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Abstract: Air pollution significantly affects public health in many countries. In particular, indoor air
quality can be equally, if not more, concerning than outdoor emissions of pollutant gases. However,
monitoring the air quality in homes and apartments using chemical analyzers may be not affordable
for households due to their high costs and logistical issues. Therefore, a new alternative is represented
by low-cost air quality monitors (AQMs) based on low-cost gas sensors (LCSs), but scientific literature
reports some limitations and issues concerning the quality of the measurements performed by these
devices. It is proven that AQM performance is significantly affected by the calibration model used
for calibrating LCSs in outdoor environments, but similar investigations in homes or apartments are
quite rare. In this work, the assessment of an AQM based on electrochemical sensors for CO, NO2,
and O3 has been performed through an experiment carried out in an apartment occupied by a family
of four during their everyday life. The state-of-the-art of the LCS calibration is featured by the use
of multivariate linear regression (MLR), random forest regression (RF), support vector machines
(SVM), and artificial neural networks (ANN). In this study, we have conducted a comparison of these
calibration models by using different sets of predictors through reference measurements to investigate
possible differences in AQM performance. We have found a good agreement between measurements
performed by AQM and data reported by the reference in the case of CO and NO2 calibrated using
MLR (R2 = 0.918 for CO, and R2 = 0.890 for NO2), RF (R2 = 0.912 for CO, and R2 = 0.697 for NO2),
and ANN (R2 = 0.924 for CO, and R2 = 0.809 for NO2).

Keywords: low-cost gas sensors; air pollution; air pollutants; multivariate linear regression; random
forest; support vector machine; artificial neural network

1. Introduction

Air pollution represents one of the main concerns for public health in almost every
country around the globe. It is proven that this issue is the cause of premature death
for seven million people annually [1]. The European Commission has also shown that
European citizens spend around the 90% of their time in indoor environments, mainly at
home or in workplaces [2]. For this reason, the indoor environment can drastically affect
people’s health, positively or negatively. Another study conducted by the US Environmen-
tal Protection Agency (EPA) has shown that indoor environments can be two to five times
more toxic than outdoor locations [3]. Therefore, it is clear that air quality monitoring in
indoor environments is needed for the personal exposure risk assessment of air pollutants.
Currently, air quality monitoring is performed by government authorities through the use
of chemical analyzers, which are bulky, heavy, and require routine maintenance. In addition,
they are also very expensive (their prices ranges between EUR5000 and EUR30,000) [4,5],
thus, they hardly can be afforded by households and common citizens.
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In recent years, the use of air quality monitors (AQMs) based on low-cost gas sensors
(LCSs) has become more and more popular, due to their affordability, portability, and ease
of use [5–7]. The working principles of LCSs, on which AQMs are based, are comprised by
different technologies that provide several advantages, such as low power consumption,
device compactness, and little need for maintenance. The use of LCSs was tested, not
only for air quality assessment, but also for other real-world applications, such as malodor
detection [8,9].

A key factor determining the performance of LCS sensors and AQMs based on them
is represented by the algorithm, or the calibration model, used for their calibration [5]. The
linear regression (LR) and the multivariate linear regression (MLR) methods, along with
several machine learning models, are the most frequently used.

Concerning the particulate matter (PM) concentration measurement, LCSs based
on laser light scattering are currently employed worldwide, and their performance has
been investigated in several studies. For example, Si and others [10] tested four different
calibration models to evaluate the performance of the PMS5003 sensor. They compared the
results given by the LR, MLR, and other machine learning algorithms, such as XGBoost,
and the artificial feedforward neural network (ANN). The authors of this study found
that the most promising method to obtain good quality data from the PMS5003 sensor
in an outdoor environment is represented by the feedforward ANN. Other examples of
machine learning calibration models employed for LCS calibration can be found in [11].

Regarding LCSs for measuring pollutant gases, if we consider their advantages, they
look to be the ideal substitute for chemical analyzers, but unfortunately, they cannot offer
the same accuracy level, and the data produced by such devices have not always proved
reliable [4–7]. In fact, LCSs, and therefore AQMs, are sensitive to temperature and humidity
changes; moreover, they suffer from drift phenomena. These factors are the origin of
inaccuracies in measurements and may lead to the deterioration of AQM performance. In
addition to these elements, it has to be considered that in general, LCSs may not be selective;
this means that measurements performed by sensors designed for carbon monoxide, for
example, can be affected by the presence of other gases (called interfering gases) which
can alter the correct measurement of carbon monoxide concentrations. This effect is also
known as sensor cross-sensitivity.

To account for these adverse factors, researchers have found that the adoption of
advanced calibration techniques can significantly improve AQM performance. They have
also found that the most effective way to maximize their performance in real-world appli-
cations is to calibrate them in co-location with reference instruments placed in the final
deployment environment.

The most common calibration algorithms for LCSs used in the recent studies are based
on multivariate linear regression (MLR), support vector regression (SVR), random forest
regression (RF), and artificial neural networks (ANN).

In any case, the current research on LCS calibration does not provide clear indications
about which calibration approach achieves the best AQM performance, but previous
studies seem to indicate that the reliability of data produced by AQMs also depends on
the environmental variables [4]. More specifically, the LCS calibration process can be
affected by the combination of concentration levels of target gases, the variability range of
temperature and humidity, and the concentration levels of interfering gases [4].

In this respect, a consistent number of studies have been conducted to explore the
performance of calibration algorithms in outdoor environments featuring different condi-
tions; on the contrary, very few investigations (to the best of our knowledge) have been
performed to assess the effectiveness of such techniques in an indoor, real-world scenario
using the co-location of reference instruments with the AQM in question.

Castell et al. [4] highlighted that a good performance of AQMs in the laboratory is not
indicative of good performance in real-world scenarios. In this study, CO, NO, O3, and
NO2 LCSs were calibrated by using linear regression (LR) models in outdoor environments.
However, it must be noted that, concerning the state-of-the-art of calibration models, the
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most widely used method to calibrate LCSs is the multivariate linear regression (MLR) [5].
Other approaches for AQM calibrations are the random forest (RF) algorithm, the support
vector machine (SVM), and artificial neural networks (ANN) [5].

Several works tested these calibration models in an outdoor environment, reporting
various results in terms of performance quality. In this study, we focused our investigation
on the electrochemical LCSs, neglecting of the scope other types of air pollutant sensors. In
Table 1, data from previous studies are summarized to provide an indication of the results
achieved in outdoor environment using the previously mentioned models to calibrate
AQMs or LCSs.

Table 1. A summary of results concerning previous studies in terms of squared correlation co-
efficient (R2). This table aims to provide an indicative summary of the performance achievable
through the different calibration techniques in the outdoor environment. Data are for minimum and
maximum values.

Reference Calibration Algorithm Target Gases R2

Castell [4] LR CO, NO2, NO, O3 0.008 (O3)–0.96 (NO)
Zimmermann [12] RF CO, O3, NO2 0.75 (NO2)–0.92 (O3)

Cordero [13] MLR, RF, SVM, ANN NO2 0.62 (ANN)–0.95 (RF)
Bigi [14] MLR, RF, SVM NO, NO2 0.6 (NO2, MLR)–0.96 (NO, SVM)

Suriano [15] MLR, LR NO2, O3 0.36 (NO2, LR)–0.67 (NO2, MLR)
Spinelle [16,17] LR, MLR, ANN NO2, O3, NO 0.004 (NO2, LR)–0.915 (O3, ANN)

Wei [18] MLR CO, NO2, NO, O3 0.7 (O3)–0.98 (CO)

Concerning the use of AQMs based on LCSs in indoor environments, some studies
were conducted to explore their potentialities and capabilities. In one of these studies,
Pitarma and others [19] proposed a wireless sensor network system for monitoring CO and
CO2 concentrations, along with other environmental parameters. In the work of Zhang [20],
a wider range of air pollutants was monitored through a custom-built monitoring system
capable of detecting TVOCs (total volatile organic compounds), CO, CO2, NO2, SO2, O3,
PM10, PM2.5, and PM1. An IoT (Internet of Things) based air quality monitoring platform
called “Smart-Air” was presented by Byung Wan Jo [21] for measuring VOC, CO, and
CO2. This system was implemented in the Hanyang University of Korea to demonstrate its
feasibility. However, all these studies were conducted without comparing the performance
of AQMs in co-location with reference instrumentation to provide an idea of the effective
quality of the data produced by them. Moreover, no information was provided about the
LCS calibration algorithms used in the AQMs. Few studies involving LCSs in co-location
with reference instruments to test AQM data reliability in an indoor environment were
conducted. Most studies are focused on investigating the use of AQMs for PM, TVOC,
and CO2 concentration measurements [22–24]. To the best of our knowledge, only Tryner
and Volckens et al. [25] measured indoor CO, NO2, and O3 concentrations, testing these
in a kitchen of an occupied home in co-location with reference monitors. The calibration
algorithm used in this study was the MLR, while the total duration of the experiment was
168 h.

The previous studies involving AQMs based on LCSs have proven that AQM data
quality significantly depends on the calibration algorithm used, on the concentration levels
of the target gases, and on the variability of the interfering parameters, such as temperature,
humidity, and the interfering air pollutants. All these factors, in conjunction with the lack
of studies comparing CO, NO2, and O3 sensor performance with reference monitors in
an indoor environment, have induced us to explore the variation of the performance of
these LCSs by using different calibration algorithms in an indoor experiment. Therefore, to
accomplish this objective, an AQM designed and developed in our laboratories has been
placed in co-location with reference monitors in an occupied home for measuring NO2, CO,
and O3 concentrations during everyday life. The experiment enabled us to compare the
performance of electrochemical CO, NO2, and O3 sensors by using different calibration
algorithms such as MLR, RF, SVM, and ANN (see Section 2.3 for more details).
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2. Materials and Methods
2.1. The Experimental Setup

The AQM used for this experiment, called SentinAir (see Figure 1a), was designed and
developed in the laboratories of the ENEA research center of Brindisi (Italy) by D. Suriano,
and it is capable of being used with different LCS types [15]. Previous articles [15,26,27]
have been described in detail the SentinAir system, while all the information and the
materials needed to assemble it can be found in online repositories [28–30]. For each air
pollutant, two LCSs have been used during the experiment (see Figure 1b); they have
been assembled in the SentinAir AQM along with the temperature and relative humidity
(RH) sensors. In Table 2, information about the LCSs used for this study is reported, along
with the target gas they are designed to test. All the LCSs involved in the experiment are
four-electrode electrochemical gas sensors designed for ppb gas levels. In addition to the
standard working, reference, and counter electrodes, a fourth auxiliary electrode is used
to correct for zero current changes. Therefore, each sensor provides two output signals:
the working, and the auxiliary electric current. The manufacturer suggests subtracting the
auxiliary signal from the working one, considering the sensor output as their difference.
The weak continuous current provided by these sensors (see Table 2) must be converted
into a voltage signal, which in turn, must be converted into digital data, following the
scheme depicted in Figure 2.

Figure 1. (a) A photo of SentinAir AQM. (b) The physical appearance of the LCS used in the
experiment: they are cylindrical shaped and feature a diameter of 32 mm and a height of 16 mm.

Table 2. The sensors used in SentinAir AQM during the experiment. The data shown in the table are
reported by the manufacturer datasheets.

Sensor Measured Parameter Range Sensitivity Manufacturer

COB4 CO 0/1000 ppm 350/500nA/ppm Alphasense [31]
NO2B43F NO2 0/20 ppm −200/−650nA/ppm Alphasense
OXB431 O3 0/20 ppm −225/−750 nA/ppm Alphasense
HIH5031 Relative humidity 0/100% 20 mV/RH% Honeywell [32]
TC1047A Temperature −40 ◦C/+85 ◦C 10 mV/◦C Microchip [33]

Sensors must be mounted on an electronic support board for their operation. The
sensor manufacturer provides such boards, but their output sensitivity cannot be set by
the customer after their purchase. For this reason, we decided to design and implement
in our laboratory an electronic board (the Alphasense B4 multisensor board designed by
D. Suriano in the ENEA research center of Brindisi in Italy) suitable for our purposes. All
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the information and details for assembling it, along with those related to the LCSS adapter
board shown in Figure 2, can be found in [15,26–30]. The sensitivity parameters at the
support board output (here expressed in mV/ppb) related to each sensor, along with low
electric noise, could have a significant impact on the sensor performance; therefore, in LCS
performance assessment studies, it could be very useful to know these, but unfortunately,
they are very often not reported. The theoretical values of sensitivity for each sensor used
in the experiment are shown in Table 3. They are calculated using the amplification gain of
the electronic circuits featured in the Alphasense B4 multisensor board and the resistive
values of the variable resistors mounted on it (see [30] for further details).

Figure 2. The signal chain conversion. Sensors are mounted on the Alphasense B4 multisensor board
which converts sensor electric currents featured by sensitivity, shown in Table 2, into voltage levels,
characterized by a sensitivity expressed in mV/ppb. Finally, the LCSS adapter board converts analog
voltage signals into digital data and transmits them through a USB connection to the processor board,
where they are processed by the calibration algorithms.

Table 3. The sensitivity values set at the sensor board output. Two sets of sensors composed of the
same sensor type were involved in the experiment.

Sensor Sensitivity

COB4(1) 620 mV/ppm
NO2B43F(1) 1.1 mV/ppb
OXB431(1) 1.1 mV/ppb
COB4(2) 580 mV/ppm

NO2B43F(2) 1 mV/ppb
OXB431(2) 1 mV/ppb

The reference instrumentation used for the experiment were the 106L GO3 PRO model
for ozone measurements [34], the 405 nm NO2/NO/NOx monitor [34], and the CO12
model for carbon monoxide measurements by Envea [35]. The SentinAir system is capable
of automatically connecting with these instruments, thus it was possible to synchronously
read data emitted by them and LCS signals (see [15,26–28]).

2.2. The Experiment Location

This study was conducted in an occupied apartment located in Mesagne, a town in the
south of Italy. A maximum number of four people were in the apartment at various hours
of the day, while ordinary activities and events occurred during the usual daily routine.
Cooking food using the gas burner stove, smoking tobacco, using the laser printer, burning
candles, etc., produced different concentrations of CO, NO2, and O3. As the aim of this
study is not focused on relating gas concentration levels to a particular type of source,
the time of the different events was not systematically logged, but some indications are
provided in correspondence with the most significant events. The apartment is composed
of the daytime area and the nighttime area, separated by a door. The experimental setup
was placed in the daytime area (see Figure 3b), while the door separating the living room
from the nighttime area was kept closed throughout the duration of the experiment. This
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precaution was necessary to limit the effects of the permanent buzzing sound produced by
the reference monitors during their operation.

Figure 3. The experimental setup (a) and its location in the apartment (b). The size of the apartment’s
daytime area is about 54 square meters.

2.3. The Calibration Algorithms

By examining the scientific literature, it appears that the most used calibration tech-
niques for AQM calibration are based on LR, MLR, RF, SVM, and ANN algorithms (at
least, in outdoor environments) [5]. Considering that the best performance has always been
achieved by MLR, RF, SVM, or ANN, we decided to exclude the LR approach from our
investigation. MLR is the most widely used calibration algorithm [5]; it consists of a linear
function structured as in Equation (1), where y is the regressor, x1, x2, xn are the predictors,
and the αi coefficients are calculated by using the ordinary least square method.

y = α1x1 + α2x2 + . . . + αnxn (1)

The RF calibration model is a machine learning algorithm for solving regression or
classification problems [36]. It constructs an ensemble of decision trees using a training
dataset; thus, the mean value from that ensemble is used to predict the value for new
input data.

The SVM solves a regression problem in three main steps: first, the input data are
mapped into a feature space employing a kernel function; then, the flattest function fitting
the input images is found by solving the corresponding constrained optimization equation.
Support vectors are the points corresponding to the non-null Lagrangian multipliers of this
latter function. In the last step, the results are mapped back into the input space [37]. ANNs
are very sophisticated techniques able to model very complex functions through artificial
units, the neurons, arranged in various architectures. Among the various ANN types,
we considered the multilayer perceptron (MLP) [38] for this study, due to its successful
application in previous works [16,17]. The MLP architecture generally arranges the neurons
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in more layers: the input layer includes the neurons where inputs are applied; thus, the
output of this layer acts as the input for the next one, and so on, until the final output
layer. This last layer provides the output final data. One or more layers, called hidden
layers, can be located in the midst of the input and output layers, depending on the MLP
architecture adopted. There is no well-defined procedure for precisely identifying the
number of neurons and layers for the optimal performance; rather, empirical methods
featured by trial-and-error mechanisms are often used for their selection.

The software used for the implementation of the calibration algorithm was the open-
source Scikit-learn library [39–41]. Employing this resource, RF and SVM parameter tuning
was performed to select the optimal configuration for these machine learning algorithms
(see also the Supplementary Materials, Listing S1). Concerning the MLP, over 10000 types
were tested to find the optimal solution. Architectures with one or two hidden layers were
tested, while the number of neurons for each layer ranged from 10 to 200. For the MLP
training, the BFGS algorithm was used [42], while input data were previously scaled by
applying a transformation with a means of zero and variance of 1.

Unlike some previous studies, we selected predictor variables uniquely related to
sensor outputs, avoiding using data coming from reference devices, in order to assess AQM
use potentiality in real-world applications without relying on reference instruments that
are not always available.

Moreover, the sensor manufacturer and some previous works consider the difference
between working and auxiliary electrode signals as the sensor output; therefore, this is used
as a predictor in the calibration models. In this study, we considered two sets of predictor
variables for each group of sensors: the first one is composed of temperature, relative
humidity, and the signals of the working and auxiliary electrodes of sensors involved in
the elaboration, while the second one (hereafter denoted with the suffix “net”) is formed by
the temperature, relative humidity, and the difference between the working and auxiliary
electrodes of each sensor. The calculations carried out through each calibration model used
in this experiment were performed by using both the two predictor sets as input, in order
to investigate if these two optional approaches originate significant differences in terms of
AQM pollutant concentration prediction capability.

Finally, as a criterion followed in selecting predictor variables, we considered the data
related to interfering gas for each sensor, as provided by the manufacturer. By examining
these, it can be seen that the COB4 output is not significantly affected by NO2 and O3
concentrations, while the NO2B43F is provided with an ozone filter which limits its cross-
sensitivity for this gas. On the contrary, the OXB431 sensor detects both ozone and nitrogen
dioxide; therefore, for ozone concentration prediction, we also included NO2B43F sensor
outputs as predictors. As suggested by the manufacturer, to take into account the effect of
the NO2 cross-sensitivity, we considered as predictors the difference between the OXB431
and the NO2B43F sensor outputs (see Table 4).

Table 4. The sets of predictors selected for each pollutant. The subscripts “w” and “a” indicate the
“working” and the “auxiliary” signal electrodes, respectively. T and RH are the temperature and the
relative humidity measurements carried out by the dedicated sensors. In parentheses is indicated the
group of sensors.

Calibration Model Pollutant Predictor Set Name Predictor Variables

MLR, RF,
SVM, ANN

CO

CO(1) COB4(1)w, COB4(1)a, T, RH
CO(1)net (COB4(1)w – COB4(1)a), T, RH

CO(2) COB4(2)w, COB4(2)a, T, RH
CO(2)net (COB4(2)w – COB4(2)a), T, RH

NO2

NO2(1) NO2B43F(1)w, NO2B43F(1)a, T, RH
NO2(1)net (NO2B43F(1)w – NO2B43F(1)a), T, RH

NO2(2) NO2B43F(2)w, NO2B43F(2)a, T, RH
NO2(2)net (NO2B43F(2)w – NO2B43F(2)a), T, RH
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Table 4. Cont.

Calibration Model Pollutant Predictor Set Name Predictor Variables

O3

O3(1) (OXB431(1)w – NO2B43F(1)w), OXB431(1)a, NO2B43F(1)a, T, RH
O3(1)net (OXB431(1)w – OXB431(1)a) – (NO2B43F(1)w – NO2B43F(1)a), T, RH

O3(2) (OXB431(2)w – NO2B43F(2)w), OXB431(2)a, NO2B43F(2)a, T, RH
O3(2)net (OXB431(2)w – OXB431(2)a) – (NO2B43F(2)w – NO2B43F(2)a), T, RH

Finally, considering that we have two groups of sensors—hereafter marked with (1)
and (2)—and two sets of predictors for each pollutant gas, in total, there will be four sets of
predictors to set as input for each model considered in this study. In Table 4, the complete
sets of predictor variables selected for our investigation are summarized.

2.4. Model Evaluation and Metrics

The dataset collected during the experiment was split into two parts: the part related
to the first period of the experiment was used for LCS calibration, while the second part was
used for validation. The metrics adopted for both the calibration and validation processes
were the coefficient of determination (R2), the mean absolute error (MAE), the root mean
squared error (RMSE), and the normalized root mean squared error (nRMSE), defined in
Equations (2)–(5).

R2 =

(
∑N

1 (mi −m)(ri − r)
)2

∑N
1 (mi −m)2(ri − r)2 (2)

MAE =
1
N

N

∑
i=1
|mi − ri| (3)

RMSE =

√√√√ 1
N

N

∑
i=1

(mi − ri)
2 (4)

nRMSE =
1
r

√√√√ 1
N

N

∑
i=1

(mi − ri)
2 (5)

In the above equations, N is the number of records belonging to the dataset, mi
represents the i-th value given by the model, ri is the reading of the reference instrument, r
is the average of the reference readings, while m represents the average of measurements
given by the model.

The coefficient of determination ranges from 0 to 1 and gives us an idea about how
accurately the AQM measurements follow the reference readings, or in other words, the
grade of correlation between AQM and reference data. Values close to 1 indicate good
performance; on the contrary, if the values are near 0, it means a poor correlation. MAE and
RMSE are both indicators that provide information about the entity of the error between
the model and the reference. Lower values underline better performances. The nRMSE
indicator is necessary for allowing us to make a comparison of the performance given by
the models for different pollutant gases. Even in this case, nRMSE values close to 0 suggest
good performance.

3. Results

The experiment lasted 186 h and 54 min, producing a dataset featured by a total
number of 5607 records, taken at a sampling rate of 2 min. The calibration dataset includes
data recorded from 13 December 2021 to 17 December 2021, providing 2575 records; the
validation dataset includes readings from 17 December 2021 to 21 December 2021, resulting
in 3032 records.

CO, NO2, and O3 concentration statistics, as monitored by the reference during the
calibration and validation period, are summarized in Figure 4a, while in Figure 4b, the
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temperature and relative humidity ranges are shown. Data related to these last two
parameters were obtained from the sensors mounted inside the AQM and placed very
close (less than 10 cm) to the LCSs. For this reason, they were able to measure the values
actually experienced by the sensors rather than the values related to the room where the
AQM was placed.

Figure 4. Domestic pollutants statistics. NO2, O3, and CO concentrations have been measured using
the reference instruments (a). Temperature and relative humidity data given by the sensors inside the
AQM (b).

Model evaluations based on the metrics selected for their assessment are revealed in
Table 5. By examining this table, we see that, if we consider the coefficient of determination
(R2) and the validation dataset, the best performance related to CO, NO2, and O3 is
respectively achieved by the CO(2) predictor set calibrated through ANN, by the NO2(1)
calibrated through MLR, and the O3(1) calibrated by MLR.

Time series and scatter-plots referring to the previously mentioned three cases are
shown in Figures 5–9. In particular, Figure 5 shows the time series related to the calibration
dataset, while in Figure 6, it is possible to see the data concerning the validation dataset. In
these figures, some events originating the pollutant gases are reported for an indicative
idea about the possible sources of domestic pollution. During the experiment, a systematic
logging of every event related to the monitored pollutant gases was not carried out, because
the aim of this study is mainly focused on assessing the AQM performance calibrated by
different models. Figure 5 reports the predictions during the calibration period described
for CO (Figure 5a), NO2 (Figure 5b), and O3 (Figure 5c). These are featured by a coefficient
of determination of 0.975, 0.734, and 0.432, respectively. Similarly to Figure 5, data reported
in Figure 6 are related to the validation period for CO (Figure 6a), NO2 (Figure 6b), and O3
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(Figure 6c). The coefficient of determination in these three cases is respectively 0.924, 0.890,
and 0.137.

Table 5. Synoptic view of results. Bold fonts show the best values for each indicator by considering
calibration or validation datasets. MAE and RMSE related to NO2B43F and OXB431 are expressed as
“ppb”, while those referring to COB4 are shown as “ppm”. Data highlighted in light blue are related
to Figures 5–9.

Calibration Validation
Gas Model Predictors R2 MAE RMSE R2 MAE RMSE

CO

MLR

CO(1) 0.974 0.084 0.126 0.891 0.121 0.164
CO(1)net 0.961 0.119 0.155 0.756 0.213 0.245

CO(2) 0.975 0.083 0.123 0.918 0.099 0.140
CO(2)net 0.962 0.116 0.152 0.789 0.191 0.227

RF

CO(1) 0.996 0.017 0.049 0.912 0.141 0.149
CO(1)net 0.996 0.019 0.052 0.891 0.173 0.162

CO(2) 0.997 0.016 0.044 0.897 0.180 0.156
CO(2)net 0.966 0.019 0.049 0.868 0.205 0.177

SVM

CO(1) 0.981 0.076 0.108 0.844 0.138 0.193
CO(1)net 0.971 0.104 0.134 0.461 0.393 0.485

CO(2) 0.980 0.080 0.110 0.740 0.211 0.251
CO(2)net 0.971 0.100 0.132 0.420 0.401 0.489

ANN

CO(1) 0.975 0.090 0.124 0.914 0.403 0.385
CO(1)net 0.971 0.098 0.132 0.906 0.409 0.351

CO(2) 0.975 0.083 0.124 0.924 0.377 0.366
CO(2)net 0.973 0.093 0.127 0.900 0.431 0.363

NO2

MLR

NO2(1) 0.641 4.244 6.148 0.890 8.381 10.618
NO2(1)net 0.633 4.265 6.152 0.866 8.494 10.673

NO2(2) 0.598 4.560 6.433 0.809 11.923 12.902
NO2(2)net 0.560 4.797 6.738 0.776 10.413 13.627

RF

NO2(1) 0.906 2.011 3.166 0.600 9.647 16.305
NO2(1)net 0.905 2.014 3.169 0.601 9.643 16.304

NO2(2) 0.912 1.948 3.052 0.697 8.656 14.749
NO2(2)net 0.890 2.154 3.401 0.690 9.361 15.260

SVM

NO2(1) 0.341 4.982 8.677 0.039 21.921 24.556
NO2(1)net 0.241 4.981 8.676 0.039 21.917 24.553

NO2(2) 0.239 4.990 8.696 0.037 21.869 24.593
NO2(2)net 0.233 5.008 8.728 0.035 21.810 24.657

ANN

NO2(1) 0.776 3.289 4.861 0.774 9.551 15.143
NO2(1)net 0.778 3.277 4.832 0.783 9.312 14.910

NO2(2) 0.820 2.912 4.339 0.478 10.094 17.949
NO2(2)net 0.757 3.460 5.064 0.809 10.225 15.439

O3

MLR

O3(1) 0.432 6.318 9.401 0.137 9.552 16.340
O3(1)net 0.465 6.180 9.117 0.124 14.785 16.067

O3(2) 0.474 6.167 9.035 0.098 18.364 16.195
O3(2)net 0.455 6.124 9.201 0.108 15.193 15.892

RF

O3(1) 0.850 3.151 4.905 0.074 12.160 17.981
O3(1)net 0.925 1.918 3.412 0.024 14.006 18.474

O3(2) 0.929 1.845 3.340 0.023 15.913 19.609
O3(2)net 0.917 2.044 3.605 0.026 13.368 17.880

SVM

O3(1) 0.379 6.658 11.796 0.101 8.533 11.513
O3(1)net 0.247 6.287 10.463 0.008 17.980 14.826

O3(2) 0.260 6.256 10.380 0.008 18.628 15.052
O3(2)net 0.257 6.269 10.402 0.008 16.600 15.101

ANN

O3(1) 0.860 3.206 4.668 0.006 11.060 17.449
O3(1)net 0.883 2.950 4.287 0.001 11.989 17.869

O3(2) 0.862 3.190 4.630 0.006 11.258 17.726
O3(2)net 0.763 4.567 6.075 0.001 12.683 21.823
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Figure 5. Time series related to the calibration period: (a) COB4(2) sensor calibrated by ANN and
predictor set CO(2), (b) NOB43F(1) sensor calibrated by MLR and predictor set NO2(1), (c) OXB431(1)
sensor calibrated by MLR and predictor set O3(1). Events occurring during the experiment are
marked as follows. A: food cooking using natural gas burners, B: tobacco smoke, C: candles burning,
D: tobacco smoke and laser printer use, E: tobacco smoke and candles burning, F: tobacco smoke and
food cooking using natural gas burner, G: food cooking using natural gas burners.
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Figure 6. Time series related to the validation period: (a) COB4(2) sensor calibrated by ANN and
predictor set CO(2), (b) NOB43F(1) sensor calibrated by MLR and predictor set NO2(1), (c) OXB431(1)
sensor calibrated by MLR and predictor set O3(1). Events occurring during the experiment are
marked as follows. A: food cooking using natural gas burners, B: tobacco smoke, C: candles burning,
D: tobacco smoke and laser printer use, E: tobacco smoke and food cooking using natural gas burners,
F: food cooking using natural gas burner, G: candles burning and tobacco smoke.
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Figure 7. Scatter plots for CO concentration predictions related to (a) calibration dataset, (b) valida-
tion dataset.

Figure 8. Scatter plots for NO2 concentration predictions related to (a) calibration dataset, (b) valida-
tion dataset.

Figure 9. Scatter plots for O3 concentration predictions related to (a) calibration dataset, (b) valida-
tion dataset.

To better understand the differences in prediction capability of the AQM by using the
calibration models under investigation, it is useful to analyze Tables 6 and 7. In these tables,
the median values of R2 and nRMSE are reported for each model by separately considering
the three pollutants. In particular, by taking into account the median values and not the best
ones, Table 7 shows that, in terms of R2, ANN achieves the best performance in predicting
the CO concentrations, while for NO2 and O3, the MLR model offers the best results. As
expected, values related to the calibration dataset shown in Table 6 are in general better
than the respective values shown in Table 7, where calculations performed by the validation
dataset are shown.
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Table 6. Median values obtained from calibration dataset. Bold characters indicate the best value for
each column.

CO NO2 O3

Model R2 nRMSE R2 nRMSE R2 nRMSE

MLR 0.968 0.207 0.615 0.588 0.460 1.855
RF 0.966 0.047 0.906 0.296 0.921 0.355

SVM 0.975 0.248 0.240 0.812 0.258 0.636
ANN 0.974 0.128 0.777 0.453 0.861 0.323

Table 7. Median values obtained from validation dataset. Bold characters indicate the best value for
each column.

CO NO2 O3

Model R2 nRMSE R2 nRMSE R2 nRMSE

MLR 0.840 0.319 0.837 0.586 0.116 1.237
RF 0.894 0.259 0.649 0.784 0.025 1.399

SVM 0.600 0.600 0.038 1.221 0.008 1.147
ANN 0.910 0.594 0.778 0.760 0.004 1.366

In this experiment, we decided to investigate the effects of different inputs or pre-
dictors for MLR, RF, SVM, and ANN calibration models (see Table 4). These inputs can
be distinguished into two subsets. The first subset is defined by taking as a predictor the
difference between the “working” and “auxiliary” electrodes of each sensor selected for
predicting the gas concentrations. The second subset includes the sets where a predictor
variable is represented by every single electrode of the sensor (see Table 4). The results
obtained by comparing the performance achievable through the two subsets and consid-
ering all the calibration models related to CO, NO2, and O3 are reported in Figure 10.
The indicators used for this analysis are represented by R2 and nRMSE, while the results
originated by the first subset are marked with the “net” suffix, and the results from the
second subset are denoted by the “single” suffix.

Figure 10. Performance analysis by different predictor subsets related to the (a) calibration dataset,
(b) validation dataset.

4. Discussion

By analyzing Tables 5 and 7, it can be seen that the best performance related to the
validation dataset was achieved for CO and NO2 predictions, while all the indicators show
that the poorest performance was for the O3 measurements. This result is further high-
lighted by the scatter plots shown in Figure 9, where the spread of point clouds indicates
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the low correlation between the predicted ozone concentrations and those measured by the
reference. One possible explanation can be provided by the high cross-sensitivity of ozone
sensors to NO2 concentrations. If we carefully inspect Figures 5 and 6, it can be noted
that NO2 emissions are almost always originated in concurrence with ozone production.
This element, in conjunction with a lower range of ozone concentrations compared with
the NO2 levels, shown in Figure 4, could explain this relevant difference between the
ozone concentration prediction and the other results. Moreover, by inspecting Figure 4b,
it can be seen that the temperature and relative humidity levels experienced by the sen-
sors under test mostly fall into a relatively restrained range. This factor has contributed
to limit the interfering effects of these two parameters, ending up benefiting the overall
LCS performance.

If we want to try a comparison with similar previous works, we must distinguish
between studies carried out in outdoor environments and indoor investigations performed
in an occupied home. While the first category of works is characterized by a relevant
number of studies (see the review written by Karagulian et al. [5]), to the best of our
knowledge, the only study performing AQM data quality assessment by comparison with
reference monitors for CO, NO2, and O3 is provided in Tryner’s work [25], although this
study was carried out through a test methodology different from the approach followed
here. In any case, some similarities can be found by comparing the two experiments:
in general, CO, and NO2 predictions are more accurate than the ozone predictions, and
in particular, CO measurements exhibit more correlation with the reference data. The
indicators used for both the studies were R2, MAE, and RMSE, allowing us to build Table 8,
where the median values of the indicators summarize the differences found between that
study and our current research.

Concerning the investigations carried out in outdoor environments, we can refer to
the work of Karagulian [5], which also provides data related to the calibration model used
in the various studies. The comparison between this work and the previously mentioned
studies is exposed in Table 9, where it can be noted that data related to CO and NO2 are
quite comparable, except for in the SVM case. On the contrary, results concerning the O3
pollutant significantly differ from the data found in this experiment. A possible explanation
could be that LCS performance is significantly sensitive to both the gas concentration
levels and the magnitude of interfering gas concentrations. These two factors can be
remarkably different from one environment, or location, to another, causing discrepancies
in AQM performance.

Another aspect concerning AQM performance assessment is represented by the model
selected for LCS calibration. In this study, we have investigated four calibration models
(MLR, RF, SVM, and ANN) utilizing R2, MAE, RMSE, and nRMSE indicators. By examining
Tables 5–7, it can be noted that, in general, the best performance is achieved by MLR, RF,
and ANN models, but also that the data does not clearly indicate the presence of a specific
outperforming algorithm. Rather, our analysis suggests that in most cases, the SVM
approach provides less accurate predictions for each monitored pollutant. This last element
is possibly due to the intrinsic difficulty in finding the optimal model hyperparameter set.
The computing time required for determining the optimal hyperparameter combination
was significantly larger compared to the that one for other models, and perhaps more
extensive efforts and trials would be needed to find them. Finally, it must be noted that
fast and optimal hyperparameter tuning is an active research area within the scientific
community [14]. However, by assessing those results from a practical point of view, MLR
models are much easier to implement using electronic microprocessor boards of AQMs,
requiring fewer computational resources. On the contrary, RF and ANN models require
more computational power, memory, and dedicated software libraries.
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Table 8. Comparison between this work and data reported in Tryner’s study. In this table, the median
values are shown for each indicator, while data in parentheses are relative to the validation period;
“n.a.” stands for not applicable. MAE and RMSE for CO are expressed as “ppm”, while in the other
cases, they are shown as “ppb”.

Tryner [25] This Work

Pollutant R2 MAE RMSE R2 MAE RMSE

CO 0.846 (n.a.) 0.499 (n.a.) 0.650 (n.a.) 0.970
(0.867)

0.083
(0.208)

0.124
(0.236)

NO2 0.902 (n.a.) 14 (n.a.) 19 (n.a.) 0.696
(0.713)

3.852
(9.870)

5.606
(15.349)

O3 0.313 (n.a.) 15 (n.a.) 21 (n.a.) 0.660
(0.017)

5.345
(13.687)

7.555
(16.894)

Table 9. Comparison with previous works performed in an outdoor environment related to the
R2 indicator.

Previous Works [5] This Study

Pollutant Model Calibration Validation Calibration Validation

CO ANN - 0.58 0.974 0.910
CO MLR 0.89 0.83 0.968 0.840
CO RF 0.91 - 0.966 0.894

NO2 ANN 0.87 0.94 0.777 0.778
NO2 MLR 0.81 0.81 0.615 0.840
NO2 SVM - 0.78 0.240 0.038
O3 ANN - 0.89 0.861 0.004
O3 MLR 0.91 0.88 0.460 0.116

Finally, another aspect investigated through this experiment is represented by the
selection of predictors for the calibration models. Figure 10 clearly shows that, taken
separately, the “working” and the “auxiliary” signals in the predictor sets generally lead
to better performance. This conclusion can be drawn by noting that the median values of
R2 and nRMSE shown in Figure 10 are always better in this case, as compared to the “net”
predictor choice.

5. Conclusions

The experiment carried out in this work clearly points out that CO, NO2, and O3
pollution can be an issue equally, if not more, concerning than the outdoor emissions of
these gases. Monitoring this pollutant by chemical analyzers is not feasible for households,
due to their high costs and logistic issues. Moreover, the permanent buzzing sound they
usually generate during their operation could be a problem for their use in homes and
apartments. An option for addressing these issues could be represented by AQMs based
on LCSs, which are significantly less expensive and not noisy.

An experiment was conducted in an occupied home to demonstrate the effectiveness of
the AQM for monitoring CO, NO2, and O3 pollutants by using different calibration models.
We found that CO and NO2 pollutant concentration measurements are in good agreement
with the reference instruments data, if calibrated through MLR, RF, and ANN models. In
particular, by considering the validation period, the best performance in terms of R2 for CO
concentration measurements was achieved through the ANN model (R2 = 0.924), while
the best MAE and RMSE values were achieved by MLR calibration (MAE = 0.099 ppm;
RMSE = 0.140 ppm). Moreover, in the case of the NO2, we found that in the validation
period, the best performance was given by the MLR model (R2 = 0.924; MAE = 8.381 ppb;
RMSE = 10.618 ppb).

Moreover, we proved that model prediction capabilities could be further optimized by
separately using sensor electrode signals as inputs.
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