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Featured Application: This work concerns the study of the vortex phase diagram in CaKFe4As4,
whose knowledge can be helpful for the understanding of the applicative ranges in field and
temperature of these materials with not-optimized fabrication characteristics, as usually is found
in superconducting wires and cables for power applications.

Abstract: To draw a complete vortex phase diagram for a CaKFe4As4 polycrystalline iron-based
superconductor, different kinds of magnetic measurements have been performed focusing on the
critical parameters of the sample. Firstly, magnetic moment versus field measurements m(H) were
performed at low fields in order to evaluate the lower critical field Hc1. After that, by performing
relaxation measurements m(t), a field crossover Hcross was detected in the framework of a strong
pinning regime. The irreversibility field Hirr as a function of the temperature curve was then drawn
by plotting the critical current densities Jc versus the field for temperatures near Tc. Jc(H) has
demonstrated a second magnetization peak effect phenomenon, and the second peak field Hsp has
been identified and plotted as a function of temperature, providing information about an elastic
to plastic transition in the vortex lattice. Finally, the upper critical field Hc2 as a function of the
temperature has been obtained. Hc1, Hcross, Hsp, Hirr, Hc2 have been fitted and used for drawing
the complete vortex phase diagram of the sample. It can be helpful for the understanding of the
applicative ranges in the field and temperature of the materials with not-optimized fabrication
characteristics, as usually is found in superconducting wires and cables for power applications.

Keywords: iron-based superconductors; 1144 IBS family; pinning properties; irreversibility field;
upper critical field; magnetism and superconductivity; power applications

1. Introduction

The iron based superconductors (IBS) found out in 2008 [1] are probably the most
intriguing material to investigate since the high-Tc superconductors (HTS) discovery by
Bednorz and Muller in 1986 [2]. In fact, although the HTS critical temperature Tc is well
above the liquid nitrogen temperature in many cases, materials such as YBCO or BSCCO
have been not exploited completely for their use in power applications of superconduc-
tivity due to some problems: high values of anisotropy [3,4], superconductor-insulator-
superconductor (SIS) grain boundary junction [5,6]etc. On the other hand, although the IBS
have a lower Tc than HTS, they show lower values of anisotropy [7,8] and superconductor-
normal-superconductor (SNS) grain boundary junction [9,10] together with high values
of Jc and Hc2 [11,12]. Among all the IBS families, the recently discovered 1144 family has
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attracted the attention of researchers due to its analogy in the crystal structure with the
well-known 122 IBS family [13]. In the 1144 family, the CaKFe4As4 presents interesting
peculiarities such as relatively high Tc ≈ 35 K [14,15], large upper critical field [16,17], and
very high Jc at high fields as well [17,18]. Moreover, in very recent years, CaKFe4As4 wires
and tapes have been successfully fabricated by the powder-in-tube method [19,20] opening
perspectives in terms of using this material for practical purposes. It is worth underlining
that Refs. [19,20] have not performed a thorough magnetic analysis of the material nor
the construction of a complete vortex phase diagram as instead shown in this work. The
CaKFe4As4 can form during the fabrication process also spurious phases such as CaFe2As2
and KFe2As2 [14] and a large number of impurities. So, it is clear that the superconducting
properties and critical parameters can be drastically enhanced if these phases and the grain
boundaries formation are reduced by improving the fabrication process. In this framework,
one of the most common problems in applications of superconducting materials on a large
scale is the difficulty of not being able to optimize their superconducting characteristics in
the entire volume of the application. In fact, the characteristics of such materials can differ
particularly in the case of using well-optimized samples with perfect crystalline structure
compared to when considering volumes of material much larger than a single crystal. In
this context, the study of non-optimized samples becomes very useful to understand the
field and temperature behavior of their superconducting critical parameters. In general, the
first and third harmonic of the AC magnetic susceptibility is a valid approach to studying
the vortex dynamics [21,22] but it often requires difficult analysis processes. In this context,
it is worth underlining that an in-depth study of the temperature dependence of the modu-
lus of the first and third harmonic of the AC magnetic susceptibility gives very accurate
information about the vortex melting line [23,24]. The results are usually influenced by
the values of the amplitude and frequency of the AC magnetic field together with the
possibility to use a superimposed DC field. So, it reveals a very useful investigation when
it is necessary to individuate the vortex melting line of the superconductor with well-fixed
AC and DC field parameters. Alternatively, DC magnetization can be used. Its response as
a function of the temperature, the magnetic field, and the time gives information about the
critical parameters of the sample useful to draw a complete vortex phase diagram. In the
present study, we report the superconducting properties of a non-optimized CaKFe4As4
superconductor by using DC magnetization measurements in magnetic fields up to 9 Tesla
and temperatures in the range 5–35 K. In particular, the attention has been focused on
drawing the vortex phase diagram of the sample. At this aim, different critical parameters
such as Hc1, Hirr, etc. have been obtained. The results showed that the sample is perspective
in terms of energy/high-power applications due to its very large Hc2 values and the strong
pinning behavior. Nevertheless, the observed very wide vortex liquid region makes us
understand that the efficiency of the pinning is low. Then, the sample must be optimized
by improving, for instance, the fabrication process.

2. Materials and Methods

A disk-shaped pellet having a diameter equal to 3 mm and a thickness equal to
0.65 mm has been analyzed by means of DC magnetic measurements. The sample has been
obtained by using a mechanochemically assisted synthesis route [25]. The fabrication details
are reported in Ref. [15]. The sample has been characterized by measuring the magnetic
moment as a function of the temperature m(T), the magnetic field m(H), and the time
m(t). The measurements have been performed in perpendicular field configuration (field
applied perpendicular to the disk surface) by using a QD-PPMS doted of a vibrating sample
magnetometer. The residual entrapped field in the PPMS superconducting magnet [26]
has been decreased below 1 × 10−4 T by oscillating the field around zero [27]. For the
m(T) measurements, the sample was cooled down to 2.5 K without a magnetic field. After
that, the field was turned on and the data was acquired by increasing the temperature
(Zero Field Cooling) up to 300 K. For the m(H) measurements, after cooling the sample
at the target temperature, the field has been increased to +9 T, decreased to −9 T, and
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finally increased again to +9 T. For the m(t) measurements, firstly the target temperature
has been reached in zero fields. Then, a field equal to 8 T has been set and then decreased
to the measurement field. After waiting for about 100 s for avoiding a metastable magnetic
states [28], the data have been acquired for 10,800 s. Table 1 summarizes the measurement
parameter values used in this work.

Table 1. Measurement parameters values.

Measurement Minimum Value Maximum Value Rate

m(T) 2.5 K 300 K 0.5 K/min
m(H) −9 T +9 T 0.01 T/s
m(t) 100 s 10,800 s 1 datapoint/s

3. Results and Discussion

To draw the complete sample vortex phase diagram, the lower critical field Hc1 has
been the first studied critical parameter. In particular, the first magnetization was measured
versus the field at several temperatures. In Figure 1, the m(H) curves have been reported
up to 0.1 T at 5 K, 10 K, 15 K, 20 K, and 25 K. It is visible the initial linear behavior of the
magnetic moment due to the Meissner state and the reduction of the superconducting
signal due to the temperature increase.
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Figure 1. Field dependence of the magnetic moment at different temperatures in the range of low
magnetic fields.

In the main panel of Figure 2, Hc1 has been determined for T = 10 K. The dashed red
line and the red arrow individuate the linear behavior due to the Meissner state and the
Hc1 value, respectively. Considering all the temperatures, the Hc1(T) behavior has been
obtained and fitted with the power law [29]:

Hc1(T) = Hc1(0)(1 − T/T∗)n (1)

where Hc1(0) is the value of Hc1 at T = 0 K and T* indicates when the phenomenon is
undetectable. The Hc1(T) curve together with its fit is reported in the inset of Figure 2.
From the fit procedure, Hc1(0) ≈ 120 Oe, T* ≈ 27.7 K, n ≈ 0.67 have been obtained. The
study of the Hc1(T) line is interesting since below it the sample is in the Meissner state
while above it the vortices start to enter the sample causing dissipation processes. From
our previous work [15], we already know that a strong pinning regime characterizes our
sample. Now, we want to determine how the vortex interact with each other by means of
magnetic relaxation measurements. At this aim, m(t) measurements have been made at
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several temperatures and fields. Figure 3 shows relaxation measurements at 2.5 K between
0.1 T and 1 T.
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Figure 3. Time dependence of magnetization at different magnetic fields at T = 2.5 K.

From Figure 3, the pinning energy versus field U(H) values have been extracted by
means of U = −Tdln(t)/dln(|M|) [30,31]. In Figure 4, the U(H) for T = 2.5 K has been
shown. It can be noted how the U(H) behavior changes for increasing fields. When the field
is low, U(H) decrease is slow while the U(H) decrease is faster when the field is increased.
These curve behaviors were fitted with U(H) ∝ H−α where α specifies the pinning regime
of the sample.
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Specifically, a single vortex pinning regime is obtained when α ≈ 0 [32] while a
collective pinning regime is individuated by α > 0.5 [33]. From the fitting procedure, the
field where the U(H) behavior changes was obtained, i.e., Hcross ≈ 0.53 T. When H < Hcross,
α ≈ 0.09 indicates that the vortices do not interact with each other (single vortex regime).
When H > Hcross, α≈ 0.7 indicates a collective pinning behavior. The same fitting procedure
can be repeated at different temperatures. The temperature dependence of Hcross as is
shown in the inset of Figure 4 together with its fit with the power law

Hcross(T) = Hcross(0)(1 − T/T∗)n (2)

where Hcross(0) ≈ 0.55 T is the value of Hcross at T = 0 K, T* ≈ 20.75 K indicates when the
phenomenon is undetectable, and n ≈ 0.27 is the exponent. The study of Hcross(T) line can
be interesting since below it the sample shows a field behavior of the pinning energy almost
constant which could allow a better transport of current. In order to find the irreversibility
line, the critical current density Jc versus H curves have been shown in the main panel
of Figure 5. A second magnetization peak phenomenon, similar to others observed in
literature for iron-based superconductors [34–37], has been detected. The second peak
position Hsp, individuated by a black dashed line in the main panel of Figure 5, typically
identifies the transition between the elastic and the plastic distortion of the vortex lattice
in the framework of a strong pinning [38–41]. The Hsp values have been extracted at the
different temperatures and plotted in the inset(a) of Figure 5. In particular, the Hsp(T)
values have been fitted with the power law

Hsp(T) = Hsp(0)(1 − T/T∗)n (3)

where Hsp(0) ≈ 1.3 T is the value of Hsp at T = 0 K, T* ≈ 30.4 K indicates when the
phenomenon is undetectable, and n ≈ 0.14 is the exponent. The Hsp(T) line is very appealing
for applications since for H approaching Hsp the Jc is increasing with the field while for
H > Hsp it is decreasing. On the other hand, the black solid line in the main panel of
Figure 5 indicates the irreversibility field Hirr values. Specifically, Hirr can be obtained with
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the criterion of Jc = 100 A/cm2 [42]. In the inset(b) of Figure 5, Hirr versus temperature is
shown together with the fit with the equation

Hirr(T) = Hirr(0)(1 − T/T∗)n (4)

where Hirr(0) ≈ 26 T is the value of Hirr at T = 0 K, T* ≈ 31.1 K indicates when the phe-
nomenon is undetectable, and n ≈ 0.86 is the exponent. The Hirr(T) line is very important
since it individuates the vortex liquid region where no pinning forces act and high dissi-
pations occur in the material. Naturally, this region must be avoided in the framework of
power applications of superconductivity.
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Finally, m(T) curves have been performed in ZFC conditions at different magnetic
fields (see the main panel of Figure 6) to evaluate the Hc2 values. Particularly, they have
been estimated by determining the onset of the magnetization drop at the different fields.
Hc2(T) curve is shown in the inset of Figure 6 together with the fit with the power law

Hc2(T) = Hc2(0)(1 − T/Tc)
n (5)

where Hc2(0) ≈ 212 T is the value of Hc2 at T = 0 K, Tc = 35 K is the critical temperature
of the sample at H ≈ 0 T [15], and n ≈ 0.9 is the exponent. The Hc2(T) line is important to
determine the maximum appliable magnetic field to the material without its transition to
the normal state.
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reported in the text.

It is worth to underline the huge Hc2(0) value which overcomes 200 T. Moreover,
the n exponent values for Hirr and Hc2 are minor than 1 different from what happens
in iron-based materials of different families [36,43–47]. All the features discussed so far
can be summarized by constructing the H(T) vortex phase diagram. In the main panel of
Figure 7, Hc1, Hirr, Hc2 are reported together with their fit. It is possible to note a very wide
vortex liquid region where the vortices are unpinned [48–50]. In the framework of power
applications of superconductivity, it is worth having the Hirr line near the Hc2 one to hinder
the vortices movement inside the material and the consequent dissipation with depression
of critical current density. From this point of view, the sample must be optimized even if its
critical current density values are in agreement with the literature [17,25,51]. It is worth to
underline that the strong pinning region is very narrow compared with the vortex liquid
one as shown in the main panel of Figure 7. This suggests the presence of a few strong
pinning centers and a bad connection among the grains of the polycrystalline sample. This
usually causes a fast Jc decrease as a function of the field due to the efficiency lack of the
pinning acting in the sample which leads to wide vortex liquid regions. In the inset of
Figure 7, the strong pinning region has been magnified. Even with the zoom, the region
below the Hc1 line is barely visible indicating a very weak Meissner state. Between the Hc1
and Hcross lines, a single vortex behavior has been found. On the other hand, collective
pinning characterized by elastic deformations of the vortex lattice can be noted between
Hcross and Hsp lines. Between Hsp and Hirr lines, the plastic deformations rule the vortex
dynamics of the sample. It is interesting to highlight that this plastic deformations area is
the widest in the framework of the strong pinning region. When plastic deformations act
in a sample, the pinning energy as a function of the temperature decreases quickly [52–54].
This is coherent with the weak pinning strength found in the sample. Finally, the next
fascinating challenge is to improve the sample fabrication process in order to drastically
reduce the vortex liquid region by nearing the Hirr line to the Hc2 one. Reaching this target,
a huge strong pinning region will be achieved allowing the sample to sustain high Jc in
very high magnetic fields so becoming an interesting candidate for power applications
of superconductivity.
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Figure 7. The H(T) vortex phase diagram of CaKFe4As4 polycrystalline sample. All the characteristic
fields described in the main text are reported in the main panel and in the inset. The corresponding
behaviors were fitted with the equation H(T) = H(0)(1−T/T*)n.

4. Conclusions

A CaKFe4As4 polycrystalline sample has been analyzed by means of DC magnetic
measurements performed as a function of the temperature, the magnetic field, and the time
in order to determine its superconducting critical parameters. By fitting all the reported
characteristic fields with the power law H(T) = H(0)(1 − T/T∗)n, a rich vortex phase
diagram has been drawn showing a very wide vortex liquid region. An opening for
the upcoming researchers can be to reduce this zero-pinning region by optimizing the
fabrication process of the sample so making it more suitable for power applications. A
further opening for future studies can also be the doping of non-optimized samples by
using different elements in order to understand the behavior of the critical parameters
analyzed in this work. Anyway, the study of non-optimized superconductors becomes very
useful to understand how the superconducting critical parameters behave in presence of a
magnetic field since this kind of sample can have an analogous magnetic behavior of wires
and cables used in the power applications of superconductivity.
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