(z)2]
e
−

tl(z)2 + te(z)2

∆τ2 .

(25)

The superimposed tilde denotes the luminosity divided by the collision frequency,
L̃0(z) is a function of the longitudinal coordinate and therefore

dNx

dt
=

cπσTh(1 + β0)

Ae Al

∫ ∞

−∞
L̃0(z)dz. (26)

It is important to emphasize that dNx/dt is not the photon flux Ṅx defined in the
previous section. The derivative in Equation (26) refers to the microscopic time, while the
superimposed “dot” accounts for the macroscopic time associated to the rate of collisions.
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In order to perform the integration, it is necessary to carefully specify the dependence
of the luminosity on the z-variable. We note therefore that

σe(z)2 + σl(z)2 = (σ2
l + σ2

e )(1 + ζ2),

ζ = κ z,

κ =
1

ZR

√√√√√√1 + r2
T

Z2
R

β2
T

1 + r2
T

,

rT =
σe

σl
.

(27)

Regarding the definition of tp(z), we note that an appropriate discussion, including
the detector time (namely the time at which the X-ray flux is measured on a screen placed
at z = zd) has been developed in Ref. [33]. The definition of the laser and electron pulse
time, tl and te, are respectively reported in Ref. [33] is more general and comprises a fairly
elaborated conceptual scheme, accounting for the current time t (namely that ruling the
interaction at the IP) and the detector time td (namely the time at which the scattered
photons are collected at zd). Since we limit ourselves to the backscattering geometry we
drop such a distinction and simply set

te(z) = t,

tl(z) = 2
√

2
z
c

,
(28)

where 2
√

2 is just a matter of normalization, due to the definition of the laser pulse duration
∆t, linked to the bandwidth as ∆ωl∆t =

√
2.

Assuming the conditions of Equation (28) we get

e−
( tl (z)

∆t

)2
−
(

te(z)
∆τ

)2

= e−(
t

∆τ )
2
e−χζ2

,

χ =

(
2
√

2
c∆tκ

)2

, σz,e = c∆t.

(29)

We can therefore carry out the integration on the longitudinal coordinate z, thus
getting from Equation (26)

dNx

dt
=

2π2cσTh(1 + β0)

Ae Alκ

L0

f
e−(

t
∆τ )

2 ∫ ∞

−∞

e−χζ2

1 + ζ2 dζ. (30)

The use of the following integration procedure [37]

∫ ∞

−∞

e−χζ2

1 + ζ2 dζ =
∫ ∞

0
e−s
[∫ ∞

−∞
e−(χ+s)ζ2

dζ

]
ds =

=
√

π
∫ ∞

0

e−s
√

χ + s
ds = eχ

√
πΓ
(

1
2

, χ

)
,

Γ(ν, a) ≡ Incomplete Gamma function,

(31)
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eventually yields

dNx

dt
=

σThL0

f
Φe
−
(

t
∆τ

)2

,

Φ =
2π5/2c(1 + β0)

Ae Alκ
eχΓ
(

1
2 , χ
)

,

κ =

(
2
√

2
σz,e
√

χ

)
.

(32)

The function Φ marks the difference with respect to the results of the previous section
(see Equation (8)). To appreciate its physical meaning, further algebraic manipulations are
in order. We can, accordingly, introduce the flux function

Φ =
2√

π∆τ

√
χeχΓ

(
1
2

, χ

)
,

χ =

(
2
√

2
c∆tκ

)2

= 8r2
z

 ZR
σz,e

√√√√√ 1 + r2
T

1 + r2
T

Z2
R

β2
T


2

,

rz =

(
σz,e

σz,l

)
,

(33)

and if we integrate with respect to time, we obtain the number of scattered photons

Nx ∼= 2σTh
L0

f
F(χ),

F(χ) =
√

χeχΓ
(

1
2

, χ

)
.

(34)

The X-ray photon counting, including the rate of collisions, is therefore

Ṅx ∼= 2σThL0F(χ). (35)

It is evident that the corrections to the result of Section 1 are essentially given by the
function F(χ), depending on a single variable. The relevant behavior is reported in Figure 5.
Even though an optimum in the strict sense does not exist for large values of χ, the function
approaches values close to unit.

Choosing therefore A ∼= 1 and χ ≥ 10 (compatible with effective experimental
parameters [33]), we recover the starting point of Equation (8).

The main result of this section is that, even though naïve, the conclusions we have
drawn in the introduction are consistent with the analysis developed here, which can be
exploited for a more appropriate optimization of the whole device.

The forthcoming sections contain further elaboration including the spectral structure
of the X-ray output beam and the relevant inhomogeneous broadening induced by the
beam qualities.
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Figure 5. Log-log plot of the flux function F(χ)
√

χ.

3. Spectral Properties and Inhomogeneous Broadening

In the previous two sections we have not considered the spectral properties of the
Thomson backscattering, which are affected by the structure of the electron beam itself and
determine a dilution of the spectral brightness. Here we fix a simple procedure to account
for the quoted effects.

Before going further, we take a step back and better clarify what we have already
mentioned without any thorough discussion.

Regarding the definition of Thomson scattering limit of CBS, we note that it occurs if
the electron recoil (see Figure 6) does not play any role in the scattering process, or, similarly,
when the energy of scattered photons is negligible with respect to e-beam energy.

Figure 6. Vertex of the Feynman diagram expressing the difference between Compton (a) and
Thomson Scattering (b). In case (b), the electron dynamics remain practically unperturbed after the
interaction process.

Even though academic, for the range of parameters considered here, we will comment
on the effect of quantum corrections to CBS in the final section.

As is well known [7], underscored in the introduction and discussed elsewhere in this
issue [38], within this approximation, the CBS can be treated using the same procedure
adopted to treat radiation emission in the magnetic undulator. The analogy allows a
straightforward inclusion of the spectral inhomogeneous broadening and of the non-linear
contributions, which occur at larger laser intensities. They are responsible for frequency
shift (due to the laser equivalent strength parameter) and for inducing a figure eight-like
motion in the electron trajectory, determining the emission at higher harmonics [39].
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The energy of the scattered photons with the inclusion of the effect of the laser wave
intensity and of small angular deviation from the head-on collision (see Figure 7) writes

h̄ωs =
4γ2h̄ωl

1 +
K2

l
2

+ (γϑ)2
. (36)

Figure 7. Geometry of the Compton Backscattering including angular shifts.

The previous equation refers to the wavelength scattered by a single electron, since
the bunch is composed by electrons with different energies and different entrance angles, it
will be necessary to evaluate the frequency shift associated with the deviations from the
reference values and then make an average on the electron energy and angular distributions.

This procedure has been described in articles and textbooks (see [3,5,37,39–42] and
references therein) and will not be repeated here. We just remind the reader that it is
sufficient to evaluate the relative frequency shift, composed as

δω

ω
=

(
δω

ω

)
ε

+

(
δω

ω

)
Kl

+

(
δω

ω

)
ϑ

ε =
δγ

γ
≡ relative energy deviation

(37)

where the different terms are due to deviation in energy (ε), laser strength parameter (Kl)
and scattering angle (θ). The dependence of Kl on the transverse coordinate comes from the
laser mode distribution shape, while the angular variables from the relation ϑ2 = x′2 + y′2.

Considering that the spectral shape is given by [34]

S(ν) =

 sin
(ν

2

)
(ν

2

)
2

= 2Re
(∫ 1

0
(1− t)e−iνtdt

)
,

ν = 2π Ñl
ωx −ω

ωx
,

(38)

where Ñl = c∆T/λl is the number of laser cycles within the pulse duration.
The convolution on the electron beam distribution can be evaluated as

〈S(ν)〉 =
∫

D
S(ν + δν) f (x, x′; y, y′; ε, t)d5x,

δν = 2π Ñl
δω

ω
,

(39)

where f (x, x′; y, y′; ε, t) is the e-beam six dimensional phase-space distribution.
We assume that the distributions can be factorized as

f (x, x′; y, y′; ε, t) = F(x, x′; y, y′)φ(ε)φ(t) (40)
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where F(x, x′; y, y′) = g(x, x′)g(y, y′), with

g(η, η′) =
1

2πεη
exp

(
−

γ2
ηη2 − 2αηηη′ + βηη′2

2εη

)
, η = x, y ,

φ(ε) =
1√

2πσε

exp
(
− ε2

2σ2
ε

)
, ε =

γ− γ0

γ0
,

φ(t) =
1√

2πσt
exp

(
− t2

2σ2
t

)
.

(41)

The normalization of the phase space g(η, η′) distribution is ensured if the Twiss
parameters satisfy the condition [43]

γη βη − α2
η = 1. (42)

The level curves of g(η, η′) can be exploited to visualize the geometrical content of
Courant-Snyder invariant (see Figure 8), the rms values of the radial and vertical beam
sections and of the angular divergences placed on the curve line in correspondence with
the tangent points of the lines parallel to the axis η and η′, respectively.

Figure 8. Courant-Snyder ellipse, γ2
ηη2 − 2αηηη′ + βηη′2 = εη . The abscissa of the point denoted by

a dot yields the rms of the e-beam angular divergence, the ordinate of the point denoted by a star
yields the associated rms transverse section.

The technicality associated with the evaluation of the convolution integral is just a
matter of working out multi-dimensional Gaussian integrals. The use of the integral repre-
sentation on the r.h.s. of Equation (38) simplifies such a task and leads to an analytically
manageable form, as reported below [34]

〈S(ν)〉 = 2Re
∫ τ

0
(1− t)

e−iνt− 1
2 (πµεt)2√

Rx(t)Ry(t)
dt,

Rη(t) = (1 + α2
η)(1− ıπµηt)(1− ıπµη′ t)− α2

η ,

(43)
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where we have included either the effects of the energy spread and emittances, which are
specified through the inhomogeneous broadening parameters [34]

µε = 4Ñlσε,

µη′ =
4Ñlγ

2εη(
1 +

K2
l

2

)
βη

; µη =
4 Ñlγ

2εη(
1 +

K2
l

2

)
γη

k2
β,

εη =
εn

γ
; η = x, y ,

kβ =
πKl
γλl
≡ betatron motion wave number.

(44)

Taking into account that

σ2
η′ = γηεη , σ2

η = βηεη , (45)

we can also write

µη′ =
4Ñlγ

2σ2
η′(

1 +
K2

l
2

)
(1 + α2

η)

,

µη =
4Ñlγ

2(
1 +

K2
l

2

)
(1 + α2

η)

(
ση

β∗T

)2
,

β∗T = k−1
β ,

(46)

where β∗T denotes the value of the Twiss parameter associated with the betatron wave
number. The β∗T is usually referred to as the undulator “natural” focusing parameter
and, in absence of further focusing elements is the reference quantity for the electron
beam matching.

It should be underlined that the optimization of the luminosity requires, as already
noticed, extremely peculiar values of the Twiss coefficients at the IP. See Figure 9 where we
have reported the bunch interaction at the overlapping point, where the βT parameter of
the electron beam is of the order of cm or even less.

Figure 9. Geometry of the electron (red) and photon (green) bunches interaction at the IP.

If the e-beam is at waist in the crossing point, the γT parameters (inversely proportional
to βT) determine a significant increase of the e-beam divergence. It is therefore evident that
the inhomogeneous broadening associated with the angular spread (µη′ ) is dominant.

It should furthermore be noted that µη ∝ K2
l and therefore, to the laser intensity,

for low Il , the associated effect on the spectral broadening can be neglected.
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To be less qualitative, we reconsider the definition of the laser equivalent strength
parameter and note that

Il

[
W
m2

]
∼= 1.38× 1010 K2

l

λ[m]2
. (47)

Accordingly, for Kl
∼= 10−1 and using a laser wavelength 1 µm (a Ti: sapphire e.g.) the

associated power density is 1.38× 1020 W/m2. For these values, the contribution of µη to
the spectrum broadening can be neglected.

In Figures 10 and 11, we provide examples of spectrum distortion due to energy
spread/“emittances” and Twiss parameters, respectively. The comments to the figures are
summarized below

(i) Figure 10 yields an idea of the dependence of the spectral line on the energy spread.
In the case of a symmetric energy distribution no spectral peak shift is exhibited and
the most significant effects are the broadening and the reduction of the peak intensity.

(ii) Figure 11a displays the comparison between correlated and non correlated phase
space e-beam distributions at the IP (see Figure 11b). A non-zero value of the αT(x,y)
correlation parameters determines an increase of the angular divergence along with
a further broadening and an increase of the asymmetry and decreasing of the peak
spectrum.

(iii) Figure 11c shows the comparison of the effect on the spectral line of the beam phase
space distributions exhibiting different Twiss parameters (see Figure 11d). It is evident
that either the spectral asymmetry and broadening are dominated by the effect of the
larger angular divergence.

Figure 10. Spectral line of the scattered photons vs. energy (keV) for the e-beam and laser parameters
λl = 1 µm, Ñl = 100, γ = 100 and for different values of energy spread and emittance; (continuous)
σε = 2.5× 10−3, εn,x,y = 0 mrad; (dot) σε = 0, εn,x,y = 0 mrad (The value 0 means that the effect of
the emittance has been considered negligible).

Figure 11. Spectral line of the scattered photons vs. energy (keV) (on the left) and the Courant-Snyder
ellipse, respectively, (on the right) for the e-beam and laser parameters as Figure 10 with εn,x,y = 3×
10−7 mrad and σε = 0. Different combination of Twiss parameters has been provided; (a,b) βT(x,y) =

0.01 m, αT(x,y) = 0.707 (continuous), βT(x,y) = 0.01 m, αT(x,y) = 0 (dot); (c,d) βT(x,y) = 0.01 m,
αT(x,y) = 0, (continuous), βT(x,y) = 0.2 m, αT(x,y) = 1 (dot).
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The central peak frequency shift displayed by the cases with large γT(x,y) is simply due

to the fact that the e-beam divergences increase
(〈

θx,y
〉
=
√

γT(x,y)εn,x,y/γ
)

and therefore

the central peak frequency is given by

ω∗ ∼=
4γ2ωl

1 +
K2

l
2

+
(
γ
〈
θx,y
〉)2

. (48)

In this section we have given a fairly simple picture of the distortion induced in the
Thomson backscattering spectrum, by the electron beam qualities and by the relevant trans-
verse phase-space distribution. The previous results compare fairly well with analogous
(numerical) computations reported in ref. [42].

It is worth underlining that the use of a procedure yielding the full contribution to
the spectral broadening, with the inclusion of the e-beam distribution in phase space is of
noticeable importance. The necessity of squeezing the beam to get a larger photon flux is
counteracted indeed by the insurgence of a large angular divergence, which hampers the
spectral brightness; and therefore, an optimization procedure involving the beam transport
design at the IP should carefully be accomplished. As a final remark we note that a small
transverse section beam, like those reported here, demands an accurate analysis of the
effects possibly induced by the Coulomb intra-beam scattering, which may eventually
lead to an increase of the beam emittance and therefore to the deterioration of the spectral
brightness. While not of crucial importance, but not fully secondary, this aspect of the
problem will be treated elsewhere.

It should be noted that the spectral broadening we have considered here does not
include the effect of the collimator [44], which will be discussed later in the section devoted
to the final comments.

In the following section we will complete the analysis by including the effects associ-
ated with non-negligible values of the laser equivalent K-strength parameter.

4. Non Linear Contributions to Thomson Scattering

The increase of the laser intensity determines the increase of the associated Kl . As in
the case of the magnetic undulator, a new and richer phenomenology arises, such as the
possibility of extending the range of tunability through the emission of higher harmonics.
In this section we will add a few comments on how these aspects of the CBS phenomenology
should be accounted for.

As already noted, the wavelength shift due to the laser parameter Kl is one of these
effects known since the early sixties of the last century [14]. The signature for the non-linear
corrections is the emergence of a further broadening of the spectral line and the emission at
higher order harmonics [7,14,28,38,39,44–50].

As previously underscored, the laser intensity effects can be quantified through the
Kl parameter, using the analogy between the Thomson scattering and the emission in
magnetic undulators. According to the present discussion, the undulator can be viewed as
an ensemble of coherent photons, with a volumetric density [8]

n̄u ∼=
α

4
K2

u

λur2
0

, (49)

providing a number of (virtual) photons, per cubic meter, of the order of 1029. The use of
Equations (8) and (49) allows to derive the number of scattered photons (the photon yield)
by a single electron as reported below

Ns ∼= c∆Tσthn̄u =
2
3

πr2
0NuK2

u. (50)
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If we transpose the last identity to the case of the Thomson scattering, we naively
infer that an increase of the laser intensity and therefore a corresponding increase of
Kl , determines a significant enhancement of the scattered photons. This is not the only
signature of the high intensity (non linear) regime.

If we pursue the analogy with the emission in undulators, we understand that with
the increase of the output photon flux a richer phenomenology, including the appearance
of higher order harmonics, becomes significant.

In order to address the problem of specifying, in less vague terms, the high field effects
in Thomson backscattering, we use a more appropriate theoretical framework.

We remind the reader that the Lienard-Wiechert potentials yield the spectrum per unit
solid angle as [7]

d2 Ix

dωdΩ
= ∑

m

d2 Ix,m

dωdΩ
=

16 α

π
Ne

(
γ Ñl

)2
ξ2

l ∑
m

m2 f 2
b,m(ξl)〈Sm(νm)〉,

d2 Ix,m

dωdΩ
=

16 α

π
Ne

(
γ Ñl

)2
ξ2

l m2 f 2
b,m(ξl)〈Sm(νm)〉,

fb,m(ξl) = (−1)
m−1

2
[

J m−1
2
(mξl)− J m+1

2
(mξl)

]
,

(51)

where the sum is taken on the index of the harmonic m, 〈Sm(νm)〉 is the same as in
Equation (43), with the (significant) difference that the inhomogeneous broadening param-
eters are multiplied by the order of the harmonics and

νm = 2π
(

m Ñl

)ωs,m −ω

ωs,m
,

ωs,m = mωs,1, ωs,1 = ωs.

(52)

It is evident that the spectrum distortion effects are more significant for higher har-
monics. This is easily understood, since the µ parameters are the ratio between the induced
homogeneous to the natural broadening and the latter is reduced by a factor m in the case
of the higher order harmonics. We are now ready to start a more complete discussion.

The harmonic spectrum in Equation (51) is relevant to the radiation emitted on axis
(even though it contains the angular corrections associated with the electron
beam divergences).

In Figure 12, we have reported the quantity

Am =
π

16αNe

(
γ Ñl

)2
d2 Ix,m

dωdΩ
(53)

and the relevant comments are reported below.
In Figure 12a, we have reported A1 for large (Kl = 1) intensities. It is evident that,

apart from the shift of the central peak when Kl increases, the most remarkable effect is the
dominance of the line broadening and of asymmetry associated with the increase of the
role of the spatial part of the transverse inhomogeneous broadening parameters (namely
µη). Furthermore, these effects are even more significant for the spectral characteristics of
higher harmonics (see Figure 12b).

Regarding the Equation (50), it should be noted that if we perform the evaluation
of the number of emitted photons, we find after an integration over the frequency and
solid angle the following result (see also ref. [45]) (obtained after a series expansion of the
Bessel functions)
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Ns ∼=
8
3

πr2
0Ñlξl

[
1− 8

5
ξl +

44
35

ξ2
l . . .

]
,

ξl =
1
4

K2
l

1 + K2
l

2

.

(54)

Figure 12. (a) A1 vs. photon Energy, εn,x,y = 3× 10−7m · rad, σε = 2.5× 10−5, λl = 1 µm, Ñl =

100, Kl = 1, n = 1, βT(x,y) = 0.05 m, γT(x,y) = 20 m−1, αT(x,y) = 0 (continuous), βT(x,y) =

0.2, γT(x,y) = 5 m−1, αT(x,y) = 0 (dot). (b) A3 vs. photon Energy βT(x,y) = 0.05 m, γT(x,y) =

20 m−1, αT(x,y) = 0, n = 3.

This result is less naive than it may appear. It can indeed be interpreted as an intensity
correction to the Thomson cross section, which, in terms of the parameter Kl , can be
written as

σth(Kl) = σth

[
1− 7

5
K2

l +
263
140

K4
l . . .

]
. (55)

This opens new elements of discussion, which will be developed in the
forthcoming section.

5. Final Comments

We have neglected, so far, quantum effects in the study of CBS. We have mentioned that
most of our assumption is due to the neglecting of quantum recoil. The interplay between
classical and quantum regimes is not as sharp as we have indicated. Some comments in
this direction are addressed in this section.

In the previous sections, we have developed and summarized different ideas concern-
ing the physics and the phenomenological aspects of the CBS, finalized to the design and
construction of quasi-coherent X-ray sources.

We have underscored that the relevant theoretical and technological foundations
deepen their roots in the research developed since the second half of the last century. In par-
ticular the underlying technology is the result of the tremendous effort aimed at providing
high-intensity lasers. It is therefore important to emphasize that the breakthrough occurred
with the introduction of the Chirped Pulse Amplification technique [51], and accelerators
and high-quality beams. Within the last context, a not secondary role has been played by
the development of FEL sources in all its declinations (oscillators, SASE, fourth generation
of synchrotron radiation sources, etcetera).

We have underlined that, if the quantum effects are neglected, most of the formalism
resembles that already exploited to understand the details of the radiation emitted in
magnetic undulators [52,53]. This is however a superficial statement, which should be
commented on more carefully.
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To frame the problem in easily understandable physical terms, we list a few guiding
parameters [54]

ψ =
eElλe

mec2 =
El
Ess

,

ς =
h̄ωl
mec2 =

λe

λl
,

Ess =
mec2

e
1

λ̄e
∼= 1.323× 1018V/m,

(56)

where Ess is the Sauter-Schwinger critical field [54,55], corresponding to the threshold
energy for the creation of an e± pair.

The quantities ψ, ς compare, to the electron mass, the energy gained by an electron
under the effect of an external field in a reduced Compton wavelength and the energy of a
single laser photon, respectively.

Regarding the parameter ς, we note that it is hidden in Equation (1), which, in the
limits of negligible angular and intensity dependent shift, yields the following scattered
frequency and wavelength shift

ωs ∼=
4γ2ωl

1 + 4γς
,

∆λs

λs
= 4γς.

(57)

According to Figure 13a, we get that deviations from the classical limit can be observed
for 4γς > 0.1, which can also be written as

λe > 2.5× 10−2 λl
γ

, (58)

quantum shift effects can, e.g., be observed for energies above 5 GeV for a pump laser with
λl
∼= 500 nm (2.48 eV) [56].

Figure 13. (a) Comparison between back-scattered photon frequency vs. ∆λs/λs with (dot) and
without (continuous) recoil contributions. (b) CBS cross section normalized to πr2

0 vs. ∆λs/λs.

The same conclusion can be achieved by inspecting the CBS cross section vs. 4γς
reported in Figure 13b, which exhibits deviations larger than 10% with respect to the
Thomson cross section for the same amount of 4γς.

According to the previous discussion, significant quantum effects can be observed
in the process of X-ray photons scattered by energetic electrons. This problem has been
addressed in Ref. [55,57], where the use of FEL X-ray beams to generate narrow band GeV
photons via the backscattering of a 7 GeV electron beam has been proposed. In Figure 14,
we have reported the differential cross section of the Compton backscattering of a pump
laser with different photon energies (from IR to hard X-ray), namely
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dσ

dε2
vs. ε2,

0 < ε2 < εmax,

εmax =
4γ2ε1

1 + 4γε1
, ε =

h̄ω

mec2 .

(59)

Figure 14. CBS differential cross section vs. ε2 (given in GeV) for different energies of the laser pump
(1.2 eV (continuous), 120 eV (dot-dash), 1200 keV (dash)).

Going back to ψ and ς, we note that they are quantum parameters, but their ratio
defines the laser strength equivalent parameter, namely

Kl =
ψ

ς
. (60)

If we combine Equation (60) with the second of Equation (57), we end up with the
following relationship

∆ωs

ωs
= 4

γ√
1 +

K2
l

2

ψ

Kl
, (61)

which is a “measure” of the quantum frequency shift in terms of the electric field size,
energy and laser strength parameter, having included also the effect of the transverse
motion in the definition of the relativistic factor (see Equation (4)).

Equation (61) is useful to specify different region of interest regarding the relative
weight of quantum or non-linear intensity effects in the CBS process (see Figure 15 and
Ref. [54]).

According to the Equation (56), ψ = 1 corresponds to the Sauter-Schwinger critical
field yielding the creation of an e± pair [54,55].

In Figure 15a, we have reported ∆ωs/ωs vs. Kl for different values of ψ. In correspon-
dence with ψ = 1, the laser electric field is equivalent to Ess, for lower values the insurgence
of quantum effects becomes less significant. We have also marked the regions specifying
the different regimes (Thomson, Compton, linear and non-linear). In Figure 15b, we have
shown a comparison with the chart reported in Ref. [58], reporting the different zones of
interest and the historical evolution in terms of laser power (hence of Kl), allowing the
experimental benchmarking of these regimes.

It should be noted that Figure 15a has been drawn for γ = 100; for larger values,
the lines are shifted towards larger quantum shifts values, thus allowing the access to the
quantum regime with lower Kl values.
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Figure 15. (a) Log-Log plot of ∆ωs/ωs vs. Kl for different values of ψ and γ = 100. The line
Kl = 0.1 is the ideal separation of the linear regime (Kl < 1) from the non-linear regime (Kl > 1).
The line ∆ωs/ωs = 0.1 separates the Compton regime (∆ωs/ωs > 0.1) from the Thomson regime
(∆ωs/ωs < 0.1). (b) Correspondence with the chart (adapted form Ref. [58]) regarding the evolution
of high power lasers including also the historical evolution of light power laser technology. The knee
marked with CPA is the breakthrough due to the introduction Chirped Pulse Amplification technique.

We have commented on the possibility of dealing with quantum effects in CBS scat-
tering, but it is evident that can they be hardly detected in X-ray source devices. Most
of the relevant effect is observed in higher energy photon scattering, which opens a so
reach phenomenology and new effects in non linear QED [47–50,54,55,57], requiring a more
appropriate and thorough discussion, for which there is not time in the present context.

Before concluding, we like to comment further on the CBS spectral broadening. We
remind the reader therefore that, collecting the scattering photons on a suitably collimated
angle, a narrow band or nearly mono-chromatic beam could be available, as a consequence
of the restriction of photons at larger angles and therefore at larger wavelengths. However,
the spatial, angular and energetic distribution of the electrons introduce the broadening,
which combines with the bandwidth associated with the collimator. For this reason the
total spectral bandwidth will be provided by(

∆ω

ω

)
T
=

1
2Ñl

√
1 + µ2

ε + µ2
x + µ2

y + µ2
x′ + µ2

y′ + µ2
c , (62)

where [44]

µc =
Ñl√

3
(γΦ)2

1 + (γΦ)2 , (63)

is the broadening induced by the collimator with an angular acceptance Φ. It is evident that
a large detection angle implies either a broadened spectral bandwidth or a larger number
of collected photons. A general criterion to find a compromise, compatible with a specific
application, between the two options is that of choosing

µ2
c
∼= µ2

ε + µ2
x + µ2

y + µ2
x′ + µ2

y′ . (64)

For further comments on the problem of line broadening the reader is addressed
to [42].

In this article, we have introduced a number of tools useful for the design of CBS
X-ray sources, we have provided comments on the different regimes of operation, including
strong field and we touched on quantum corrections. In a forthcoming investigation we
will discuss different architecture for the design of X-ray CBS sources, including intra-cavity
FEL photon backscattering [59].

Before concluding this review article, we would like to mention that the possibilities
offered by the studies developed in the past on undulators with non standard configurations
suggest possible extensions to “exotic” CBS. For example, the proposal of undulators with
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two different periods (and different polarizations, as well) Refs. [60–63] has inspired the
research program summarized in Ref. [64]. An analogous effort can be put forth using more
advanced suggestions, as the proposal in Ref. [65] or the case of bi-hrmonic undulators [66],
which, if transferred to CBS with appropriate laser configurations, offer a tool to enhance
the associated harmonic emission in the strong field regime.

Author Contributions: Validation, G.D., E.D.P. and V.P.; Formal analysis, G.D., E.D.P. and V.P.;
Investigation, G.D., E.D.P. and V.P. These authors contributed equally to this work. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: One of the Authors GD expresses sincere appreciation to S. Dabagov and to I.
Drebot for an interesting post seminar discussion.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
The following abbreviations are used in this manuscript:

β = v/c Reduced velocity, with v the electron velocity and c the speed
of light

γ Electron relativistic factor
λl Laser wavelength

ωl =
2πc
λl

Laser angular frequency

me Electron mass
h̄ Plank constant
λc = h̄/(mec) Reduced electron Compton wavelength
El = h̄ωl Energy of a single photon laser
Ẽl Laser energy
Kl Laser field strength parameter
Nl Number of photons in a laser pulse
Ñl number of laser cycles within the pulse duration
Ee = meγ c2 Electron energy
B Amplitude of the on axes magnetic field undulator
λu Spatial period of the magnetic undulator

Ku =
eBλu

2π mec
Strength parameter of a magnetic undulator

r0 =
e2

4πε0mc2 Electron classical radius

σTh =
8
3

π r2
0 Thomson cross section

2πσ2
e Electron beam transverse area

I0 =
ec
r0
∼= 1.7× 104 A Alfvèn current

βT(x,y),αT(x,y), γT(x,y) β, α, γ Twiss parameter components in the transverse plane
RF Gun Radio Frequency Gun
h̄ = 6.62607015× 10−34 m2kg/s Plank constant
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30. Krafft, G.A. ; Johnson, E.; Deitrick, K.; Terzić, B.; Kelmar, R.; Hodges, T.; Melnitchouk, W.; Delayen, J.R. Laser pulsing in linear
Compton scattering. Phys. Rev. Accel. Beams 2016, 19, 121302. [CrossRef]

31. Deitrick, K. Inverse Compton Light Source: A Compact Design Proposal. Ph.D. Thesis, Old Dominion University, Norfolk, VA,
USA, 2017. Available online: https://digitalcommons.odu.edu/physics_etds/7/ (accessed on 1 May 2017).
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