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Abstract: This work aimed to predict the crystal structure of a compound starting only from the
knowledge of its chemical composition. The method was developed to select new materials in the
field of lithium-ion batteries and tested on Li-Fe-O compounds. For each testing compound, the
correspondence with respect to the training compounds was evaluated simply by calculating the
Euclidean distance existing between the stoichiometric coefficients of the elements constituting the
two compounds. At the compound under test was assigned the crystal structure of the training
compound for which the distance value was minimum. The results showed that the model can
predict the crystalline group of the test compound with an accuracy higher than 80% and a precision
higher than 90%, for a cut-off distance higher than four. The method was then used to predict the
crystalline group of manganese-based compounds (Li-Mn-O). The analysis conducted on twenty
randomly selected compounds showed an accuracy of 70%. Out of ten valid predictions, nine were
true positives, with a precision of 90%.

Keywords: crystal structure prediction; machine learning; K-nearest neighbours; lithium-ion battery;
cathodes; iron; manganese

1. Introduction

Lithium-ion batteries have, without any doubt, contributed significantly to the devel-
opment of portable electronics that has occurred over the past thirty years. They are now
used for the construction of electric vehicles and for stationary applications serving the
electricity grid. These applications have been made possible by the fact that lithium-ion
batteries have a higher energy density than other rechargeable battery systems, also thanks
to the development and implementation of high energy density active materials [1]. At the
basis of their operation there is the process of intercalation. Intercalation is the chemical
reaction wherein lithium is inserted into a host matrix with essential retention of the crystal
structure. For the intercalation to take place, the material must have a layered or stratified
structure and only some materials possess such a structure. The first cathode used in a
lithium-ion battery was stratified LiCoO2 in which lithium and cobalt ions are arranged on
alternating planes of the rock salt structure with a compact cubic matrix of oxide ions [2].
Spinel lithium manganese oxide (LiMn2O4), in which lithium occupies the tetrahedral sites
and manganese the octahedral ones, can also intercalate lithium ions [3]. As an alternative,
transition metal polyanions have been used. Among them, olivine lithium iron phosphate
(LiFePO4) has been studied as a suitable cathode material for Li-ion batteries [4]. In theory,
materials that crystallize in one of these crystalline forms can be used as a cathode in
lithium batteries. For this reason, the prediction of the material structure is determining if
it will work or not as the cathode of a Li-ion battery.

The discovery of new materials and the understanding of the composition–structure–
property relationships could lead to a rapid improvement in the performance of lithium
batteries. Machine learning (ML) is emerging as one of the most promising tools that can
accelerate workflows and material property discovery [5]. ML uses data available in the
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literature, both experimental and ab initio, to build accurate and computationally light
statistical models. Such models can be used to predict the properties of materials that have
yet to be synthesized. Alternatively, the models can be used to direct the research activities.
Two basic approaches are usually used in ML: supervised learning and unsupervised
learning. The main difference is that the former uses labelled data to predict outcomes,
while the latter does not. Unsupervised learning is becoming an essential tool to analyse
the increasingly large amounts of data produced by atomistic and molecular simulations.
Unsupervised learning finds wide application in different fields such as material science,
solid state physics, biophysics, and biochemistry [6]. The unsupervised learning can be
carried out with different clustering algorithms. These include the K-means clustering
algorithm, the hierarchy-based clustering, anomaly detection, the dimensionality reduction
techniques such as Principal Component analysis (PCA), the a priori algorithm, and the K-
nearest neighbours (K-NN). The K-means algorithm is generally the most known and used
clustering method [7]. Distinct patterns are evaluated, and similar datasets are grouped
together. The variable k represents the number of groups in the data. It is easy to implement
and allows the identification of unknown groups of data from complex datasets. On the
other hand, K-means does not allow the development of an optimal set of clusters and,
for effective results, the clusters should be selected beforehand. Furthermore, it tends to
produce clusters with uniform sizes even when the input data have different sizes. The
hierarchical clustering technique builds clusters based on the similarity between different
objects in the set. It examines the various characteristics of the data points and looks for the
similarity between them [8]. The advantage of hierarchical clustering is the possibility to
not pre-specify the clusters. However, it does not work very well on large amounts of data
or huge datasets and only gives the best results in some cases. Anomaly detection is the
process of finding the patterns in a dataset whose behaviour is not normal or expected [9].
The most relevant areas of application of such methods are seen in medicine and payment
systems. The PCA is a statistical method that simplifies the complexity of the data [10].
PCA improves the capabilities of the ML algorithm as it deletes correlated variables that do
not contribute to any decision making. Using the PCA can lead to some loss of information
if the right number of principal components needed to describe the dataset and its variance
are not selected. The a priori algorithm is generally used to evaluate association rules
between objects [11]. This process is time-consuming and requires an iterative scan of the
entire database for each set of candidates. The k-NN algorithm is a nonparametric method,
usually used for classification and regression problems [12]. It is a kind of lazy learning
algorithm that does not need offline training. During the classification stage for a given
testing example, the k-NN algorithm directly searches through all the training examples
by calculating the distances between the testing example and the training data to detect
its nearest neighbours and produce the classification output. Since this is a lazy learning
algorithm, there is no need to train the model; instead, all data points are used at the time
of the forecast.

Machine learning’s ability to generalize from a set of training data to discover un-
known spaces makes it attractive for many challenges in materials science [13]. However,
a key obstacle to widespread application remains the definition of model input data, the
so-called descriptors. So far, most applications of ML in materials science have used descrip-
tors based on knowledge of crystal structure. There are many ways to manually encode the
crystal structure in three-dimensional space and the chemical composition of a compound
into a suitable representation. For example, a compound can be represented as a list of
interatomic potentials [14]. Another approach is to create a fingerprint of the compound,
transforming the internal coordinates into a fixed set of numbers. For example, this can
be performed by projecting coordinates onto a set of basis features or using structure
topology [15]. Internal coordinate distribution represents another systematic approach,
which has been shown to produce well-performing models applicable throughout the
chemical space [16]. However, the use of structure-based descriptions in the search for new
compounds limits the resulting models, as they are subject to the same limitations inherent
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in the ab initio approaches used to determine the descriptors [17]. A possible solution to
this problem is to develop descriptors based on stoichiometry alone. In the literature, there
are numerous works that have used ML to predict the crystalline structure of compounds.
For example, deep neural networks have been proposed as a machine-learning tool for
analysing crystallographic data using input data in the form of multi-perspective atomic
fingerprints [18]. In about 30% of the cases, the known compositions were exactly identified
among the top-10 most likely candidates proposed by the model. To accelerate the search
for the crystal structure with the lowest enthalpy of formation, a machine-learning ap-
proach to crystal structure prediction was used in which a network of graphs is employed
to establish a correlation model between crystal structure and enthalpies of training in
the given database [19]. The neural network model can be trained to effectively recognize
chemical elements based on the topology of their crystallographic environment. A unique
methodology for crystal structure forecasting that relies on a machine-learning algorithm
was able to determine the isomorphism of crystal structures composed by two given chem-
ical compositions with an accuracy of around 96.4% [20]. An interesting work has been
carried out for the prediction of the lattice parameters of perovskite-type structures [21].
The prediction model accuracy for the crystal structure classification averaged nearly 88%
using the genetic algorithm-supported neural network, while for the lattice constant re-
gression model the genetic algorithm-supported support vector regression provided about
95% on average. A ML approach that uses only stoichiometry as input and automatically
learns appropriate and systematically amendable descriptors from the data has also been
developed [17]. The advantage of this method is that the descriptor becomes automatically
improvable as more data become available. This approach is inspired by revolutionary
methods in chemistry that directly use a molecular graph as input and learn the best
molecule-to-descriptor map from the data. In the same direction, ML algorithms have
been proposed and evaluated to determine the type of structure of materials given only
their composition [22]. Coupling of different models with different characteristics was
used to predict the crystal system and space group of materials. Four types of models
for the prediction of crystalline systems and space groups were proposed, trained, and
evaluated. In the light of these works, an attempt has been made to predict the structure of a
compound starting only from the knowledge of the chemical compositions. In general, this
approach is doomed to fail, as two substances can be completely different from a chemical
point of view and have the same crystalline structure (isomorphism). Isomorphism can
also occur when replacing one atom with another; for this substitution to take place, the
atoms must have the same chemical properties (such as, for example, the same atomic
radius). This phenomenon is called vicariance. A typical example of an isomorphic mineral
is olivine. Olivine forms a complete isomorphic series between forsterite (Mg2SiO4) and
fayalite (Fe2SiO4). The two substitute atoms are therefore iron (Fe) and magnesium (Mg).

The concept behind this work is to restrict our input data to a well-defined class
of chemical compounds. It will be presumable that a strong proximity in the chemical
composition is reflected in the same spatial organization of the atoms in the space. In this
way, it will be sufficient to simply use the stoichiometry of the compound as a descriptor
to predict its crystalline structure. Furthermore, this concept can be extended to exploit
the phenomenon of vicariance to explore compounds that are very similar to each other.
In the mid-1920s, Victor Goldschmidt developed a set of rules of thumb to explain the
ion substitution that can occur in a crystalline structure. As regards the dimensions, for
the ions of one element to be replaced by another, Goldschmidt stated that the difference
between their ionic radii must be less than 15%. The Goldschmidt empirical rule opens
new perspectives within the prediction of space groups. In fact, it is possible to imagine,
as was performed for iron, that other lithiated oxides containing substitute ions instead of
iron and whose chemical formula is identical or similar to each other could have the same
crystalline structure. The ionic radius of an element depends primarily on its electric charge
and the state of coordination in the crystal. Manganese, with the same electric charge and
state of coordination, has an ionic radius that does not exceed the 15% rule indicated by
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Goldschmidt. For this reason, it could be possible to predict the crystal structure of lithiated
manganese oxides using as the training dataset the structures of lithiated iron oxides.

The aim of this study was to develop a simple and lean ML technique capable of
predicting the crystal structure of materials suitable to work as cathodes in Li-ion batteries.
For this reason, a ML model that learns the crystal structure of iron lithium oxides to be
analysed directly from the crystal structure of the training compounds will be described.
The same ML model was applied to predict the crystal group of manganese lithium oxides
by replacing iron with manganese, two neighbouring elements in the periodic table that
have very strong similarities to each other. Despite its simplicity, this model has proven
useful for obtaining highly predictive results.

2. Materials and Methods
2.1. Dataset

The dataset to train and evaluate the prediction model was extracted from the Crystal-
lographic Open Database [23] which is an open-access collection of crystalline structures of
inorganic, organic, metal–organic, and mineral compounds. The database currently hosts
495,690 entries. Attention has focused on potentially active iron-containing materials such
as cathodes for lithium batteries. Therefore, a search was carried out which returned all
the materials in the database, which simultaneously contained lithium, iron, and oxygen.
The search returned a dataset containing 720 entries. Compounds containing carbon or
with atomic number (AN) exceeding 56, except tungsten (AN = 74), mercury (AN = 80),
and lead (AN = 82), were eliminated. This effectively excluded metal–organic compounds,
lanthanides, precious metals, uranium, transuranic, and other uncommon elements from
the dataset. Thus, the dataset was reduced to 419 entries. Further reduction of the dataset
was performed by eliminating those compounds that were repeated multiple times. After
these refinements, the final dataset contained 276 entries. Each entry contained the chemical
formula of the unit cell and the relative crystallographic group it belonged to.

2.2. Descriptors

The molecular structures were transformed into descriptors before being used to train
the machine-learning model. The descriptors used in this work were strings formed by the
following characters: the identification number, the chemical formula of the elementary
cell, the crystalline group it belongs to, the number of different chemical elements present
in the compound, their atomic number, and the stoichiometric coefficient with which the
elements appeared in the chemical formula. Some descriptors are shown in Table 1. For
example, for the first compound reported in Table 1 are listed: the ID (7221070 in the COD
database), the chemical formula of the unit cell, the crystalline phase (14 in the international
system which corresponds to the P121/c1 phase of the monoclinic system), the number of
the different elements that compose the elementary cell (4), the atomic number of arsenic
(33), iron (26), lithium (3), and oxygen (8), followed by the stoichiometric coefficient with
which they appear in the chemical formula of the elementary cell (12 for arsenic, 8 for iron,
12 for lithium, and 48 for oxygen). The strings were collected to form the data matrix as
shown in Table 1.

Table 1. Graphical representation of the data matrix.

ID Unit Cell Formula Group N◦

Elements Atomic Number/Stoichiometric Coefficients

1 7221070 As12Fe8Li12O48 14 4 33 26 3 8 12 8 12 48
2 7222177 Fe12Li28.8O72P18 148 4 26 3 8 15 12 28,8 72 18
3 7222395 Fe4Li4O16P4 63 4 26 3 8 15 4 4 16 4

. . . .

. . . .
275 7710154 Fe32Li192Nb192O864 56 4 26 3 41 8 32 192 192 864
276 7221015 Fe0.08Li4Nb7.92O26Sr4.14 139 5 26 3 41 8 38 0.08 4 7.92 26 4.14
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2.3. ML Method

The ML method is extremely simple. The matrix that contains the dataset is made
up of 276 rows and 100 columns. The number of columns can accommodate compounds
containing up to 48 different elements ([100 − 4]/2), a number certainly higher than the
maximum number of elements contained in a single formula in the dataset. A graphical
representation of the data matrix is shown in Table 1.

The (n − 1) rows represent the training matrix. The stoichiometric coefficients of the
compound to be analysed (contained in the nth row) were then subtracted from the (n − 1)
rows which form the training matrix. The result in the internal representation is a number
representing the Euclidean distance of the stoichiometry of the compound under testing
from that of the training element. Mathematically we have:

d = 2
√

∑n
i=1(qi − pi)2 =

= 2
√
(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2 + . . . + (qn − pn)2

(1)

where d is the distance existing between the two compounds, while qi and pi are the
stoichiometric coefficients of the ith element which constitutes the formula of the compound
to be analysed and that of the training one, respectively.

2.4. Distance Calculation

The single entries have been transformed into a matrix composed of 59 columns by
3 rows. The 58 columns correspond to the maximum number of elements that could be
found in our dataset (the first 56 elements, excluding C, plus W, Hg, and Pb). The position
within the matrix corresponds to the AN of the elements contained in the formula, while
the rows contain the stoichiometric coefficients of the compound under test and that of
the training one, respectively. In the third row was placed the intermediate distance value
calculated as the square of the difference of the stoichiometric coefficients.

Table 2 shows an example of the matrix when the compound to be analysed is
Fe2Li2O14P and the training compound is Fe2H2Li4O16P4.

Table 2. Example of the distance matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 . . .

Fe2Li2O14P4 2 14 4 2
Fe2H2Li4O16P4 2 4 16 4 2

(q−p)2 4 4 4 0 0

The values contained in the third row are algebraically added, and the square root
of the sum is calculated. This value represents the distance between the two compounds.
In the case shown, the distance is equal to the square root of 12, i.e., just over 3.46. The
distance value is entered into a distance vector comprising (n − 1) values corresponding to
the (n − 1) training compounds.

2.5. Classification Model

The K-nearest neighbours (KNN) method, a non-parametric supervised learning clas-
sifier which employs proximity to make classifications or predictions about the clustering of
a single data point, was used. While it can be used for regression or classification problems,
it is typically used as a classification algorithm, based on the assumption that similar points
can be found close to each other. Once the distance vector was completed, the minimum
value was searched for in it. The crystallographic group of the training compound with
the minimum distance value is then assigned to the compound to be analysed. After this
operation, in turn, each of the compounds that were part of the training set become the
compound to be analysed, and the entire procedure is repeated. This method is known
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as one-off cross-validation. This method is generally preferred to the one that leaves out
multiple elements because it does not suffer from being computationally intensive and
because the number of possible combinations is equal to the number of data points in the
original sample. At the end, for each of the n compounds forming the dataset, it is possible
to have a prediction of the crystalline group to which it belongs.

2.6. Space Group Prediction

The same technique adopted to classify the compounds based on lithium, oxygen,
and iron was used to predict the crystallographic group of the compounds containing
lithium, manganese, and oxygen. Manganese was therefore treated as a vicarious atom
with respect to iron. Only those compounds whose space group was contained in the
previously processed dataset have been selected since, as is logical, it would not be possible
for the program to predict space groups not contained within it. The prediction technique
was the same as previously reported: the compound was compared with all those present in
the database, and the proximity between the cell formulas was calculated. The manganese
has been treated as if it was iron in the sense that, in the calculation, the stoichiometric
coefficient of the manganese has been subtracted from that of the iron. For this reason,
manganese compounds that also contained iron were not taken into consideration. The
first six compounds closest to the compound to be tested were then extrapolated. The
normalized exponential function was used to normalize the outputs, changing them from
weighted-sum values into probabilities that add up to one.

For example, for the compound of formula Li8Mn4O12, the program found six close
neighbours with different space group values, as shown in Table 3.

Table 3. Calculation of the logarithmic cross-entropy loss.

ID Cell Formula Group D Exp(D) 1/Softmax Norm y yi

7022166 Fe2Li8O12Sb2 12 2.828 16,919 201,467 0.873 1 0.873
1000196 Fe4Li4.66O16Sb2.0122Sn1.3278 186 5.736 309,723 11,005 0.048 0 0.926
1001230 Fe6Li4O16Sb2 186 6.325 558,110 6107 0.026 0
4001982 F2Fe2Li4O8P2 1 6.633 759,948 4485 0.019 0 0.981
7244316 Fe4Li3.76N0.64O15.36P4 62 6.758 861,316 3957 0.017 0 0.983
4003017 Fe4.1416Li3.86012O16P3.624 26 6.805 902,567 3777 0.016 0 0.984

The first three columns contain, respectively, the ID, the cell formula, and the space
group of the six compounds whose distance is closest to the compound under test. The D
column contains the distance measured between the compound under test and the reference
compounds, as calculated by the model. The Exp(D) column contains the exponential value
of the distance (eD). The 1/Softmax column contains the inverse of the Softmax equation
(see supplementary material for explanation). The Norm column contains the probability
that the structure of the reference compound is the same as that under test, obtained by
normalization of the previous column. Column y assigns a value of “1” to the component
with the highest probability value and a “0” to all the others. The yi column contains the
corrected probability that corresponds to the probability listed in the Norm column if y = 1
or (1-Norm) if y = 0. The logarithmic cross-entropy loss (LCEL) can be calculated by adding
the negative log (with base two) of the corrected probabilities column (yi) divided by the
number of columns:

LCEL = 1/n
n

∑
1
−Log2 yi (2)

If two or more entries have the same spatial group, their probability is summed
together. For example, in the case shown, the second and third compounds belong to
the same crystalline group so that the probability corresponding to this group is obtained
by adding the two probabilities (0.048 + 0.026 = 0.074). The corrected probability (yi) is
therefore 1 − 0.074 = 0.926.
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3. Results

Traditional evaluation metrics were used to determine the effectiveness of the method.
To identify the number of true or false positives and negatives, the confusion table shown
in Figure S1 was used. To predict a true/false label, a cut-off threshold must be applied,
and its value affects the distributions of true/false labels. The distance value was compared
to the cut-off value. If the expected space group coincides with the real one (condition
expressed as Correct) and the distance value is lower than the cut-off value, it is a true
positive. If the distance is greater than the cut-off value, we have a false positive. If the
expected space group does not coincide with the real one (condition expressed as Wrong)
and the distance value is less than the cut-off value, it is a false negative. If the distance is
greater than the cut-off value, we have a true negative. Table 4 reports the values of the true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) as a function
of the cut-off distance.

Table 4. The values of the true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) as a function of the cut-off distance.

Cut-Off Value TP TN FP FN

1 101 57 105 12
2 143 49 61 19
3 178 39 28 30
4 191 33 15 35
5 192 28 14 41
6 193 24 13 45
7 195 23 11 46
8 195 19 11 49
9 198 16 8 53
10 198 15 8 54

By using the equations from one to six in the supplementary material, it is possible to
calculate sensitivity, precision, F1_score, selectivity, accuracy, and false positive ratio for the
proposed method. Figure 1 shows the sensitivity (also called recall or true positive ratio)
and the precision as the cut-off distance increases.
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Figure 1. Calculated sensitivity and precision as a function of the cut-off distance for the developed model.

As it is logical, by increasing the cut-off distance an increase in precision and a decrease
in sensitivity are observed. The initial value of the sensitivity approaches 0.90. The increase
in the cut-off distance leads to a continuous decline in sensitivity. Precision increases from
0.49 to over 0.9 by increasing the cut-off distance by four points. Further increasing the
cut-off distance does not significantly change the precision. In general, a model is reliable
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when it has high precision and high sensitivity. These two values add up in the F1_score,
which is higher as the model is reliable. The value of the F1_score is shown in Figure 2.
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Figure 2. F1_score calculated as harmonic mean between sensitivity and precision as a function of
the cut-off distance.

The F1_Score value is relatively low (0.63) for the cut-off distance equal to one but
rapidly rises by increasing the cut-off distance and has a maximum for the cut-off distance
equal to four. For further increases in the cut-off distance, the F1_score value tends to
remain stable above 0.84. Therefore, by limiting the cut-off distance to four, the method is
not only effective in correctly classifying the positive results among all the positive ones
but also in returning a high ratio between how many cases have been correctly identified
as positive and how many have been evaluated as positive.

The selectivity and accuracy of the method are shown in Figure 3. Both tend to increase
as the cut-off distance increases, reaching a maximum when the cut-off distance is equal to
four. The accuracy of the test shows how many positive results were predicted out of the
total number of items evaluated. Its value starts from 0.58 for a cut-off distance equal to one
and increases at values around 0.80 for cut-off distances higher than three. The selectivity
of a test shows its ability to correctly determine true negatives. The selectivity is low for
distances up to three, and it fluctuates between 0.63 and 0.69 for higher distance values so
that the model is unable to specify with a high probability whether a negative value is a
true negative or rather a false positive.
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Figure 3. Selectivity and accuracy as a function of the cut-off distance calculated for the developed model.
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For this type of application, it is important, in addition to having a high number of
true positives, to reduce the false positives, i.e., to avoid identifying compounds which
apparently appear to belong to a determinate crystalline group and instead belong to
another one. Figure 4 show the false positive ratio; its value is relatively high for a cut-off
distance of one and tends to decrease with increasing the distance cut-off. Its value passes
from 0.65 to 0.31 by increasing the cut-off value from one to four. For further increments in
the cut-off distance the false positive rate oscillates between values lower than 0.35.
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Figure 4. False positive rate (FPR) as a function of the cut-off distance calculated for the developed model.

It should be noted that false negatives do not affect the result, except in quantitative
terms since, being erroneously treated as a negative result, these will not be taken into
consideration and eliminated together with the true negatives.

The method was then used to predict the crystalline group of compounds containing
a different transition metal and in particular manganese. The logarithmic cross-entropy
loss was used in evaluating the forecast results obtained on lithiated manganese oxides. If
the value of the logarithmic cross-entropy loss was less than 0.25 and the prediction was
correct, the result was treated as a true positive. If the result had been wrong, it would
have been a false positive. If the value of the logarithmic cross-entropy loss was greater
than 0.25 and the prediction was correct, the result was treated as a false negative. If the
result had been wrong, it would have been a true negative. The crystallographic group of
the training compound with the maximum probability value is then assigned to the com-
pound under testing. Table 5 reports the results obtained with twenty randomly selected
lithiated manganese oxides contained in the COD database. The complete calculation of
the logarithmic binary cross-entropy loss function can be found from Tables S1–S20.

The first three columns of the table show the ID, the stoichiometric formula of the
unitary cell, and the space group of the compound under investigation. This is followed
by the minimum value of the distance (as calculated by the program), the logarithmic
cross-entropy loss, and the space group of the compound (as predicted by the program).
The penultimate column shows if the prediction of the spatial group was successful. The
last column reports the true/false condition as expressed by the confusion table shown in
Figure S2.

Despite the low number of items, we can try to make a statistic: out of twenty randomly
selected items, the program has identified fourteen that are correct with an accuracy of
14/20 = 0.70. Having selected the value of 0.25 of the logarithmic cross-entropy loss as the
upper limit to decide if the prediction is true, five positive results are over this threshold
(i.e., four false negatives) (FN = 5). The true positives are therefore TP = 14 − 5 = 9 (TP = 9).
The sensitivity is 9/(9 + 5) = 0.75. Of the six results not correctly identified, five have
a value greater than 0.25 (TN = 5) while one has a value lower than 0.25, which makes
them seem correct: it is a false positive (FP = 1). The selectivity is 5/(5 + 1) = 0.83. If we
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do not take into consideration the ten doubtful entries, i.e., those that have a logarithmic
cross-entropy loss value greater than 0.25 and highlighted in red in Table 5, ten entries
remain, one of which is incorrect. The precision is equal to 9/9 + 1 = 0.90. The F1_score is
equal to 2/(1/0.90 + 1/0.75) = 0.82. Among the incorrectly identified results, the number
of false positives (1) is lower than the number of true negatives (5). The false positive rate
is FPR = 1/(1 + 5) = 0.17. These values agree with those found previously.

Table 5. Result of the analysis conducted on twenty randomly selected manganese lithium oxides.
Entries with a logarithmic cross-entropy loss value greater than the threshold value (0.025) are
highlighted in red.

ID Test Cell Formula Group
(Real)

Minimum
Distance LCEL Group

(Pred.)
Pred.
Succ.

T/F
P/N

1008373 Li8Mn4O12 12 2.828 0.077 12 X TP
2311016 Al0.68Li0.32MnO4 12 1.861 0.427 2 – TN
1009066 Li10.304Mn13.728O29.856 227 5.375 0.053 227 X TP
1532000 Li8Mg0.328Mn12.348Ni3.16O32 212 4.015 0.031 227 X FP
1011089 Li4Mn4O16P4 62 0.000 0.197 62 X TP
1513972 Li4Mn4O16 63 2.509 0.597 186 – TN
1513958 Li16Mn8O24 15 11.314 0.658 15 X FN
1541720 Al23.0463B9Li1.1997Mn2.7Na2.67O93S18 160 4.005 0.000 160 X TP
1513974 Li0.4Mn16O32 227 4.400 0.689 227 X FN
7022079 F8Li6Mn2O12P4 14 2.828 0.539 12 – TN
1513960 Li6.64Mn14.08O32 227 3.846 0.150 227 X TP
1531701 Cr2.4Cu1.52Li7.6Mn12.48O32 227 4.049 0.022 227 X TP
1514037 Li1.998Mn2.002O4.008 225 0.144 0.196 225 X TP
4002444 Co0.99999Li2.49Mn0.99999 Ni1.002O6 166 1.258 0.152 166 X TP
7221081 Cu4Li8Mn12O32 227 4.000 0.013 227 X TP
4335951 Li4Mn2O16S4 14 2.000 0.296 14 X FN
4343135 Li8Mn8.0208O32Ti7.9936 212 4.214 0.433 212 X FN
4110715 Li3.66668Mn8O16 62 2.848 0.400 186 – TN
1514077 Li1.6Mn15.2O32 227 4.389 0.265 227 X FN
7045768 Li8Mn4O28P8 14 9.402 0.593 15 – TN

4. Conclusions

In this paper, a very simple machine-learning algorithm for predicting the space
groups of transition metal lithiated oxides (Fe and Mg) starting from their compositions has
been proposed and evaluated. The calculation routines are extremely light and give results
with very low execution times. Several control metrics were used to validate the results.
The F1_score scores show that machine-learning algorithms and descriptors, while reliable,
still have a fair margin of error, necessitating the development of further adjustments. One
possible reason is that the refinement of the data has not been very thorough. There are
numerous possibilities for improvement, as the learning model was developed considering
only the lithiated iron oxides. Learning models based on more transition metals could be
developed in the future to expand the number of crystalline groups that can be detected,
thus improving the system’s performance. This space-group prediction model enables
rapid large-scale structural screening of materials based on their composition alone. This
possibility paves the way for the design of new materials, not yet synthesized, predicting
their structural feature. In this way, it will be possible to direct the synthesis towards those
materials with a crystalline structure such as to be able to intercalate lithium ions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/batteries9020112/s1. Figure S1: Confusion matrix for determining the
reliability of the results obtained on lithiated iron oxides. Figure S2: Confusion table for determining
crystallographic group of lithiated manganese oxides. Tables S1–S20: Calculation of the logarithmic
binary cross entropy loss function for 20 selected lithiated manganese compounds.
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