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Abstract: The European and national regulations in the decarbonisation path towards 2050 promote
district heating in achieving the goals of efficiency, energy sustainability, use of renewables, and
reduction of fossil fuel use. Improved management and optimisation, use of RES, and waste heat/cold
sources decrease the overall demand for primary energy, a condition that is further supported
by building renovations and new construction of under (almost) zero energy buildings, with a
foreseeable decrease in the temperature of domestic heating systems. Models for the simulation
of efficient thermal networks were implemented and described in this paper, together with results
from a real case study in Italy, i.e., University Campus of Parma. Activities include the creation and
validation of calculation codes and specific models in the Modelica language (Dymola software),
aimed at investigating stationary regimes and dynamic behaviour as well. An indirect heat exchange
substation was coupled with a resistive-capacitive model, which describes the building behaviour
and the thermal exchanges by the use of thermos-physical parameters. To optimise indoor comfort
conditions and minimise consumption, dynamic simulations were carried out for different operating
sets: modulating the supply temperature in the plant depending on external conditions (Scenario 4)
decreases the supplied thermal energy (−2.34%) and heat losses (−8.91%), even if a lower temperature
level results in higher electricity consumption for pumping (+12.96%), the total energy consumption is
reduced by 1.41%. A simulation of the entire heating season was performed for the optimised scenario,
combining benefits from turning off the supply in the case of no thermal demand (Scenario 3) and
from the modulation of the supply temperature (Scenario 4), resulting in lower energy consumption
(the thermal energy supplied by the power plant −3.54%, pumping +7.76%), operating costs (−2.40),
and emissions (−3.02%). The energy balance ex-ante and ex-post deep renovation in a single user
was then assessed, showing how lowering the network operating temperature at 55 ◦C decreases
the supplied thermal energy (−22.38%) and heat losses (−22.11%) with a slightly higher pumping
consumption (+3.28%), while maintaining good comfort conditions. These promising results are
useful for evaluating the application of low-temperature operations to the existing district heating
networks, especially for large interventions of building renovation, and confirm their potential
contribution to the energy efficiency targets.

Keywords: district heating; Modelica language; dynamic conditions; optimization; building renovation

1. Introduction

To achieve the sustainability goals in the energy sector, research is focused on increas-
ing the penetration of renewable sources, as well as energy conversion efficiency, and is
aimed at reducing fossil fuel consumption and, thus, greenhouse gas emissions [1]. In this
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respect, both international and national pieces of legislation promote distributed generation,
as well as the district heating networks for the fulfilment of thermal needs [2]. Indeed, to
achieve the target–set by the European Union (EU)–of making Europe a climate-neutral
continent by 2050, modification in the greenhouse gas emission reduction goals for 2030 is
required, in the order of increasing the reduction ambition from 40% to either 50% or 55% [3].
As a consequence, public and private investment in energy efficiency, grid infrastructure,
renewable-based technologies and new low carbon technologies are planned.

In particular, in the new EU energy transition strategy established by the EU Green
Deal and its associated communications, heating and cooling assume a more important
role [4]. Since, in the past, it has not been included in the main energy transition policies by
most of the EU Member States, heating and cooling in buildings and the industrial sector
account for half of the EU’s energy consumption, with 75% of this energy still generated
from fossil fuels. As a consequence, in order to achieve the climate and energy goals, the EU
needs to significantly reduce and decarbonise the heating sector. To this purpose, district
heating and cooling (DHC) allows the efficient integration of a wide range of renewable
energy sources (e.g., biomass, geothermal or solar energy), as well as the use of different
forms of waste heat and cold (e.g., industries and data centres). Furthermore DHC is linked
to energy efficiency in buildings, often providing the strongest leverage, at the local level, to
achieve decarbonisation. In particular, recently, efficiency improvement has been achieved
by integrating district heating networks (DHNs) with renewable energy sources (RES) [5]
and combined heat and power (CHP) units: in Europe, some instances of integrated DHNs
are present, considering the coupling of different technologies with RES for the thermal
energy generation [6,7]. As shown in [7], for example, at the Delft University of Technology,
17% of thermal and cooling needs is currently fulfilled by a system, including cogeneration
units, geothermal sources and aquifer thermal storage, achieving an energy saving of
around 10%.

In addition to renewables integration, low temperature district heating (i.e., fifth-
generation district heating) has been recognised as an effective way for a further energy
efficiency increase in the heating sector [8]. The main benefits of lowering the supply
and return temperatures in DHNs occur in both the reduction of thermal dissipations
through the network and in the increased efficiency of the generation systems. In particu-
lar, renewables-based systems, such as geothermal heat pumps, can achieve substantial
efficiency improvements if the temperature of the network is lowered [9]. As an example,
estimations forecast–that the coefficient of performance of industrial waste-based heat
pumps can rise from 4.2 to 7.1, thanks to a reduction in DH supply/return temperatures
from 80 ◦C/45 ◦C to 55 ◦C/25 ◦C, while the cost of solar thermal technology can be de-
creased by about 30% [10,11]. In addition, Reguis et al. [12] reviewed the DH networks
operating temperatures that are commonly adopted in the UK and abroad, also analysing
the pros and cons of low-temperature heat, as well as the adaptability of existing build-
ings to operate with lower temperatures. On the basis of the experience of Sweden and
Denmark, they found that limited retrofitting to existing buildings is sufficient to allow the
employment of low-temperature heat during the whole year. Furthermore, the benefits
that are achievable–considering the network viewpoint–from the conversion of existing
DHNs into low temperature ones, including photovoltaic panels, geothermal heat pumps
and absorption chillers, have been investigated in [13]. This study highlights that–with low
temperature DH–the heat losses through the network can be reduced by 85%, while the
annual costs of energy production can be decreased by between 29% and 33%.

As for the Italian framework, more than 330 networks are currently operative, with
9.65 GW of installed thermal power (32% CHP) for a total extension of about 5000 km; they
contribute about 2% of the energy demand for space and water heating systems in the
residential sector. Fossil sources, mainly natural gas, supply 83% of the installed power,
while RES are used in plants for thermal production (e.g., solid biomass, geothermal). Since
2000, the heated volume (375 Mm3, mainly in North Italy) and the supplied energy tripled,
whereas the overall extension has grown more; this is due to a progressive expansion
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towards lower thermal density areas, together with the improvement of building energy
performance [14], supported-along the last decades-by significant incentive measures, e.g.,
tax credit at 110%. As for the promotion of district heating, in the 1980s and 1990s, the
realisation of centralised plants and DHNs benefited from capital incentives aimed at
reaching national targets in terms of energy saving and use of RES. Art. 15. of Legislative
Decree 102/2014 [15] established the National Energy Efficiency Fund for supporting the
financing of interventions, including district heating and cooling networks, whereas–in
the case of networks supplied by high-efficiency cogeneration plants–these are granted
by Energy Efficiency Titles or White Certificates [16]. Again, the reduced rate of excise
duty–generally pertaining to industrial uses–is applied, under certain conditions, to the
fuel used in CHP generators and integration boilers directly connected to the same DHN.
Recently the connection to an efficient district heating network in mountain territories was
included between the interventions for building renovations granted with a tax credit of
110%. With an expected reduction of building consumptions, retrofitting interventions of
existing networks should be assessed to evaluate the potential applications, according to
the supporting framework described above.

Another crucial point, in order to increase the efficiency of energy production and
distribution in new DHNs, is represented by the optimisation. For this purpose, numerical
analysis tools play a key role in simulating different operative sets, instead of experimental
investigations at a high-level effort. In this respect, in recent years, various algorithms have
been developed for the sizing and management optimisation of DHNs. Ancona et al. [17]
developed the software IHENA, a steady state code aimed at the design and/or perfor-
mance evaluation of smart district heating networks, in the presence of thermal prosumers,
and based on the Todini-Pilati algorithm generalised by the Darcy-Weisbach equation.
In [18], instead, Ben Hassine et al. proposed a model for the pressure and temperature
profiles determination within the context of distributed solar thermal collectors integrated
with a DHN, investigating also the criticisms related to the flow control. Looking at large
scale DHNs and with the aim to maintain low computational time, Résimont et al. [19]
developed a multi-period mixed integer linear programming model for DHNs that was able
to optimally define and size the network based on an objective function which maximises
the net cash flow based on a geographic information system. Delgado et al. [20] presented
a multi-objective code for the optimisation of CO2 emissions during the network operation
and for the lifecycle analysis, in the context of residential prosumers supplying thermal
and electric energy in the Netherlands and Finland. The tool allows for evaluating and
optimising the network operation with and without net-metering, obtaining both economic
benefits and emission reductions. Wang [21] presented a model for the minimisation of the
decentralized DH pumps power consumption, at the same time guaranteeing the fulfil-
ment of the users’ hydraulic head demands. Furthermore, optimisation models have been
applied, for example, to find the optimal dispatching strategy on varying the heat source,
minimising the operational costs and sizing thermal solar panels, thermal plants and the
optimal storage capacity [22]. Finally, in [23] the TEGSim tool was developed to design and
simulate ultra-low-temperature DHNS with hydraulic and thermal components; the tool is
composed of two parts, a quasi-stationary hydraulic calculation and a transient thermal
calculation. Besides the optimisation tools, to optimal sizing a DHN and the connected
heat production system, the knowledge of the heat demand profile during the whole year
is fundamental. Indeed, the thermal energy demand is strongly dependent on the outdoor
temperature, activities and building size and characteristics. To this end, in [24] a new
method for the monthly thermal energy mapping was presented, in order to accurately
determine the heat demand for various buildings typologies. The method is composed of
three consecutive phases: (i) calculation of the energy losses, (ii) compilation of a dataset
about energy and building information, and (iii) generation of the monthly heat demand
maps for the community.

To the best of the authors’ knowledge, most literature studies focus on a single aspect
of those discussed above, related to the thermal networks modelling and management



Energies 2022, 15, 948 4 of 20

optimisation. For example, codes based on mixed integer linear programming–such as
the one presented in [19]–allow for performing long-period calculations with a very short
computational time, but linearising (thus, simplifying) the modelled problem. Other studies
describe accurate models of the investigated problems (e.g., in [17]), but perform a steady-
state analysis and, thus, neglect the transients. The models that include hydraulic and
thermal dynamic analysis do not account for environmental and economic aspects [23]. Or,
again, other tools do not have a general scope of application, because they can be applied to
particular typologies of networks, such as solar district heating, as in [25]. Finally, literature
studies usually relate to the thermal network or relate to the user side (i.e., the building).
To this respect, an exception is made in [26], where an Italian district heating network has
been analysed (from both thermal plant and end-users’ perspectives) considering energy,
environmental and economic aspects; however, it does not include a detailed modelling of
the network.

To overcome this lack in the literature, the purpose of this paper is to define–and apply
to a case study–a comprehensive approach to optimise the operation of district heating
networks. In detail, in the present paper a dynamic numerical model is implemented in
order to take into account both hydraulic and thermal transients, as well as the variation
of the outdoor temperature. Due to these characteristics, the model is able to represent
the different complex states in which a real thermal network works in order to satisfy the
building thermal demand, which is itself an output of the simulation. The aim of this paper
stands in:

(i) the realisation of a calculation model for both stationary and dynamic simulation of
district heating networks;

(ii) the application of the developed code to a case study, the network of the University
Campus in Parma (a city in the north of Italy);

(iii) the optimisation of the network management by the simulation of different
possible scenarios;

(iv) the evaluation of deep renovation interventions, in order to further optimise the
network performance.

The paper proposes a new calculation code and specific models in Modelica language
(Dymola software) for the investigation of a stationary regime and the dynamic behaviour
of thermal networks. The code includes models for the thermal exchange with the users,
enabling the buildings’ internal temperature and the energy demand to be obtained as an
output, together with the flow rates, temperatures and pressures in the network. The devel-
oped code has been applied to the district heating network of the University Campus in
Parma, analysing the current performance of the network. In addition, different scenarios
have been set and analysed with the code with the purpose of optimising the network
management during its operation (energy, economic, and environmental optimisation).
Then, based on the obtained results, a simulation for the entire heating season has been
performed for the optimised scenario. Finally, deep renovation interventions have been
evaluated, showing how lowering the operating temperature level of the network affects
the thermal energy supplied, pumping electricity and energy losses.

As stated before, the main novelty of the proposed approach stands in the development
of a dynamic model that is able to solve both thermal and hydraulic problems, including
the thermal distribution network and the users’ side, with a specific authors’ contribution
in the components modelling within the software Dymola.

The paper is structured as follows. Section 2 discuss the case study and the applied
methodology, while Section 3 presents the results of the analysis and defines the case study
optimisation. Finally, in Section 4 the concluding remarks are drawn.

2. Materials and Methods

In this section the methodology developed and applied to optimise the operation of
a district heating network in Italy, selected as the case study, will be described. To this
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respect, it must be highlighted that the developed calculation model and methodology are
general and can be applied to any DHN.

In more detail, as mentioned before, for this study Modelica language has been used
in Dymola software platform for multi-domain simulation and model-based design of dy-
namic systems, including a number of libraries collecting the main components of a district
heating system. It is useful for solving energy and hydraulic balances in the same model, in
order to obtain information for economic and environmental considerations. Modifications
of models included in the existing open source libraries have allowed for observing the
interrelation between the building temperature and the thermal loads required of the power
plant. The final model was used to carry out a cost-benefit analysis and to define a possible
optimisation scenario, as described below.

2.1. Case Study

Parma University Campus is served by a DHC network, which is composed of four
different sections. This study focuses on “Nuova Sud” heating branch: 4 km of extension,
12 buildings supplied, 12 MW total peak power, design temperatures of 80 ◦C/55 ◦C
(supply/return), powered by natural gas boilers, and with 150,000 m3 of heated buildings.
In order to maintain a temperature of 20 ◦C inside the rooms during the working hours,
a by-pass valve regulates the water mass flow rate of each building [27]. A satellite view
of the network is shown in Figure 1, where users are marked by an index that matches
Table A1. More information is included in Appendix A.
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2.2. Modelling

The network was simulated in a steady state to validate the model when the network
is operating under its design conditions (∆T = 25 ◦C at the user, 8.4/5 bar supply/return
pressure, 80 ◦C supply temperature). In this case, the thermal energy supplied to the
buildings was considered as a prescribed design value, and therefore no radiator terminals
were modelled. Then, to investigate its dynamic behaviour during a whole heating season—
considering variable thermal loads from each user—a specific model was implemented
for the heat exchange between the secondary and the primary circuit, which requires the
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thermal load profiles characterising the demand of each user as an input. The model groups
in a single section the branches going from the power plant to the junction, from the users
to the junctions and between two junctions themselves. Actually, these are pipes with
the same characteristics in terms of hydraulic diameter, thickness and type of material.
The diagram view of the model realized in Dymola is presented in Figure 2.
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The components used for the network model are described in Table 1. Some were
customised, starting from the existing classes available in the libraries “Modelica”, “IBPSA”
and “DisHeatLib”. “DualDynamicPipe” models the fluid transport through pipes; the com-
ponent solves differential equations by means of the finite volume method considering
two nodes for each pipe (i.e., two mass balances, two energy balances and one momen-
tum balance). The water is modelled as an incompressible fluid with prescribed physical
characteristics, while the friction losses are calculated using the Swamee-Jain friction coeffi-
cient. Regarding the heat losses, they are computed by means of the constant heat transfer
coefficient (alpha0) that is detailed in Equations (1) and (2):

alpha0 =
1

RπDL
(1)

R =
ln
(

0.5D+sis
0.5D

)
2πkisL

(2)

where R is the thermal resistance of the pipe depending on its diameter (D), length (L)
and on its insulation characteristics, i.e., the thickness of the insulation layer (sis) and the
thermal conductivity of the insulation material (kis).

As for users, the component “BuildingIndirectStations” (Figure 3) models the thermal
demand in dynamic conditions: secondary and primary circuit are coupled by an indirect
heat exchange substation, modelled using the “DisHeatLib.Substations.SubstationParallel”;
“DisHeatLib.Demand.Demand” components account thermal power demand for Domestic
Heat Water (DHW, not modelled for this kind of user setting has a zero water mass flow rate
circulating in the corresponding secondary branches) and Space Heating (SH). A PI controls
the valve regulating the primary water mass flow rate going through the heat exchange: if
the secondary water mass flow rate is different from zero, the supply temperature is set
to the nominal value, whereas a minimum primary water mass flow rate is maintained
if the secondary flow rate is zero (zero heat load). The heat exchange model is an ideal
component (without a pressure drop) with an efficiency of 99%.
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Table 1. Overview of the components used for modelling the network.

Component Model Name Inputs Outputs

Pipeline DualDynamicPipe Hydraulic diameter and length of pipe
Thickness and conductivity of the insulation

Friction loss
Heat loss

Building BuildingIndirectStation

Nominal pressure difference in the network
Nominal space heating flow rate
Nominal supply and return temperatures
Nominal building inside temperature
Building performance coefficients (Equation (4)),
Parameters of temperature controllers (time
constants, activation/deactivation time of control)

Building inside temperature
Required heat load

Thermal power station Supply_pT
Nominal pressure difference of pump
Nominal heat flow rate
Supply temperature

Supplied thermal power
Spent electrical power

Heat loss SoilTemperature
OutsideTemperature

Ground temperature
Outside temperature profile

Total ground heat loss
Buildings total heat exchange
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The results obtained from the given hourly heat requirements (under the following
assumptions, the annual heating season in zone E [28] is from 15 October to 15 April;
the heating service is from Monday to Friday, except for Palacampus (user 65), which is
also heated on Saturdays), not included in this paper, show a good response from the
model to the demand curve. A specific effort was dedicated to introducing a class that
models the building behaviour with the use of thermophysical parameters, which describe
different thermal exchanges [29]. In particular, the thermal power supplied to each building
is no longer an input, and so a radiator model is introduced in the numerical simulations
representing all of the terminals of in each building. The radiator component takes into
account the dependence of the heat exchange on the mass flow rate and the temperature
of primary and secondary circuits, and on the air temperature inside the building as well;
therefore, based on this modelling approach, the total energy required by each user in order
to maintain a given set point temperature becomes an output of the model. A new resistive-
capacitive building model (“RCBuilding”, Figure 4) was introduced for implementing the
dynamic energy balance of a building, detailed in Equations (3) and (4) [30]:

dTint
dt

= −a(Tint − Test) + bQe − c(Tint − Test)− d(Tint − Tair) (3)

a =
Ue Ae

mecpe
, b =

1
mecpe

, c =
(Gc)air,nat

mecpe
, d =

(Gc)air, f orc

mecpe
(4)
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where Tint is the air temperature inside the building, Test is the outside air temperature, Ue
is the overall thermal transmittance of the building envelope, Ae is the area of the external
walls, Qe is the space heating power, (Gc)air,nat is the heat transfer coefficient for natural
ventilation, (Gc)air, f orz is the heat transfer coefficient for forced ventilation, me is the mass
of the building, and cpe is a weighted average of the specific heat accounting the internal
air and the walls. Coefficients in Equation (3) describe the temperature variation inside the
building depending on the heat exchange through walls with the external environment
(a), the power input from the heating system (b), the air infiltrations (c) and the forced
ventilation with its air change rate (d). Particularly, a indicates the buildings’ ability to keep
the energy stored inside, b represents their thermal inertia, c and d relates the incoming
air mass flow rate and specific heat with those of overall building systems; the specific
values for each building in the network were obtained by the University of Parma with
TRNSYS building models [29], as summarized in Table 2. Once validated through Simulink
models in terms of heat exchanges and Tint, “DemandSH” component has been modified
in “DemandRC”, as shown in Figure 5. Here a radiator accounts for all of the terminal
units of the building and its heat exchanges result in the heating load for each building,
according to the control logic described below; the return temperature is calculated as a
function of the supply temperature and Tint (output of “RCBuilding”), according to the
standard UNI EN 442-2. A PI controller compares the air temperature inside the building
with the set point defined by the user. The output from PI is the input of a “switch”
block, used to set the activation-deactivation time of temperature control, corresponding
to the working hours: when the system is switched ON, it enables the PI to control the
circulation pumps (“flowUnit”) on the secondary circuit; when OFF, pumps are supposed
not operating. The heat exchanged between the transfer fluid and the environment is an
input for the “RCBuilding” model; it can even manage air changes, by setting a specific
timetable. A fine-tuning regulation of PI parameters was carried out according to the
Ziegler-Nichols calibration method [31] (This action results in −3.70% of thermal energy
supplied by the power plant, and −0.92% of pumping electricity, compared to the default
PI values), in order to control the dynamics of the flow rate and temperature, both on the
secondary (PI in the “RCDemand”) and on the primary (PI in the “IndirectStation”) circuits,
and to avoid sudden power peaks in the heating plant as well.
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Table 2. Performance coefficients of buildings supplied by “Nuova Sud” network.

Coefficient Min Max

a [1/h] 0.00342 0.03280
b [◦C/kJ] 1.7778 × 10−7 6.8889 × 10−6

c [1/h] 0.00000 0.00896
d [1/h] 0.00000 0.04378
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Finally, the model component of the thermal power station (“Supply_pT”) is shown
in Figure 6. Starting from a supply temperature input, which can be set to be constant or
controlled by the external temperature, and a defined supply pressure, this results in the
total required heat load and the electrical power supplied to the circulation pump.
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2.3. Simulations: Analysed Scenarios and Optimization

In order to optimise internal comfort conditions and, at the same time, to minimise
energy consumption, different management scenarios were proposed and compared. A sim-
ulation time of eight weeks was chosen starting from the beginning of the heating sea-
son [28], i.e., at 00:00 on 15 October (2018 for weather conditions) in Parma, Italy [32]. All
of the optimisation scenarios presented below have been modelled by modifying some
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parameters among the inputs set for the reference case (later, called Scenario 1) of the
dynamic simulation, as described in Table 3.

Table 3. Inputs of the Reference Case (Scenario 1) of dynamic simulation.

Inputs Setting

Supply temperature at thermal power station Nominal supply temperature: 80 ◦C
Pressure difference at thermal power station Nominal pressure difference: 5.4 bar
Nominal return temperature at thermal power station 55 ◦C
Nominal supply temperature of secondary circuit 70 ◦C
Nominal return temperature of secondary circuit 55 ◦C
Set-point temperature inside buildings 20 ◦C
Parameters of temperature controllers inside buildings Values from Ziegler-Nichols method [31] K = 45, Ti = 3000 s
User SH ON time 07:00–20:00, except for Palacampus: 07:00–22:00
User Ventilation ON time 09:00–18:00, expect for Palacampus: 09:00–20:00

In detail, the analysed management scenarios are:

• Scenario 2—Early heating

According to the time delays observed in reaching the set-point temperature in the
early hours of the morning, the space heating system in every user was set to be switched
on 1 h earlier, i.e., at 6:00 am.

• Scenario 3—Heating system switched off for no-load condition

The supply temperature from the thermal power station is no more constant; the nom-
inal value (80 ◦C) is maintained according to the Palacampus timetable, i.e., the user with
the longer heating period. In this way, network dynamics can be observed when the fluid
stops being heated.

• Scenario 4—Supply temperature depending on external conditions

In this scenario the supply temperature is set depending on the external temperature
profile by means of a climatic curve, controlled according to conditions described by
following Equations (5)–(7):

Test ≥ Testmax → TSL = TSLmin (5)

Test ≤ Testmin → TSL = TSLmax (6)

Testmin < Test < Testmax → TSL = TSLmax +

(
TSLmin − TSLmax
Testmax − Testmin

)
∗ (Test − Testmin) (7)

where TSL is the supply temperature, ranging between the max TSLmax = 80 ◦C and the
min TSLmin = 70 ◦C values, and Test is the external temperature, ranging between the max
Testmax = 15 ◦C and the min Testmin = −5 ◦C values.

Aiming at defining an optimal scenario, the following parameters were taken into
account: indoor comfort, in terms of the percentage of time, during the operating time of
the heating plant, when the air temperature inside the building falls in a set comfort range
(19 ÷ 21 ◦C); primary energy consumption i.e., fuel and electricity for pumping, related to
thermal energy supplied to the network, quantified in tons of oil equivalent (toe) (the con-
version coefficients are 0.836 toe for 1000 Sm3 of natural gas from FIRE (Italian Federation
for the Rational Use of Energy), on the basis of point 13 of the explanatory note of the MiSE
Circular of 18 December 2014 [33]; 0.171 toe for 1 MWh of electricity from the equivalent
electrical efficiency of the Italian energy system in 2019 [34]).

Focusing on optimisation and management interventions, the economic assessment
included cash flows related to the operational phase, not accounting for the profitability
of a project for the new construction, extension, or modification of the existing network.
The annual operative cost CTOT was estimated by the following Equation (8):

CTOT = (CF ∗ Fin) +
(
CE ∗ Epump

)
+ (CM ∗ Eheat) (8)
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where Fin is the fuel consumption [Sm3], Epump is the electricity for pumping [kWhe], and
Eheat is the energy from thermal central unit [kWht]. Here are the main assumptions:

• Average boiler efficiency 93% [35].
• Natural gas price. Reference values for fuel cost CF were provided by the Italian

Regulatory Authority for Energy, Networks and Environment ARERA in terms of final
prices for industrial consumers in 2019, divided for consumption slots: 57.06 c€/Sm3

(relative to the range 26,000–263,000 m3) equals to 58.69 €/MWh of primary energy,
meaning 63.11 €/MWh of thermal energy fed into the grid.

• Electricity price. From the same reference a value of 22.25 c€/kWhe was selected for
the range 50–500 MWhe as electricity cost CE.

• Operation and maintenance costs CM were estimated per thermal unit supplied by the
central heating plant, i.e., 1.9 €/MWht and 3 €/MWht, respectively [36], and were not
affected by the different scenarios because they did not modify the existing network.

Not knowing the emission factor of the district heating of Parma, the environmental as-
sessment was performed by accounting for emissions associated to the combustion of natural
gas in boilers and electricity from the national grid (EMTOT), as shown by Equation (9):

EMTOT = (EFF ∗ Fin) +
(
EFE ∗ Epump

)
(9)

where:

• National standard parameters proposed by the Ministry of the Environment were
used as a reference for the emission factor of fuel combustion EFF. These include the
coefficients used for the CO2 emissions in the UNFCCC national inventory, as an aver-
age of the values of the years 2017–2019 [37]: 1.984 tCO2/1000 Sm3 or 56.231 tCO2/TJ,
which is 204 gCO2/kWh, assuming 1 as oxidation coefficient.

• Emission factor for electricity EFE does not consider imported energy, but accounts for
the network losses, according to [38], resulting in 305 gCO2/kWhe in 2019 [34].

Once the robustness of the models, the coupling of hydraulic and energy problems and
the possibility of editing the thermo-physical characteristics of buildings were verified, the
activity continued on the evaluation of deep renovation interventions, including their effects
in terms of energy savings, operating temperature level, lower supply temperature and heat
losses in the network, and the consequently higher electricity consumption of pumping.
Through a simplified network model, the ex-ante and ex-post performances are compared
in both operating conditions of the network, i.e., traditional and low temperature. The in-
stallation of polyurethane foam (10 cm, 0.026 W/m2K) to the external facades of user 39 was
modelled by modifying the parameters a and b accordingly (−75.26% and −99.98%); final
transmittance complies with the current legislation for accessing incentive mechanisms.

3. Results and Discussion

The dynamic model simulation results in flow rates, temperatures, pressures and losses
along the network, the temperature inside every building, control records, the thermal
power and energy supplied to the users, and the energy balance in the central heating
system, including electricity for pumping uses.

Focusing on reference case (Scenario 1), the temperature inside the buildings depends
on the external temperature profile: at the beginning of the season, Tint peaks are often
coupled with Text. However different performance parameters for the buildings affect
Tint trends: the historical archive (user 8) is characterised by an a parameter that is ap-
proximately 5.2 times greater than Palacampus (user 65), resulting in a thermodynamic
behaviour that is more energy efficient for the latter. Figure 7 show how Palacampus is able
to better maintain the set-point imposed during the hours when the heating system is on.
The supply temperature is kept constant, while the return temperature varies according to
the heating loads and the energy losses along the network, as shown in Figure 8; it includes
the power supplied by the central heating system.
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Moving to the other management sets for a comparative assessment, Scenario 2–as
expected–shows the best results in terms of inner temperature. As thermal conditions are
closely related to the thermo-physical characteristics of the buildings, most problematic
users in the reference case benefit from improved comfort conditions; the percentage of
time in which the air is between 19 ◦C and 21 ◦C increases from 57.56% to 65.32% and
from 58.90% to 66.72%, respectively, for users 39 and 44, as shown in Figure 9. Regarding
Scenarios 3 and 4, the percentages remain very similar to the values of the reference case,
meaning that the variations in supply temperature do not affect the Tint much, unlike heat
losses. As expected, turning on the heating system earlier (Scenario 2) improves comfort
conditions and results in higher energy consumption (+0.89%) and costs (+0.85%, Figure 10)
as well. The most energy efficient scenarios are Scenarios 3 and 4, with toe energy saving
of 1.14% and 1.41%, respectively (Table 4)). However, the components that contribute to
the achievement of the total energy consumption vary differently in these scenarios: on
one hand, modulating the supply temperature in the plant depending on Text (Scenario 4)
decreases fuel consumption (−2.34%); on the other hand, a lower temperature level causes
higher consumption of electricity for pumping uses (+12.96%), resulting in a reduction in
overall expenditure of 0.76%. This does not happen in the case where the flow temperature
constant is kept at 80 ◦C only during working hours (Scenario 3), as the pumps continue
to consume the same energy as in the reference scenario with a consequent reduction in
economic expenditure of 1.09%. The network heat losses decrease for both Scenario 3 and
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Scenario 4 by 5.89% and 8.91%, respectively, with a greater potential economic valorisation
of the heat produced in Scenario 3. Regarding GHG emissions, as expected, they follow the
energy consumption trend: +0.90% for Scenario 2, −1,16% for Scenario 3, and −1.59% for
Scenario 4.
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Figure 9. Indoor temperature according to the set-point 19 ÷ 21 ◦C, percentage of time in different
users, comparison of scenarios (Scenario 1 in green, Scenario 2 in blue, Scenario 3 in yellow, and
Scenario 4 in red).

Scenarios 3 and 4 result in energy savings that maintain comfort percentages that are
not far from the best values of Scenario 2. As such, a simulation for the entire heating season
was performed in order to compare the reference scenario and a new management set,
called the “optimised scenario”, where the benefits from turning off the supply in the case
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of no thermal demand (Scenario 3) and those due to the modulation of supply temperature
(Scenario 4) are combined together. The heating season includes two weeks for winter
holidays during which the central heating generation is turned off, and implementing a
control on fluid temperature (set >5 ◦C). Figure 11 shows the supply and return temperature
in the optimised scenario: during the winter holidays, the temperature of fluid in the
network decreases until it reaches 18 ◦C. During the operating time, the average supply and
return temperatures are lower compared to the reference scenario, with lower heat losses,
unlike the higher values for mass flow rates and pumping energy. The performance in terms
of the indoor air temperature is slightly reduced for the optimised scenario (Figure 12),
although the differences are in the order of 1%. As for energy consumption, Table 4 shows
that the optimised scenario decreases the thermal energy supplied by the power plant by
3.54%, with a−17.83% of thermal energy losses; even if the pumping requirement increases
by 7.76%, the overall energy consumption (toe) and emissions (CO2) lower by 2.86% and
3.02%, respectively. Therefore, the optimised scenario results in lower energy consumption,
and does not significantly affect the thermal comfort conditions inside the buildings. The
recent extraordinary dynamics at the international level of commodity prices (related to
increases in raw materials and CO2 allowances, leading to +70% for natural gas and +20%
for electricity) affect the economic assessment, with a +60% in operating costs, whereas the
relative reduction of the optimised scenario moves from 2.40% to 2.70%.
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Figure 10. Relative changes from the reference case/scenario, in terms of supplied thermal energy
(blue), electricity for pumping (orange), overall operating sources (grey), cost (yellow), and CO2

emissions (light blue).

Table 4. Energy, economic and environmental assessment (in grey field those considered as reference
for the comparative analysis).

Scenarios
Energy from Thermal

Central Unit Eheat
Fuel Consumption Fin Pumping Elec-tricity Epump Total

[kWht] [kWh] [Sm3] [toe] [kWhe] [toe] [toe] [€] [tCO2]

Reference case
(Scenario 1) 1,458,454 1,568,230 161,304 134.85 51,268 8.77 143.62 110,593 335.67

Scenario 2 1,472,261 1,583,076 162,831 136.13 51,257 8.77 144.89 111,530 338.69

Scenario 3 1,440,722 1,549,164 159,343 133.21 51,257 8.76 141.98 109,385 331.77

Scenario 4 1,424,314 1,531,520 157,528 131.69 57,915 9.90 141.60 109,751 330.20

Reference scenario
(heating season) 4,927,694 5,298,596 544,998 455.62 168,561 28.82 484.44 372,627 1132.70

Optimized scenario
(heating season)

4,753,444 5,111,231 525,727 439.51 181,649 31.06 470.57 363,688 1098.46
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Figure 11. Optimised scenario–Central heating system along the entire heating season [h]: supply
(red) and return (blue) temperature [◦C].
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Figure 12. Indoor temperature according to the set-point 19 ÷ 21 ◦C, percentage of time in different
users: reference scenario in green, optimized scenario in light blue.

Finally, a simplified network was modelled in order to highlight the benefits related to
a deep renovation of a single user (i.e., no. 39, penalised by its thermos-physical features–
ten days simulation); an increased thermal insulation results in lower consumptions and
heat losses from the building to reach comfort conditions, and in increased minimum
values for the return temperature in the network (Figure 13). In particular, the supplied
thermal energy and electricity consumption for pumping decrease by 56.70% and 23.71%
respectively, and the energy losses decreases as well by 3%. A further comparison was made
by lowering the supply temperature in the network to 55 ◦C (30 ◦C for return). The results
show similar profiles of internal temperature and consequent good comfort conditions
(Figure 14), against−22.38% of supplied thermal energy, +3.28% of pumping electricity, and
a remarkable −28.11% of heat losses. These results reflect the multi-physics of the district
heating, even if not directly comparable with other studies with different configurations,
e.g., RES integration in [13]. These promising preliminary results may be extended in
the future to analyse the operation of the entire network, and further investigations will
include the dependency of thermal efficiency on central heater (e.g., condensing boilers)
and supply temperature.
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Figure 13. Return temperature [◦C], for the original (black) and the renovated building (blue), along
the simulation time [h].
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4. Conclusions

EU Directive 2018/2001 emphasises the role of district heating and cooling in the
renewable energy penetration on power system, providing limits on RES share and waste
heat and cold sources in final energy consumption. District heating is intended to cover
a reducing overall demand of primary energy in building sector–due to the decarbonisa-
tion targets–related to the renovation of existing buildings, with operating temperatures
expected to be lower than traditional networks, and to integrate low–medium tempera-
ture heat sources (to convey the excess energy produced by RES non-programmable or
to recover waste heat) with active exchange substations. In this framework, retrofitting
interventions of existing networks moves from temperature optimisation and manage-
ment actions towards fourth generation district heating networks (50–55 ◦C and 30–35 ◦C
for supply and return temperatures respectively), an efficient solution applicable to an
increasing share of the building stock for improving the efficiency in transport and distri-
bution with consequent cost and environmental benefits. A lower temperature influences
the production system, heat losses and electricity required for the pumping system, and
introduces the possibility of using a number of additional local heat sources. In order
to investigate effective management measures, a model was developed to simulate the
energy and hydraulic behaviour operating in real conditions; this overcomes the limitations
of previous models in terms of network layout and hydraulic analysis (e.g., absence of
the bidirectional motion of the fluid in the pipe section). It was applied to the district
heating network of Parma University: starting from a single user in stationary conditions,
activities focused on the entire dynamic network, introducing a tailored resistive-capacitive
model for buildings; once identified appropriate PI parameters and set the control logics,
a number of simulation were performed on different management scenarios, in order to
find out the trading point between energy consumption and indoor comfort conditions for
the heating season; finally, the assessment was extended to a possible renovation scenario
and low-temperature management of the network. Energy, economic, and environmental
results support possible future in-depth investigations, concerning specific technological
innovations, as suggested in [39]: digitalisation, i.e., introduction of smart systems for
data collection about heat demand and monitoring systems; alternative piping options;
improvements at private buildings (e.g., heat exchangers of substations, terminals in the
users, etc.) and the introduction of decentralised storage tanks. Retrofitting interventions
of existing networks is supported in the legislative framework defined in the National
Integrated Energy and Climate Plan; the mechanisms currently available for promoting the
new construction and the expansion of infrastructure will be strengthened, e.g., subsidies
will be provided for interventions aimed at maintaining or achieving an “efficient” district
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heating system (according to Directive 2012/27/EU) through increased heat production,
combined with an extension of the network in terms of increased transport capacity.
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Appendix A

The network topology is shown in Figure A1, while the supplied buildings are listed
in Table A1. The pipe diameters are given in Table A2, together with the lengths of each
branch, the thickness of the thermal insulation and its thermal conductivity.
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Table A1. Buildings supplied by the “Nuova Sud” network.

User ID User Description

8 History Archive
11 Food Science
19 Materials Laboratory
32 Technopole
34 Earth Science
39 Big Print Shop Centre
44 Bar
47 Big Church Centre/Classrooms
53 Multipurpose Centre/Auditorium
65 Palacampus
68 Science Engineering
69 Cafeteria

Table A2. Network technical features.

Branch Pipe Diameters [m] Thermal Insulation
Thickness [mm]

Thermal Conductivity
[W/(mK)] Length [m]

1_7 0.200 47.95 0.040 193.46
7_8 0.080 35.55 0.040 4.12
7_10 0.200 47.95 0.040 115.81

10_11 0.080 35.55 0.040 20.53
10_16 0.200 47.95 0.040 259.46
16_19 0.080 35.55 0.040 40.94
16_21 0.200 47.95 0.040 17.40
21_33 0.200 47.95 0.040 469.76
33_34 0.125 42.65 0.040 60.04
33_35 0.200 47.95 0.040 6.64
35_32 0.100 42.85 0.040 113.57
35_36 0.125 42.65 0.040 25.22
36_39 0.110 42.50 0.040 19.98
36_40 0.125 42.65 0.040 20.93
40_69 0.100 42.85 0.040 2.20
40_43 0.125 42.65 0.040 55.78
43_44 0.110 42.50 0.040 8.68
43_47 0.110 42.50 0.040 49.96
21_48 0.200 47.95 0.040 91.82
48_53 0.100 42.85 0.040 123.45
48_55 0.200 47.85 0.040 21.50
55_68 0.150 41.00 0.040 86.61
55_65 0.100 42.85 0.040 235.54
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