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Abstract. A standardized methodology for the validation of
short-term air quality forecast applications was developed in
the framework of the Forum for Air quality Modeling (FAIR-
MODE) activities. The proposed approach, focusing on spe-
cific features to be checked when evaluating a forecasting
application, investigates the model’s capability to detect sud-
den changes in pollutant concentration levels, predict thresh-
old exceedances and reproduce air quality indices. The pro-
posed formulation relies on the definition of specific fore-
cast modelling quality objectives and performance criteria,
defining the minimum level of quality to be achieved by a
forecasting application when it is used for policy purposes.
The persistence model, which uses the most recent observed
value as the predicted value, is used as a benchmark for the
forecast evaluation. The validation protocol has been applied
to several forecasting applications across Europe, using dif-
ferent modelling paradigms and covering a range of geo-
graphical contexts and spatial scales. The method is success-
ful, with room for improvement, in highlighting shortcom-
ings and strengths of forecasting applications. This provides
a useful basis for using short-term air quality forecasts as a

supporting tool for providing correct information to citizens
and regulators.

1 Introduction

Air pollution models play a key role in both enhancing the
scientific understanding of atmospheric processes and sup-
porting policy in adopting decisions aimed at reducing hu-
man exposure to air pollution. The current European Am-
bient Air Quality (AAQ) Directives, 2008/50/EC (European
Union, 2008) and 2004/107/EC (European Union, 2004), and
even more the proposal of their revision (European Union,
2022) encourage the use of models in combination with mon-
itoring in a wide range of applications. Indeed, models have
the advantages of being cheaper than measurements and con-
tinuously and simultaneously covering large areas. Advances
in the knowledge of atmospheric processes and the enhance-
ment in computational technologies fostered the usage of
three-dimensional numerical models, the chemical transport
models, not only for air quality assessment (retrospective
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simulation of historical air quality scenarios in support of
regulation and planning) but also for real-time air quality
forecasting. Indeed, during the last few decades, air quality
forecasting systems based on chemical transport models have
rapidly been developed, and they are currently operational in
many countries, providing early air quality warnings that al-
low policymakers and citizens to take measures in order to
reduce human exposure to unhealthy levels of air pollution.
On the European scale, a real-time air quality forecasting sys-
tem (Marécal et al., 2015) has been operational since 2015
in the framework of the Copernicus Atmosphere Monitor-
ing Service (CAMS) and currently includes 11 numerical air
quality models, contributing to the CAMS regional ENSEM-
BLE production (https://regional.atmosphere.copernicus.eu/,
last access: 20 October 2023). Several review papers are
available in the literature, comprehensively describing the
current status of and emerging challenges in real-time air
quality forecasting (e.g. Kukkonen et al., 2012; Zhang et al.,
2012; Baklanov et al., 2014; Ryan, 2016; Bai et al., 2018;
Baklanov and Zhang, 2020; Sokhi et al., 2022), including
air quality forecasting systems based on artificial intelligence
methods (e.g. Cabaneros et al., 2019; Masood and Ahmad,
2021; Zhang et al., 2022).

A thorough assessment of model performances is funda-
mental to building confidence in models’ capabilities and
potential and becomes imperative when model applications
support policymaking. Moreover, performance evaluation is
also very important for research purposes, since investigating
models’ strengths and limitations provides essential insights
for planning new model developments.

The main goal of a model evaluation process is to prove
that the performances are satisfactory for the model applica-
tion’s intended use, in other words, that it is “fit for purpose”
(e.g. Hanna and Chang, 2012; Dennis et al., 2010; Baklanov
et al., 2014; Olesen, 1996). Indeed, to be able to determine
whether a model application is fit for purpose, its purpose
should be stated at the outset. Since air quality models are
used to perform various tasks (e.g. assessment, forecasting,
planning), depending on the aim pursued, different evalua-
tion strategies should be put into practice.

Several scientific studies have already proposed different
evaluation protocols or have suggested recommendations for
good practices (e.g. Seigneur et al., 2000; Chang and Hanna,
2004; Borrego et al., 2008; Dennis et al., 2010; Baklanov et
al., 2014; Emery et al., 2017). Models used for regulatory air
quality assessment are commonly evaluated through statis-
tical analysis examining how well they match the observa-
tions. From literature reviews, many statistical measures are
used to quantify the different aspects of the agreement be-
tween simulations and observations. Indeed, no single metric
is likely to reveal all aspects of model skills. So, the usage
of several metrics, in concert, is generally recommended to
support an in-depth assessment of performances. Zhang et
al. (2012) provide an exhaustive collection of the most-used
metrics. The list includes both traditional discrete statistical

measures (e.g. Emery et al., 2017), quantifying the differ-
ences between modelled and observed values, and categori-
cal indices (e.g. Kang et al., 2005), describing the capabil-
ity of the model application to predict categorical answers
(e.g. exceedances of limit values).

Ideally, a set of performance criteria should be given
within a model evaluation exercise, stating if the model ap-
plication skills can be considered adequate. As an example,
Boylan and Russell (2006) and Chemel et al. (2010) pro-
posed performance criteria and goals for mean fractional
bias (MFB) and mean fractional error (MFE) concerning
the validation of aerosol and ozone modelling applications,
respectively. Criteria define the acceptable accuracy level,
whereas goals specify the highest expected accuracy. Rus-
sell and Dennis (2000), citing Tesche et al. (1990), provided
informal fitness criteria for urban photochemical modelling,
according to some commonly used metrics (i.e. normalized
bias, normalized gross error, unpaired peak prediction accu-
racy). Indeed, these recommendations are based on the out-
comes of performance skills from previous model studies.
Specifically concerning air quality forecasting, in the frame-
work of the CAMS regional ENSEMBLE production, per-
formance targets (key performance indicators, KPIs) are de-
fined for the root mean square error (RMSE) in simulat-
ing ozone, nitrogen dioxide and aerosol. KPI compliance
is regularly reported within the quarterly Evaluation and
Quality Control Reports (https://atmosphere.copernicus.eu/
regional-services, last access: 20 October 2023).

Concerning both the definition of protocols for model
evaluation and the proposal of performance criteria, an im-
portant contribution has been made in the last few decades
from the activities and coordination efforts of the Forum
for Air quality Modeling in Europe (FAIRMODE; https:
//fairmode.jrc.ec.europa.eu/home/index, last access: 20 Oc-
tober 2023). FAIRMODE was launched in 2007 as a joint ini-
tiative of the European Environment Agency (EEA) and the
European Commission’s Joint Research Centre. Its primary
aim is to promote the exchange of good practices among
air quality modellers and users and foster harmonization in
the use of models by European member states, with an em-
phasis on model application under the European Ambient
Air Quality Directives. In this context, one of the main ac-
tivities of FAIRMODE has been the development of har-
monized protocols for the validation and benchmarking of
modelling applications. These protocols include the defini-
tion of common standardized modelling quality objectives
(MQOs) and modelling performance criteria (MPC) to be
fulfilled in order to ensure a sufficient level of quality of a
given modelling application. An evaluation protocol has been
proposed for the evaluation of model applications for regula-
tory air quality assessment. The methodology (Thunis et al.,
2012b; Pernigotti et al., 2013; Thunis et al., 2013; Janssen
and Thunis, 2022) is based on the comparison of model–
observation differences (namely the root mean square error)
with a quantity proportional to the measurement uncertainty.
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The rationale is that a model application can be considered
acceptable if the model–measurement differences remain
within a given proportion of the measurement uncertainty.
The approach is consolidated in the DELTA Tool software
(Thunis et al. 2012a, https://aqm.jrc.ec.europa.eu//Section/
Assessment/Download, last access: 20 October 2023). It has
reached a good level of maturity, and it has been widely used
and tested by model developers and users (Georgieva et al.,
2015; Carnevale et al., 2015; Monteiro et al., 2018; Kushta
et al., 2019). This approach focuses on applications related
to air quality assessment in the context of the AAQ Directive
2008/50/EC (European Union, 2008), taking pollutants and
metrics into account in accordance with the AAQ Directive
requirements.

Recently, FAIRMODE worked on developing and test-
ing additional quality control indicators to be complied with
when evaluating a forecast application, extending the ap-
proach used for assessment applications. A scientific consen-
sus was reached, specifically focusing on the model’s abil-
ity to accurately predict sudden changes and peaks in the
pollutant concentration levels. The proposed methodology,
based on the usage of the persistence model (e.g. Mitter-
maier, 2008) as a benchmark, is now publicly available for
testing and application.

This paper describes this new standardized approach and
is organized as follows. Section 2 illustrates the rationale and
the main features of the developed methodology. Section 3
describes the setup of the forecasting simulations which the
methodology was applied to, including information on the
monitoring data used for the validation. Results are presented
in Sect. 4, focusing on lessons learnt from the application of
the proposed approach in different geographical contexts and
on different spatial scales. Finally, conclusions are drawn in
Sect. 5 together with suggestions for further developments.

2 Methodology

The validation protocol proposed in this work is specifically
for forecasting evaluation. It is an extension of the consoli-
dated and well-documented methodology fostered by FAIR-
MODE for the evaluation of model applications for regula-
tory air quality assessment. Therefore, it is recommended
that the metrics suggested when evaluating forecasting ap-
plications are applied in addition to the standard assessment
MQO, as defined in Janssen and Thunis (2022). This sec-
tion describes the main features of the proposed protocol,
which focuses on the model’s capability to (1) detect sud-
den changes in concentration levels (Sect. 2.1), (2) predict
threshold exceedances (Sect. 2.2) and (3) reproduce air qual-
ity indices (Sect. 2.3). Note that the proposed approach is
not exhaustive. It does not evaluate all relevant features of
a forecast application, and other analyses will be helpful to
gain further insights into the behaviour, strengths and short-
comings of a forecast application.

The methodology, as currently implemented in the DELTA
Tool software, supports the following pollutants and time av-
erages: the NO2 daily maximum, O3 daily maximum of 8 h
average, and PM10 and PM2.5 daily means.

2.1 Forecast modelling quality objective (MQOf) based
on the comparison with the persistence model

Predicting the status of air quality is useful in order to pre-
vent or reduce health impacts from acute episodes and to trig-
ger short-term action plans. Therefore, our main focus is to
verify the forecast application’s ability to accurately repro-
duce sudden changes in the pollutant concentration levels.
To account for this, within the proposed protocol, the main
evaluation assessment of the fitness for purpose of a forecast
application is based on the usage, as a benchmark, of the per-
sistence model, which is by default not able to capture any
changes in the concentration levels, since measurement data
of the previous day are used as an estimate for the full fore-
cast horizon. Indeed, the persistence approach is the simplest
method for predicting future behaviour if no other informa-
tion is available and is often used as a point of reference in
verifying the performances of weather forecasts (e.g. Knaff
and Landsea, 1997; Mittermaier, 2008).

Within the proposed forecasting evaluation protocol, the
root mean square error of the forecast model is compared
with the root mean square error of the persistence model. The
forecast modelling quality indicator (MQIf) is defined as the
ratio between the two RMSEs; i.e.

MQIf =

√√√√√√√√
1
N

N∑
i=1
(Mi −Oi)

2

1
N

N∑
i=1
(Pi −Oi)

2
, (1)

where Mi , Pi and Oi represent the forecast, persistence and
measured values, respectively, for day i, andN is the number
of days included in the time series.

The persistence model uses the observations from the pre-
vious day as an estimate for all forecast days. As an example,
we can consider a 3 d forecast, providing concentration val-
ues for today (day0), tomorrow (day1) and the day after to-
morrow (day2). If today is 5 February, the persistence model
uses data referring to yesterday (4 February) for all forecast
data produced today. So, Pi refers toOi−1 for day0 (5 Febru-
ary),Oi−2 for day1 (6 February) andOi−3 for day2 (7 Febru-
ary). More generally, the persistence model is related to the
forecast horizon (FH= 0, 1, 2, etc.) as follows:

Pi =Oi−1−FH±U (Oi−1−FH, ) (2)

where the measurement uncertainty U is also taken into ac-
count, in accordance with the FAIRMODE approach. The
methodology for estimating the measurement uncertainty as
a function of the concentration values is described in Janssen
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and Thunis (2022), where the parameters for its calculation
of PM, NO2 and O3 are provided as well. It is important to
note that we use the 95th percentile highest value among all
uncertainty values as representative of the measurement un-
certainty. For PM10 and PM2.5 the results of the Joint Re-
search Centre (JRC) instrument inter-comparison (Pernigotti
et al., 2013) have been used, whereas a set of EU AirBase sta-
tions available for a series of meteorological years has been
used for NO2, and analytical relationships have been used for
O3. These 95th percentile uncertainties only include the in-
strumental error. More details are provided in Appendix A.
The fulfilment of the forecast modelling quality objective
(MQOf) is proposed as a necessary but not sufficient qual-
ity test to be achieved by the forecasting application. MQOf
is fulfilled when MQIf is less than or equal to 1, indicating
that the forecast model performs better (within the measure-
ment uncertainty) than the persistence one, with respect to its
capability to detect sudden changes in concentration levels.

Within the proposed protocol, two aspects are included in
a single metric (MQIf): (1) check how well the model pre-
diction compares with measurements and (2) check whether
the model prediction performs better than a given benchmark
(here the persistence model).

The magnitude of the MQIf score, since it is referenced
to a benchmark, is dependent on the skill of the benchmark
itself. To account for this, additional modelling performance
indicators (MPIs) are proposed as part of the evaluation pro-
tocol, based on the mean fractional error (MFE), a normal-
ized statistical indicator widely used in the literature, defined
as follows:

MFE=
2
N

N∑
i=1

|Mi −Oi |

(Mi +Oi)
. (3)

Based on this indicator, two different MPIs are defined and
both included within the protocol: (1) MPI1 =MFEf /MFEp
that compares the forecast model performances with the per-
sistence model ones and (2) MPI2 =MFEf /MFU that evalu-
ates forecast performances regardless of persistence aspects,
using an acceptability threshold based on measurement un-
certainty, where MFU is the mean fractional uncertainty, de-
fined as follows:

MFU =
1
N

N∑
i=1

2U (Oi)
Oi

. (4)

Using the uncertainty parameters provided in Table A1 in
Appendix A, it turns out that 2U(Oi)/Oi shows larger values
in the low-concentration range and then tends towards a con-
stant (0.5 for NO2, 0.3 for O3, 0.55 for PM10, 0.6 for PM2.5)
at higher-concentration values (Fig. A1, Appendix A). So,
the choice of MFU as the acceptability threshold is consis-
tent with performance criteria and goals defined in the liter-
ature for PM (Boylan and Russell, 2006) and O3 (Chemel et
al., 2010), and it has the advantage of not introducing any

additional free parameters, and it can be applied to all pol-
lutants for which uncertainty parameters are set. For both
MPIs, modelling performance criteria (MPC) are proposed,
being fulfilled when MPIs are less than or equal to 1.

2.2 Assessment of modelling applications’ capability to
predict threshold exceedances

When a forecasting system is used for policy purposes, it is
of utmost importance to verify its skill in predicting categor-
ical answers (yes/no) in relation to exceedances of specific
threshold levels, e.g. the limit values set by the current Euro-
pean legislation (European Union, 2008).

To account for this, the most commonly used threshold
indicators (as defined in Table 1) are included in the pro-
posed validation approach, based on the 2× 2 contingency
table (Table B1, Appendix B) representing the joint distribu-
tion of categorical events (below/above the threshold value)
predicted by the model and observed by the measurements;
i.e. GA+ represents the number of correctly forecasted ex-
ceedances, GA− represents the number of correctly fore-
casted non-exceedances, false alarms (FAs) represent the
number of forecasted exceedances that were not observed
and missed alarms (MAs) represent the number of observed
exceedances that were not forecasted.

All metrics included are listed in Table 1, ranging from 0
to 1, with 1 being the optimal value.

2.3 Assessment of modelling applications’ capability to
predict air quality indices

One of the main objectives of a forecasting system is to pro-
vide citizens with simple information about local air quality
and its potential impact on their health, with special regard
for sensitive and vulnerable groups (i.e. the very young or
old, asthmatics, etc.). Air quality indices (AQIs) are designed
to provide information on the potential effects of the differ-
ent pollutants on people’s health by means of a classification
of concentration values in terms of qualitative categories.

The AQI outcome is commonly provided by operational
forecasting systems; therefore its assessment has been in-
cluded in the proposed validation approach, by means of
a simple multiple threshold assessment, and the number of
days predicted by the forecast model in each category is com-
pared with the corresponding number of measured days in
more detail.

Of course, the performance assessment depends on
the chosen classification table. In the current approach,
several AQI tables are available, namely EEA (https://
www.eea.europa.eu/themes/air/air-quality-index/index, last
access: 20 October 2023), UK Air (https://uk-air.defra.gov.
uk/air-pollution/daqi, last access: 20 October 2023; https://
uk-air.defra.gov.uk/air-pollution/daqi?view=more-info, last
access: 20 October 2023) and the US Environmental
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Table 1. Categorical metrics included in the validation protocol.

Metrics Mathematical expression

Accuracy ACC= GA++GA−
FA+GA++GA−+MA

Success ratio SR= GA+
FA+GA+

Probability of detection PD= GA+
GA++MA

FBias score FB= FA+GA+
GA++MA

Threat score TS= GA+
FA+GA++MA

Gilbert skill score GSS= GA+−H
FA+GA++MA−H with H = (GA++MA)(FA+GA+)

FA+GA++GA−+MA

Protection Agency (US EPA; https://www.airnow.gov/aqi/
aqi-basics/, last access: 20 October 2023; Eder et al., 2010).

3 Forecasting applications: models, setup and
monitoring data for validation

The proposed methodology was applied across Europe to
evaluate the performances of several forecasting applica-
tions. This paper focuses on lessons learnt by the validation
of five forecasting applications, based on various methods (in
terms of both chemical transport models and statistical ap-
proaches) and covering different geographical contexts and
spatial scales, from very local to European scales. The key
features of the forecast applications are summarized in Ta-
ble 2. More details are provided for each of them in the fol-
lowing, along with information on the monitoring data used
for the validation.

3.1 MINNI simulation over Europe (FA1)

The first forecast application (FA1) was operated by the Na-
tional Agency for New Technologies, Energy and Sustain-
able Economic Development (ENEA) applying the MINNI
atmospheric modelling system (Mircea et al., 2014; D’Elia
et al., 2021) on a European domain at 0.1◦ horizontal spa-
tial resolution. FA1 is a year-long simulation, referring to
2018. MINNI, which has operationally been providing air
quality predictions over an Italian domain since 2017 (Adani
et al., 2020, 2022), was recently added to the ensemble of
the 11 models contributing to the CAMS regional ENSEM-
BLE production. FA1 was carried out during a preliminary
benchmark phase, using CAMS input and setup, but it is not
an official CAMS product.

Since no data assimilation was applied within FA1, all
available data measured at European background monitor-
ing stations and collected by EEA (E1a at https://discomap.
eea.europa.eu/map/fme/AirQualityExport.htm, last access:
20 October 2023) were considered for the validation.

3.2 WRF-CHIMERE simulation over Portugal (FA2)

In Portugal, an air quality modelling system based on the
WRF version 3 (Skamarock et al., 2008) and the CHIMERE
chemical transport model v2016a1 (Menut et al., 2013;
Mailler et al., 2017) has been used for forecasting purposes
on a daily basis since 2007 (Monteiro et al., 2005, 2007a, b).
The modelling setup comprises three nested domains cov-
ering part of northern Africa and Europe, with horizontal
resolutions of 125, 25 and 5 km for the innermost domain
covering Portugal. At the boundaries of the outermost do-
main, the outputs from LMDz-INCA (Szopa et al., 2009)
are used for all gaseous and aerosol species, and the out-
puts from the GOCART model are used for dust (Ginoux et
al., 2001). The main human activity emissions (traffic, indus-
tries and agriculture, among others) are derived based on data
from the annual EMEP CEIP emission database (available at
https://www.ceip.at/webdab-emission-database/, last access:
20 October 2023), following a procedure of spatial and tem-
poral downscaling. Biogenic emissions are computed online
using MEGAN (Guenther et al., 2006), while dust emission
fluxes are calculated using the dust production model pro-
posed by Alfaro and Gomes (2001).

Data from the national air quality monitoring network
(https://qualar.apambiente.pt, last access: 20 October 2023)
are used every year to assess the performance of this forecast-
ing modelling system, usually evaluated on an annual basis.
This consists of a group of more than 40 background mon-
itoring stations, classified as urban, suburban and rural, ac-
cording to the classification settled by European legislation.

3.3 OPAQ simulation over Ireland (FA3)

The OPAQ (Hooyberghs et al., 2005; Agarwal et al., 2020)
statistical forecast system has been configured and applied
to forecast pollution levels in Ireland by the Irish EPA and
VITO. During the configuration stage neural networks are
trained at station level with historical observations, ERA5 re-
analysis meteorological data and the CAMS air quality fore-
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casts. The forecasts at station level are interpolated to fore-
cast maps for the whole country using the detrended kriging
model RIO (Janssen et al., 2008; Rahman et al., 2023), which
is part of the OPAQ system.

In this study, we present the historical validation results
of a feed-forward neural network model that uses 2 m tem-
perature, vertical and horizontal wind velocity components,
CAMS PM10 forecasts, and PM10 observations. More than
2 years of data are used to configure the OPAQ model. Data
from October 2019 to June 2022 are used for training. The
model is validated on the data for July to December 2022.
The testing holdout sample, used to avoid overfitting, covers
a time span of 3 months from June to September 2019. The
model was optimized using the AdaMax algorithm (Kingma
and Ba, 2014) with 4 hidden layers and 200 units per layer;
the activation function uses sigmoid functions, while the
mean squared error is used as a loss function.

3.4 NINFA simulation over the Po Valley and Slovenia
(FA4)

FA4 was operated by the Regional Agency for Prevention,
Environment and Energy (ARPAE) applying NINFA, the op-
erational air quality model chain over Po Valley and Slove-
nia in the framework of the LIFE-IP PREPAIR project (https:
//www.lifeprepair.eu/, last access: 20 October 2023; Raffaelli
et al., 2020). The model suite includes a chemical trans-
port model, a meteorological model and an emissions pre-
processing tool. The chemical transport model is CHIMERE,
v2017r3. Emission data cover the Po Valley (Marongiu et
al., 2022), Slovenia and the other regions/countries present
in the model domain (http://www.lifeprepair.eu/wp-content/
uploads/2017/06/Emissions-dataset_final-report.pdf, last ac-
cess: 20 October 2023). The meteorological hourly input
is provided by COSMO (http://www.cosmo-model.org, last
access: 20 October 2023; Baldauf et al., 2011; Doms and
Baldauf, 2018). The boundary conditions are provided by
kAIROS (Stortini et al., 2020).

The database of observed data used in this work was built
with the support of PREPAIR partners providing revised val-
idated data for 2021.

3.5 CALPUFF simulation over Kosovo (FA5)

FA5 was operated by ATMOTERM between July 2020 and
September 2022. Analyses were based on data available
from the Kosovo Air Quality Portal hosted by the Hy-
drometeorological Institute of Kosovo and the Kosovo Open
Data Platform (https://airqualitykosova.rks-gov.net/en/, last
access: 20 October 2023; https://opendata.rks-gov.net/en/
organization/khmi, last access: 20 October 2023). The fore-
cast service used the following modelling tools: the WRF
meteorological prognostic model, CAMS ENSEMBLE Eu-
lerian air quality models, and the CALPUFF modelling sys-
tem with a 1 km receptor grid covering the Kosovo territory

and a 0.5 km grid applied in the main cities in Kosovo. In
addition a high-resolution receptor network was created for
Pristine, with a basic grid step of 50 and 200 m along the
roads. The system includes an assimilation module imple-
mented at the post-processing stage using available data from
all monitoring stations in Kosovo.

4 Results, lessons learnt and discussion

The proposed evaluation methodology for forecasting is in
addition to the consolidated FAIRMODE protocol for assess-
ment. The assessment MQO therefore comes first to provide
a preliminary evaluation of the five forecasting applications
(see Appendix C). This section focuses on the outcomes of
applying the additional forecast objectives and criteria and
in particular on the lessons learnt by their application in dif-
ferent geographical contexts and on different spatial scales,
pointing out the strengths and shortcomings of the approach.

4.1 MQOf skills versus the capability to predict
threshold exceedances

Forecast modelling quality objective (MQOf) outcomes are
presented here for three forecasting applications, covering
different spatial scales, namely FA1 (European scale), FA2
(national scale) and FA4 (regional scale). Along with MQOf
outcomes, the skills of the three modelling applications in
predicting threshold exceedances are provided as well. We
present outcomes for PM10 daily means and O3 daily max-
imums of 8 h average, since both indicators have a daily
limit value set by the current European legislation (European
Union, 2008).

Figures 1 and 2, 3 and 4, and 5 and 6 show the outcomes
for FA1, FA2 and FA4 applications, respectively. PM10 out-
comes are provided in Figs. 1, 3 and 5, while Figs. 2, 4 and 6
present the O3 ones. MQIf values are provided in the forecast
target plots (Janssen and Thunis, 2022), at the top of each fig-
ure. Within these plots, MQIf is represented by the distance
between the origin and a given point (for each monitoring
station). Values lower than 1 (i.e. within the green circle) in-
dicate better capabilities than the persistence model (within
the measurement uncertainty), whereas values larger than 1
indicate poorer performances. Indeed, the green area identi-
fies the fulfilment of the MQOf at each monitoring station.
The MQIf associated with the 90th percentile worst station
is reported in the upper-left corner of the plots. This value
is used as the main indicator in the proposed benchmarking
procedure: its value should be less than or equal to 1 for the
fulfilment of the benchmarking requirements. In other words,
within the proposed protocol a forecasting application is con-
sidered fit for purpose if MQIf is lower than 1 for at least
90 % of the available stations. Note that passing the MQOf
test is intended here as a necessary condition for the use of
the modelling results, but it must not be understood as a suf-
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Figure 1. FA1 validation outcomes for PM10. The forecast target
plots (a) provide the MQIf values for each monitoring station, as
the distance between the origin and a given point. The boxplots
in the forecast summary p-normalized reports (b) provide the sta-
tistical distribution (5th, 25th, 50th, 75th, 95th percentiles) of the
categorical metrics.

ficient condition that ensures that model results are of suffi-
cient quality.

The outcomes of all categorical metrics included in the
validation protocol are provided at the bottom of each fig-
ure, by means of the forecast summary p-normalized reports.
Within these plots, the statistical distributions (5th, 25th,
50th, 75th, 95th percentiles) of the outcomes of all the in-
dicators defined in Sect. 2.2 are summarized and compared
with the corresponding outcomes of the persistence model
(i.e. the ratios of the skills are considered). The green area
indicates that the model performs better than the persistence
model for that particular indicator.

Forecast target plot outcomes indicate a very good level
of quality of all forecast applications in simulating O3. The
90th percentile of the MQIf values is lower than 1 for all three
forecast applications, indicating that the model performs bet-
ter than the persistence model in simulating O3 at more than
90 % of the available stations. FA2 and FA4 also fulfil the
MQIf requirements in simulating PM10, but there is room
for improvement for the European-scale simulation FA1 (the
90th percentile of the MQIf values is slightly higher than 1).
Further investigations show that most of the issues emerge
in a limited part of the modelling domain (Turkey), where

Figure 2. FA1 validation outcomes for O3. The forecast target
plots (a) provide the MQIf values for each monitoring station, as
the distance between the origin and a given point. The boxplots
in the forecast summary p-normalized reports (b) provide the sta-
tistical distribution (5th, 25th, 50th, 75th, 95th percentiles) of the
categorical metrics.

very high, and sometimes unlikely, PM10 values are mea-
sured at several monitoring sites for most of the year. By re-
moving Turkish monitoring stations from the validation data
set, MQOf turns out to be fulfilled (Fig. D1, Appendix D). It
is worth noting that the MQOf outcomes are consistent with
the standard assessment evaluation (Appendix C). Table C1
shows that the standard MQO is fulfilled for all O3 forecast
applications. For PM10, the MQI is higher than 1 but only for
the FA1 simulation.

Concerning the capability to predict exceedances, model
performances improve moving from FA1 to FA4 applications
(i.e. as spatial resolution increases), and skills are generally
better at simulating O3 than PM10. Concerning the compar-
ison of the performances according to the different metrics,
all forecast applications turn out to be better at avoiding false
alarms than at reproducing all of them, since success ratio
(SR) scores are generally better than probability of detection
(PD) ones, especially for PM10.

In general, even if forecast applications are generally bet-
ter than the persistence model according to the main outcome
MQOf (top plots of Figs. 1–6), it becomes harder for them to
beat the persistence model at predicting exceedances (bottom
plots of Figs. 1–6). Apart from a few cases (namely the re-
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Figure 3. FA2 validation outcomes for PM10. The forecast target
plots (a) provide the MQIf values for each monitoring station, as
the distance between the origin and a given point. The boxplots
in the forecast summary p-normalized reports (b) provide the sta-
tistical distribution (5th, 25th, 50th, 75th, 95th percentiles) of the
categorical metrics.

gional FA4 application), the median values of the statistical
distribution of the outcomes are not in the green area, indicat-
ing that the model performs worse than the persistence model
at more than 50 % of the available stations.

4.2 MPI plot supporting the interpretation of MQOf
outcomes

When evaluating a forecasting application, it is important to
assess the evolution of skill metrics with the forecast hori-
zon. Indeed, a good forecasting application should not incur
a substantial degradation of its performances along with fore-
cast time.

FA3, carried out over Ireland by means of the OPAQ sta-
tistical system, was evaluated for each of the forecasted days,
which included the current day (day0), tomorrow (day1) and
the day after tomorrow (day2).

In the following it is reported how performances in sim-
ulating PM10 vary along with the forecast days. Outcomes
for day0 and day2 are shown in more detail in Figs. 7 and
8, respectively. On the top of each figure, the forecast tar-
get plots (described in the previous section) are reported. On
the bottom, the forecast MPI plots are added, describing the

Figure 4. FA2 validation outcomes for O3. The forecast target
plots (a) provide the MQIf values for each monitoring station, as
the distance between the origin and a given point. The boxplots
in the forecast summary p-normalized reports (b) provide the sta-
tistical distribution (5th, 25th, 50th, 75th, 95th percentiles) of the
categorical metrics.

fulfilment of both criteria defined in Sect. 2.1 (i.e. MPI less
than or equal to 1). Indeed, here the forecast performances
(MFEf) are compared with the persistence model perfor-
mances (MFEp) along the y axis (MPI1) and with the mean
fractional uncertainty (MFU) along the x axis (MPI2). The
green area identifies the area of fulfilment of both proposed
criteria. The orange areas indicate where only one of them is
fulfilled.

The outcomes in Figs. 7–8 indicate a very good level of
quality of the forecast application, since the modelling qual-
ity objective is fulfilled (top), together with the two addi-
tional performance criteria (bottom). These outcomes are
consistent with the standard MQO skills provided in Ta-
ble C1 of Appendix C, which points out very good per-
formances of FA3 for PM10, namely the best performances
among all forecast applications.

Concerning the evolution of skill metrics with the fore-
cast horizon, according to the forecast target plot outcomes
(top), modelling performances unexpectedly get better from
day0 to day2, since the MQIf value associated with the 90th
percentile worst station (reported in the upper-left corner of
the plots) becomes lower. According to the forecast MPI
plots (bottom), performances remain almost constant with
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Figure 5. FA4 validation outcomes for PM10. The forecast target
plots (a) provide the MQIf values for each monitoring station, as
the distance between the origin and a given point. The boxplots
in the forecast summary p-normalized reports (b) provide the sta-
tistical distribution (5th, 25th, 50th, 75th, 95th percentiles) of the
categorical metrics.

the forecast horizon, indicative of a good behaviour of the
modelling application. Moreover, forecast MPI plots help
to clarify that the unrealistic improvement in model per-
formances from day0 to day2, pointed out by the forecast
target plots, is due to the persistence model performance
degradation. Indeed, moving from day0 to day2, the fore-
cast model performances get slightly better along the y axis,
where they are normalized to the persistence model’s skills,
but they deteriorate slightly along the x axis, where they are
considered regardless of persistence aspects. In other words,
model performances deteriorate slightly along with the fore-
cast days, but the persistence model deteriorates more so that
performance ratios (i.e. both MQIf and MPI1 values) become
lower.

4.3 Assessment of modelling applications’ capability to
predict air quality indices

The current approach for assessing modelling applications’
capability to predict air quality indices is based on a cumula-
tive analysis for answering the following questions: are citi-
zens correctly warned against high-pollution episodes? Or, in
another words, does the model properly forecast AQI levels?

Figure 6. FA4 validation outcomes for O3. The forecast target
plots (a) provide the MQIf values for each monitoring station, as
the distance between the origin and a given point. The boxplots
in the forecast summary p-normalized reports (b) provide the sta-
tistical distribution (5th, 25th, 50th, 75th, 95th percentiles) of the
categorical metrics.

Air quality indices are designed to provide information on
local air quality. Moreover, within the proposed validation
protocol, the capability to correctly predict AQIs is assessed
at single monitoring stations. For these reasons, FA5 at the
local scale is the most suitable for testing the proposed ap-
proach. Indeed, it was carried out at high spatial resolution
and focused on only two monitoring sites, located in two
cities in Kosovo: Pristine (the capital) and Drenas.

Before analysing the AQI results for PM2.5, it has to be
mentioned that the FA5 standard MQO is fulfilled for all
available pollutants (Table C1, Appendix C). Concerning ad-
ditional features of the forecasting validation protocol, both
the forecast target plot and the forecast MPI plot show very
good performances for both locations. The forecast summary
p-normalized report indicates good model performance in
Drenas and some room for improvement in Pristine due to
underestimation of PM2.5 episodes.

Figure 9 provides the AQI diagram, based on EEA clas-
sification, for PM2.5 and the day0 forecast. For each station,
the bar plot shows two paired bars: the number of predicted
(left bar) and measured (right bar) concentration values that
fall within a given air quality category. In Drenas, forecast
values populate categories 2 (“good”), 3 (“medium”) and 4
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Figure 7. FA3 validation outcomes for day0. The forecast target
plots (a) provide the MQIf values for each monitoring station, as
the distance between the origin and a given point. The forecast MPI
plots (b) provide MPI1 and MPI2 values for each monitoring station
along the y and x axes, respectively.

(“poor”) to a greater extent than the measurements. On the
contrary, in Pristine forecast values are more frequent than
the measurements at the lowest AQI (“very good”).

Overall, Fig. 9 points out that FA5 generally overesti-
mates PM2.5 concentration levels in Drenas and underesti-
mates them in Pristine. The AQI forecast bar plots provide
information about the total number of occurrences in each
AQI class, but there is no information about the correct tim-
ing of the forecasted AQI level.

So, there is room for future improvement, and other addi-
tional outputs could be included within the protocol. In par-
ticular, multi-category contingency tables can be created for
each station, and multi-categorical skill scores can be com-
puted, according to the literature (e.g. EPA, 2003). Outcomes
can be plotted for single stations or skill score statistical dis-
tributions among the stations can be described for each AQI
class.

For example, in Fig. 10 an in-depth insight into AQI as-
sessment is proposed for Drenas (top) and Pristina (bottom).
Two additional multi-categorical metrics are proposed. Both
of them are computed for each AQI level and are based on the
comparison between forecast and measurement values also
considering the correct timing of the predicted AQI level.

Figure 8. FA3 validation outcomes for day2. The forecast target
plots (a) provide the MQIf values for each monitoring station, as
the distance between the origin and a given point. The forecast MPI
plots (b) provide MPI1 and MPI2 values for each monitoring station
along the y and x axes, respectively.

Figure 9. FA5 validation outcomes for PM2.5 at Drenas and
Pristina. The AQI diagram provides for each monitoring station the
number of predicted (left bar) and measured (right bar) concentra-
tion values that fall within each air quality category. The last two
EEA AQI classes (very poor and extremely poor) are merged into
one.
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AQI comparability (left plots in Fig. 10) represents, for each
of the five AQI classes, the percentage of the correct forecast
events in this class with respect to the total events based on
measurements. Since AQI comparability values are percent-
ages, they range from 0 to 100, with 100 being the optimal
value. TS_AQI (right plots in Fig. 10) is computed according
to the same definition of TS in Table 1. Indeed, here multi-
ple thresholds (i.e. class limits) are taken into account, and
so multiple outcomes, one for each AQI class, are provided.
TS_AQI values range from 0 to 1, with 1 being the optimal
value.

AQI comparability and TS_AQI in Fig. 10 provide addi-
tional information with respect to the AQI diagram. For ex-
ample, in the case of Drenas, it is shown that, according to
both metrics, the best agreement between forecast and mea-
surements in predicting the correct timing of the occurrences
is found for the poor AQI class. It is also worth noting that,
even if according to cumulative analysis (Fig. 9) forecast and
measurements present a similar number of occurrences in
both the medium and the very poor classes, according to AQI
comparability, these classes are characterized by the worst
performances. TS_AQI gives additional information about
the model performances, which is especially noticeable for
the medium and very poor classes, as it defines levels dif-
ferently (the medium class includes medium and all higher
classes, i.e. poor and very poor). In this case the medium
class is characterized by better performances than the very
poor class. In the case of Pristine, the best performances, ac-
cording to both metrics, are achieved for low concentrations
(very good and good classes) and the worst ones for very
poor and medium AQI levels. It is also worth noting that the
best agreement is found for the good class, according to the
cumulative comparison (Fig. 9), but it is better for the very
good class if the timing of the occurrences is taken into ac-
count (Fig. 10).

4.4 Discussion

Several lessons were learnt from the results presented here.
The main proposed criterion (MQOf) turned out to be use-
ful for evaluating the strengths and shortcomings of a fore-
casting application, focusing on features which could not be
addressed with the assessment evaluation approach.

Side outcomes, included within the protocol, can help to
deepen the analysis. For example, MPI analysis based on
MFE helps to interpret the outcomes, since MPI2 is formu-
lated regardless of persistence aspects, providing details on
the model performances.

Consistently with the FAIRMODE approach, the measure-
ment uncertainty is considered within the MQOf formula-
tion. While values are currently based on maximum uncer-
tainties (95th percentile), these could be modified in the fu-
ture to obtain a consensus level of stringency for the MQOf,
i.e. a level reachable for the best applications while stringent
enough to preserve sufficient quality. In Appendix E the out-

comes of a sensitivity analysis are provided, in which we in-
vestigate the impact of the value chosen as representative for
measurement uncertainty.

Concerning the capability to predict the exceedances, it
turned out that, regardless of the spatial scale and pollutants,
even if a forecast application is better than the persistence
model according to the general evaluation criterion (MQOf),
it can be worse at correctly providing categorical answers.
Indeed, the difficulty in beating the persistence model skills
is not infrequent in weather forecasting applications (Mitter-
maier, 2008). Moreover, it is worth noting that, differently
from MQOf analysis, the evaluation of the model’s capability
to predict the exceedances, being based on the definition of
fixed thresholds, does not take the measurement uncertainty
into account. For these reasons, a fitness for purpose crite-
rion concerning exceedance metrics (e.g. which percentiles
of a categorical indicator should be in the green area in order
to define its skill as “good enough”? And following this, how
many indicators should be good enough in order to define
the forecast application as fit for purpose?) is not definitively
set within the proposed protocol. Indeed, more discussions
based on further tests on forecasting applications are needed.

The greatest room for improvement concerns the evalua-
tion of the capability of the forecasting application to pre-
dict AQI levels. The current approach is based on a cumula-
tive analysis, and no information is provided about the cor-
rect timing of the forecasted AQI levels. To account for this,
some preliminary tests were carried out based on two ad-
ditional multi-categorical metrics, which sound interesting
with respect to complementing the current approach. The
main weakness of the proposed approach is the large num-
ber of different values to be provided, thus making this type
of outcome usable only for single monitoring stations. More-
over, the question of which level of performances in AQI
predicting is good enough is currently an open issue, and
benchmarking of several forecasting applications is needed
to establish some quality criteria.

5 Conclusions

A standardized validation protocol for air quality forecast ap-
plications was proposed, following FAIRMODE community
discussions on how to address specific issues typical of fore-
casting applications.

The proposal of a common benchmarking framework for
model developers and users supporting policymaking un-
der the European Ambient Air Quality Directives is a major
achievement.

The proposed validation protocol enables an objective as-
sessment of the fitness for purpose of a forecasting applica-
tion, since it relies on the usage of a reference forecast as
a benchmark (i.e. the persistence model), includes the mea-
surement uncertainty and bases the evaluation on the ful-
filment of specific performance criteria defining an accept-
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Figure 10. Multi-categorical metric outcomes for Drenas (a, b) and Pristina (c, d). The AQI comparability plots (a, c) provide for each
AQI class the percentage of the correct forecast events with respect to the total events based on measurements. TS_AQI plots (b, d) provide
TS_AQI values for each AQI class.

able quality level of the given model application. On top of
a pass–fail test to ensure fitness for purpose (intended as a
necessary but not sufficient condition), a series of indicators
is proposed to further analyse the strengths and weaknesses
of the forecast application.

Moreover, relying on a common standardized validation
protocol, the comparison of performances of different fore-
cast applications, within a common benchmarking frame-
work, is made available.

The application of the methodology to validate several
forecasting simulations across Europe, using different mod-
elling systems and covering various geographical contexts
and spatial scales, suggested some general considerations
about its usefulness.

The main fitness for purpose criterion, describing the
global performances of the model application with respect
to persistence skills, proves to be useful for a comprehensive
evaluation of the strengths and shortcomings of a forecasting
application. Generally, the forecast modelling quality objec-
tive turns out to be achievable for most of the examined vali-
dation exercises. When the criterion was not addressed, side
analyses and outcomes, included within the protocol, helped
to deepen the analysis and to identify the most critical issues
of the forecasting application.

On the other hand, it turned out that, regardless of the spa-
tial scale and the pollutants, it can be hard for a forecast ap-
plication to beat the persistence model skills at correctly pro-
viding categorical answers, namely on exceedances of con-
centration thresholds. Therefore, further tests and analyses
are needed in order to provide some criteria for defining the

fitness for purpose of a forecasting application in predicting
exceedances.

The last model capability assessed within the proposed
validation protocol concerns the correct prediction of air
quality indices, designed to provide citizens with effective
and simple information about air quality and its impact on
their health. The current approach is based on a cumulative
analysis of relative distributions of observed and forecasted
AQIs. As no information is provided about the correct timing
of the forecasted AQI levels, further developments are fore-
seen based on multi-category contingency tables and multi-
categorical skill scores.

Discussion on the proposed approach will continue within
the FAIRMODE community, and upgrades and improve-
ments of the current validation protocol will be fostered by its
usage. In particular, it will be of interest to collect feedback
from in-depth diagnostic analyses focusing on the validation
of specific forecast applications, using both the proposed cri-
teria and the threshold-based categorical metrics to gain fur-
ther insights. From its preliminary applications across Eu-
rope, the methodology has turned out to be sufficiently robust
for testing and application, especially with respect to target-
ing air quality forecasting services supporting policymaking
in European member states.
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Figure A1. Double relative measurement uncertainties as a function of concentration values for NO2 (a), O3 (b), PM10 (c) and PM2.5 (d).

Table A1. Parameters for the calculation of measurement uncer-
tainty.

Ur (RV) RV α

NO2 0.24 200 µgm−3 0.20
O3 0.18 120 µgm−3 0.79
PM10 0.28 50 µgm−3 0.25
PM2.5 0.36 25 µgm−3 0.50

Appendix A

Measurement uncertainty U(Oi) as a function of the concen-
tration values Oi can be expressed as follows:

U (Oi)= Ur (RV)
√(

1−α2
)
O2
i +α

2RV2. (A1)

An in-depth description of the rationale and formulation of
the measurement uncertainty estimation is provided in Thu-
nis et al. (2013) for O3 and in Pernigotti et al. (2013) for
PM and NO2. The formulation of the measurement uncer-
tainty as a function of the measured concentration is based on
two coefficients: Ur(RV), i.e. the relative uncertainty around
a reference value RV, and α, i.e. the fraction of uncertainty
not proportional to the concentration value. It is important to
note that we use as representative for the measurement un-
certainty the 95th percentile highest value among all uncer-

tainty values. For PM10 and PM2.5 the results of the JRC in-
strument inter-comparison (Pernigotti et al., 2013) have been
used, whereas a set of EU AirBase stations available for a
series of meteorological years has been used for NO2, and
analytical relationships have been used for O3. These 95th
percentile uncertainties only include the instrumental error.
Ur(RV), RV and α for U(Oi) calculation of NO2, O3 and
PM are provided in Table A1.

Appendix B

Table B1. Contingency table.

Forecast events
Yes FA GA+
No GA− MA

Contingency table No Yes
Observed events

Appendix C

The standard modelling quality objective (MQO), valid
for assessment, is defined by the comparison of model–
observation differences (namely the root mean square error,
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RMSE) with a quantity proportional to the measurement un-
certainty.

MQI=
RMSE

β

√∑N
i=1(U(Oi ))

2

N

(C1)

β is set to 2, thus allowing the deviation between modelled
and observed concentrations to be twice the measurement un-
certainty. The measurement uncertainty U(Oi) as a function
of the concentration values Oi is defined in Appendix A.

MQO is fulfilled when MQI is less than or equal to 1.
Standard assessment MQO outcomes (i.e. MQI value as-

sociated with the 90th percentile worst station) for all avail-
able pollutants are summarized in Table C1 for all forecast
applications.

Table C1. Standard assessment MQI values (associated with the
90th percentile worst station) for all forecast applications.

NO2 O3 PM10 PM2.5

FA1 0.865 0.619 1.267 0.776
FA2 0.831 0.698 0.941 0.700
FA3 0.479
FA4 1.009 0.696 0.943 1.009
FA5 0.685 0.570 0.528

Appendix D

Figure D1. FA1 forecast target plot for PM10, removing Turkish
monitoring stations from the validation data set.

Appendix E

The effect on MQIf outcomes of lowering measurement un-
certainty estimates is investigated here. The values ofUr(RV)
parameters in Table A1 (i.e. the estimates of the relative un-
certainty around the reference value, defining the asymptotic

behaviour of the functions of Fig. A1) were reduced by 25 %
and 50 % for all the pollutants, and the MQIf were recalcu-
lated for the different forecast applications. Figure E1 shows
the results for all available data: FA1, FA2 and FA4 outcomes
for the current forecast day (all pollutants available) and FA3
outcomes along a 3 d forecast horizon (only PM10 available).
Different colours refer to results based on different Ur(RV)
values: 1Ur(RV) indicates the original values in Table A1;
0.75Ur(RV) and 0.50Ur(RV) refer to 25 % and 50 % reduc-
tions, respectively. Indeed, the 50 % reduction decreases the
Ur(RV) values to 0.12 (NO2), 0.09 (O3), 0.14 (PM10) and
0.18 (PM2.5), i.e. well below the data quality objective val-
ues set by the current European legislation (European Union,
2008), namely 15 % for NO2 and O3 and 25 % for particulate
matter.

The results of the sensitivity analysis are provided by
means of violin plots (Hintze and Nelson, 1998), showing the
distributions of the MQIf values computed for each monitor-
ing station. In other words, each violin refers to all the data
provided within the corresponding forecast target plot, giving
in a single plot an overall view of all the outcomes available.
Three lines were added to the display of each violin, indicat-
ing the 10th, 50th and 90th percentiles of the distributions.

Figure E1. The effect of lowering Ur(RV) on the distribution of
MQIf values. (a–c) FA1, FA2 and FA4 outcomes for the current
forecast day (all the pollutants available). (d) FA3 outcomes along
a 3 d forecast horizon (only PM10 available).

The results show that both MQIf values and the shape of
their distribution depend on both the forecast application and
the pollutant. Within this context, changing Ur(RV) values
induces a very slight effect on the shape of the MQIf value
distribution, apart from the case of PM2.5 for FA2, where a
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small amount of data are available (11 monitoring stations).
On the contrary, as expected, changing Ur(RV) values re-
sult in variations in MQIf values, which increase as Ur(RV)
decreases, to a different extent depending on the forecast
application and the pollutant. Generally, variations tend to
be lower if data availability is higher. Concerning the main
MQOf criterion fulfilment (i.e. the 90th percentile of the
MQIf values is lower than 1), being based on a categorical
answer (yes/no), it changes or not mainly depending on the
performances of the reference analysis (1Ur(RV)). The same
answer is maintained both in the case of very good perfor-
mances (MQIf 90th percentile value largely lower than 1) and
in the case of the criterion not being fulfilled even in the ref-
erence analysis (MQIf 90th percentile value already higher
than 1). If the MQIf 90th percentile value is lower but quite
close to 1, the MQOf criterion fulfilment is of course more
sensitive to measurement uncertainty estimates. Indeed, this
is expected, and it is a typical shortcoming of the usage of
criteria based on categorical answers.

Code and data availability. The DELTA Tool software and all data
sets generated and analysed during the current study are available
on Zenodo at https://doi.org/10.5281/zenodo.7949868 (Thunis and
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