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Abstract The Northern Hemisphere midlatitude winter atmospheric variability simulated by Coupled
Model Intercomparison Project phase 5 (CMIP5) models is analyzed at spatial and temporal scales
corresponding to the growth of baroclinic eddies and planetary waves. We use a global scalar metric of the
wave energy frequency-wave number spectrum to identify potential improvements of the CMIP5
ensemble compared to previous coordinated model simulations (CMIP3). We also evaluate whether CMIP5
models predict future shifts in the global baroclinic eddies and planetary-scale wave activities. With respect
to CMIP3, no significant improvements are found, thereby suggesting that no significant breakthrough in
the modeling of the climate system has been hit over the last few years. No significant changes are found
in RCP4.5 scenarios for the selected metric of the baroclinic and planetary-scale atmospheric flows, thus
indicating that localized changes with potential societal impact might not be related to changes in key
fundamental properties of the atmospheric circulation.

1. Introduction

Baroclinic instability and planetary standing waves in the midlatitudes are a key component of the climate
system since they move the largest component of the poleward heat and momentum transport [Czaja
and Marshall, 2006]. Therefore, the ability to correctly simulate the statistical properties of midlatitude
atmospheric circulation is a critical requirement for climate models. Early studies conducted on numeri-
cal weather prediction models [Tibaldi, 1986] and, later, works on Coupled Model Intercomparison Project
phase 3 (CMIP3) models [Lucarini et al., 2007] showed a tendency to overestimate baroclinic short wave
energy and to underestimate the amplitude of planetary waves.

The recent development of a new set of climate simulations under the CMIP5 framework [Taylor et al., 2012],
which contributed to the science basis for the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, allows for a comparative analyses of the overall improvements in our ability to simulate
different aspects of the climate system [Knutti et al., 2013]. For example, Zappa et al. [2013] found a general
improvement in the simulation of the North Atlantic extratropical storm tracks and Colle et al. [2013] has
suggested that this improvement might be related to the adoption of a higher horizontal resolution in some
of the CMIP5 models. According to Chang [2013], CMIP5 models mostly simulate too weak and too equator-
ward storm tracks. They also found an upper troposphere signal of a poleward shift and increasing strength
of the storm tracks toward the end of the 21st century in the Northern Hemisphere. Moreover, according to
Mizuta [2012], the frequency of intense cyclones will increase on the polar side of the storm tracks, especially
in the North Pacific, a result which seems to depend on the definition of extratropical cyclone dynamical
intensity [Chang, 2012].

Building on the analysis done by Lucarini et al. [2007] on the CMIP3 simulations, we consider here the new
CMIP5 ensemble and we analyze the winter (December-January-February (DJF)) baroclinic and standing
waves in the midlatitudes by focusing on suitably defined model metrics. The main objective is to identify
possible improvements in the ability to simulate atmospheric circulation variability at spatial and tem-
poral scales which can be linked to well-defined physical drivers, namely, the growth and equilibration

of baroclinic instabilities and the interaction of large-scale atmospheric flows with orography and with
zonal asymmetries in atmospheric convection. The new CMIP5 ensembles has been depicted as a “better
CMIP3, rather than a radically new ensemble [Knutti and Sedldcek, 2012], thereby highlighting that in spite
of the consistency and robustness of result compared to previous modeling efforts, major milestones in the
development of climate models have not been hit.
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Table 1. Overview of the CMIP5 Models Atmosphere and Ocean Resolutions?

ID Model Atmosphere Resolutions Ocean Resolutions

1 CanESM2 T63, L35 ~0.94° latitude X 1.4° longitude, L40

2 CMCC-CM T159, L31 0.5°-2° latitude x 2° longitude, L31

3 CNRM-CM5 T127,L31 1/3°-1° latitude X 1° longitude, L42

4 CSIRO-Mk 3.6.0 T63,L18 ~0.94° latitude x 1.875° longitude, L31

5 FGOALS-g2 3° Jatitude x 2.8° longitude, L26 ~1° latitude x 1° longitude, L30

6 GFDL-CM3 ~200km, L48 Tripolar ~1/3° -1 latitude x 1° longitude, L50
7 GFDL-ESM2G 2° latitude x 2.5° longitude, L24 Tripolar ~1/3° -1 latitude x 1° longitude, L63
8 GFDL-ESM2M 2° latitude x 2.5° longitude, L24 Tripolar ~1/3° -1 latitude x 1° longitude, L50
9 HadGEM2-ES 1.25° latitude x 1.875° longitude, L38 1/3°-1° latitude X 1° longitude, L40

10 INM-CM4 1.5° latitude x 2° longitude, L21 0.5° latitude x 1° longitude, L40

11 IPSL-CM5A-LR 1.875° latitude X 3.75° longitude, L39 ~0.5°-2° latitude x 2° longitude, L31

12 MIROC5 T85, L40 ~0.5°-1.4° latitude x 0.8° longitude, L50
13 MIROC-ESM T42,L80 ~0.5°-1.7° latitude X 1.4° longitude, L44
14  MIROC-ESM-CHEM T42, .80 ~0.5°-1.7° latitude X 1.4° longitude, L44
15 MPI-ESM-LR T63, L47 Bipolar ~1.5° latitude x 1.5° longitude, L40
16 MPI-ESM-MR T63, L95 Tripolar ~0.4° latitude x 0.4° longitude, L40
17 MRI-CGCM3 TL159, L48 0.5° latitude x 1° longitude, L51

18 NorESM1-M 1.9° latitude x 2.5° longitude, L26 Bipolar ~ 1° latitude x 1° longitude, L53

aThe NCEP reanalysis has resolution: 2.5° latitude x 2.5° longitude, L28.

Instead of focusing on the improvements in the description of local features of the atmospheric circulation,
such as the location and extension of the North Atlantic storm track, we present a complementary analysis

of the performance of CMIP5 in describing global statistical properties of the atmospheric circulation which
are essentially connected to the meridional heat transport [Lucarini and Ragone, 2011].

In particular, as the climate system should obey general energy balance constraints, climate models are also
to provide an accurate description of the processes that maintain the equator-to-pole energy transport,
thereby balancing the latitudinal differences between incoming and outgoing radiation.

We also analyze future projected changes of baroclinic and standing waves. In particular, we conduct this
analysis in the framework of the European Union project IMPACT2C. The aim of the project is to quantify
the impact of an increase of global surface temperature of 2°C above the preindustrial level. We, therefore,
consider future projections over the period 2058-2080 when most of the RCP4.5 scenarios reach the +2°C
threshold. The objective of the analysis is to establish if the projected changes in regional climate, such as
those discussed by Zappa et al. [2013] and Mizuta [2012] are also reflected into the fundamental statistical
properties of the atmospheric circulation.

2. Data and Methods

We use the CMIP5 distributed archive of global climate model simulations, and we consider the model listed
in Table 1 for the period 1979-2001 for historical runs and the period 2058-2080 for RCP4.5 simulations
(broadly corresponding to an increase of 2°C in the global surface temperature above the preindustrial
level). As in Lucarini et al. [2007], we use the December-January-February (DJF) daily meridional wind data at
500 hPa to derive an integral metric of the corresponding geopotential height, averaged over the latitudi-
nal belt 30°N-75°N, where the bulk of the baroclinic and of the low-frequency waves activity is observed, as
discussed in Dell’Aquila et al. [2005].

We adopt the spatiotemporal spectral decomposition introduced originally by Hayashi [1979] and then
modified by Pratt [1976] and Fraedrich and Bottger [1978] to address the issue of low coherence in the region
of the spectrum with low frequency and low wave number, in which standing waves are expected. This
method was already adopted in previous analyses of midlatitude circulation [Lucarini et al., 2007; Dell’Aquila
et al,, 2005]. We consider the quantities Hf . (k;, @), Hg/W(kj, @y, He(k;, @,) which represent, for each

nth year and for each wavelength-frequency pair (k;, w,,), the total atmospheric variance, the propagat-
ing eastward/westward components, and the standing component, respectively. We use these quantities
to define an integral metric of the energy of baroclinic and standing waves. In particular, the energy Eg, o
of the baroclinic waves, i.e., the synoptic traveling waves associated with the release of available energy
driven by conventional baroclinic conversion [Blackmon, 1976; Speranza, 1983; Wallace et al., 1983], is com-
puted by integrating the eastward propagating component over the high frequency high wave number,
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Figure 1. (a-d) Climatological average over 22 winters of Hayashi spectra for DJF geostrophically reconstructed geopo-
tential height at 500 hPa, in the latitudinal belt 30°N-75°N, from NCEP meridional wind. The Hayashi spectra have been
obtained by multiplying the spectra by kjwp,7/(27), = = 90 days so that equal geometrical areas represent equal vari-
ance in log-log plots, and their units are square meter. The LFLW standing and the HFHW eastward propagating areas
are indicative of the planetary and the baroclinic waves activities, respectively.

corresponding to 2-7 days and to zonal wave numbers greater than 6. The energy E;,,, of the planetary
waves that interact with orography [Charney and De Vore, 1979; Charney and Straus, 1980; Benzi et al., 1986]
and that are catalyzed by the subtropical jet [Benzi and Speranza, 1989; Ruti et al., 2006] is instead computed
by integrating the standing component over the low frequency low wave number, corresponding to 10-45
days and to zonal wave numbers between 2 and 4.

The indices < Eg,, > and < Ep,, > are computed both for historical and for RCP4.5 simulations by aver-
aging the indices over the corresponding time intervals. The historical simulations are compared to the
corresponding quantities obtained by the National Centers for Environmental Prediction (NCEP) [Kistler
et al, 2001] and the ERA-Interim [Dee et al., 2011] reanalyses. Then RCP4.5 simulations are compared with
the historical ones to discuss the projected changes in baroclinic and in the planetary standing waves.

An additional indicator of the midlatitude variability is computed by following the same spectral decompo-
sition procedure used so far, but without the meridional averaging over the considered latitudinal belt. The
aim of this analysis is to assess whether CMIP5 models predict any meridional future shift in the bulk of the
baroclinic and planetary-scale waves.

3. Results

The reference spatiotemporal spectra averaged over the 22 winters included in the NCEP data set spanning
the time period 1979-2001 are represented in Figures Ta-1d. This spectral decomposition of atmospheric
circulation pattern is similar to the previous analysis on CMIP3 models already cited [Lucarini et al., 2007]. A
large portion of the total variance is concentrated in the low frequency low wave number (LFLW) domain,
and it can be related mostly to standing waves and to westward propagating waves. The high frequency
high wave number (HFHW) domain, corresponding mainly to synoptic disturbances, contains a smaller por-
tion of the total variance, and it is almost exclusively related to eastward propagating waves. In contrast, the
average spectrum of westward propagating variance, mainly due to long and low-frequency waves, does

DI BIAGIO ET AL.

©2014. American Geophysical Union. All Rights Reserved. 1279

5801 SUOWILLIOD BAIIEBID) 3|gedjdde au A peusenob s/ DIl WO ‘98N 0 Sa|n. 10§ AReiq1T BUIIUO AB]IM UO (SUO1IPUOD-PLE-SULBYLI0O A3 | 1M ARe.q1 U IUO//SANY) SUONIPUOD PUe SWLB 1 au) 885 *[¥202/90/02] U0 ARiqIT8UIluO AB|IM *v'3'N'3 Ad 826850 TOET0Z/Z00T 0T/10p/wiod A AReiq1jputjuo'sandnBe//sdiy wou papeojumod ‘v ‘yT0Z *L008r 76T


http://dx.doi.org/10.1002/2013GL058928

@AG U Geophysical Research Letters 10.1002/2013GL058928

550 , not feature a similarly clean and
A nenm legible structure, suggesting that spe-
s0r 1.CanESM2 cific phenomena with well-defined
¢ 2.CMCC-CM . .
3.CNRM_CM5 propagation properties may not be
450 4.CSIRO-Mk360 Teti B H
5.FOOALS-g2 distinguished by this method.
6.GFDL-CM3 R .
g 400 7.arOL-ESME The integral quantities <£g, > and
S 8.GFDL-ESM2M .
i o HadGEME-ES < Epj,, > derived from the 18 CMIP5
Vossof AN 10.INM-CM4 models for the historical and RCP4.5
o 11.IPSL-CM5A-LR X . .
N 12.MIROC5 simulations are reported in Figure 2.
| L & 13.MIROC-ESM .
300 1aMRooEsM_cHEM  The error bars represent twice the
° 15.MPI-ESM-LR interannual variability (i.e., standard
250 | 16.MPI-ESM-MR L.
17.MRI-CGCM3 deviation of the mean) computed for
18.NorESM1-M .
o the number 22 winters.

600 700 800 900 1000 1100 1200 1300 1400 1500
<E, > Considering the historical simulations

Plan
(blue dots), planetary and baroclinic

Figure 2. Scatterplot of <Eg,o >, for the baroclinic waves versus < Epj,,>, wave energy from the CMIP5 mod-

for the planetary waves, computed for the Z 500 hPa DJF data averaged . ; .
in the latitudinal belt 30°N-75°N, by the CMIP5 historical runs (blue) and els is consistent with the reanalyses

RCP4.5 simulations (red). The letters N and E indicate the NCEP reanal- (black dots) only for the GFDL-ESM2G
ysis and the ERA-Interim one, respectively. For each dot the horizontal and MPI-ESM-LR models; large biases,
(vertical) error bar gives the 95% confidence level of 20-5/\/N, where even larger than 20%, are found
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corresponding direction. underestimated and the planetary

waves are slightly overestimated by
the climate models, in contrast with the already cited study on the CMIP3 models [Lucarini et al., 20071.

The reanalyses are contained in the inner ellipse (within 1 standard deviation from the ensemble mean),
with the eight best CMIP5 models. All the other CMIP5 models, except CMCC-CM, CSIRO-Mk360, and
FGOALS-g2, are within the outer ellipse (within twice the standard deviation from the ensemble mean).
Note that neither a higher vertical nor a higher horizontal resolution necessarily imply a better agreement
with observations. In particular, models from the same group (i.e., the GFDL/CM3/ESM2G/ESM2M family
and the MPI/ESM-LR/ESM-MR family) show a lower performance in the considered metric in the case of a
higher vertical resolution.

In the case of RCP4.5 scenarios (red dots), the dispersion of the model is similar to the historical data,

with eight models included in the inner ellipse and all but three models contained in the outer one. The
baroclinic activity projected for the scenario is higher than the historical for six models (CSIRO-Mk360,
GFDL-CM3, GFDL-ESM2G, HadGEM2-ES, MPI-ESM-LR, and MPI-ESM-MR) and essentially unchanged for

the other models. The CMIP5 ensemble mean for the scenario data undergoes a shift of about 4% toward
higher baroclinic activity with respect to the historical one. However, the shift is not statistically significant
according to a Kolmogorov test at 95% confidence level. In the case of planetary waves, present climate and
future projections do not show significant changes for most of the models. In particular, it has been verified
(not shown) that this result is not sensitive to the choice of a particular time period, at least for the case of
RCPA4.5 scenarios.

Overall, considering the small changes and the large spread found between the ensemble members
according to the proposed metric, no significant change in the statistical properties of the baroclinic and
planetary-scale motions is detected.

The meridional profiles of the baroclinic and planetary wave activity computed from historical and sce-
nario data, averaged over the 18 CMIP5 models for each latitude are shown in Figures 3a and 3b. A slight
shift toward higher values is suggested for the baroclinic variability, and a weak decrease of the planetary
variability. However, at all latitudes, the baroclinic activity in the historical and in the scenario simulations
are compatible with the null hypothesis of having the same distribution of the indices of baroclinic and
planetary-scale activity at each latitude, according to a Kolmogorov-Smirnov (K-S) test at a significance level
of 5%. Similar results are found for the planetary-scale variability.
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Figure 3. Meridional profiles in the belt 30°N-75°N of (a) < Egaoc > timated, in contrast with the previous

of the baroclinic waves and (b) < Ep|,, > of the planetary waves, aver- studies on CMIP3 models. However, the
aged on the CMIP5 models for the 1979-2001 historical simulations multimodel mean is approximately as
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In Figures 3a and 3b, for historical and RCP4.5 simulations, the heavy of CMIPaf thereby suggesting th.at the
lines represent the mean and the thin lines delimit the variance of the ~ SyStématic component of the misrep-
CMIP5 ensemble. resentation of baroclinic and planetary

waves is indeed small.

Concerning the RCP4.5 scenarios, a slight shift of the models ensemble can be detected with 4% higher
values of the baroclinic waves for the future (2058-2080 years) with respect to the present climate.
However, such a shift is not statistically significant as a consequence of the spread in the behavior of the
considered models.

Our results are in agreement with the analyses of extratropical circulation conducted with different method-
ologies. As in Chang [2012], we observe weak tendency of CMIP5 models to underestimate high-frequency
variability. Concerning the trends, we find a small, although not statistically significant, increase in the
baroclinic waves activity for RCP4.5 scenario, in agreement with Chang [2013].

With the integral metric of the baroclinic and planetary-scale wave activity adopted in this study, even the
models that are in close agreement with observations do not show the same sign of the tendency in the
future scenario. Note that the adopted metric does not account for the longitudinal phase of the wave activ-
ity, and therefore, our results do not rule out the possibility that the considered models produce localized
future changes with even severe societal impacts. However, the small (not statistically significant) changes
in future baroclinic and planetary-scale activity are in a qualitative agreement with the findings of Zappa
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et al. [2013] and Mizuta [2012]) who also report limited future changes at the regional scale and significant
disagreements among the models.

This work shows that in spite of significant improvements in the ability to simulate aspects of the climate
system that are important for their potential societal impact [Knutti et al., 2013], work is still required to
achieve a better simulation of simple yet fundamental properties of the midlatitude atmospheric dynamics
that cannot be improved by focusing on specific characteristics of the modeling systems such as the model
resolution or on the use of specific parameterization schemes.
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