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ABSTRACT
A new model for incomplete ionization of dopants in Si is presented, where the Fermi level of free carriers may displace with respect to
the case of full activation of dopants. The curves of the ratio of free-carrier density and active-dopants density vs doping, which are calcu-
lated at partial activation of dopants with the new model, overlap exactly with the curves of the same quantity calculated at full activation
of dopants with a reported model. Calculations are performed with and without reported parameterizations of the density of states and
occupancy probability of the dopant band simulating incomplete ionization around the Mott concentration. With parameterizations, com-
parisons with Hall-mobility data show that the curves of free-carrier density calculated at partial dopant activation with the new model are
more accurate than the curves of the same quantity calculated at full dopant activation with the reported model. Without parameterizations,
the new model allows calculating for the same carrier species curves of majority-carrier mobility that fit measured data of minority-carrier
mobility at high dopings and agree with the Klaassen mobility model for minority carriers. The consistency with the band theory of the
new and reported models is discussed, and the new model is found to be the most appropriate in this respect. The free-carrier density
calculated with the new model without parameterizations overlaps at high dopings with free-carrier density calculated with reported mod-
els for band-gap narrowing and allows calculating curves of Auger lifetime of majority carriers that fit measured lifetime data of minority
carriers.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0117615

I. INTRODUCTION
The conductivity or conductance mobility is

μc =
1

qρn
, (1)

where ρ is the resistivity, q is the electron charge, and n is the den-
sity of conduction or free carriers, which is usually measured in
highly doped Si by assuming n = N, where N is the measured dop-
ing density. Pearson et al.1 first determined in 1950 μc in n-type Ge
from separate measurements of ρ and n. They assumed that at room
temperature, dopants are all ionized, i.e., n = N, at N < 1018 cm−3.
Haynes and Shockley2 used the Pearson et al. approach to determine
μc-values for electrons in n-type Ge to be compared to the measured
mobility of electrons injected in p-type Ge, which was called drift
mobility, μd. In Ref. 2, a good agreement between μc and μd was
found in samples with resistivity ranging from 1.5 to 6 Ω-cm. The
approach of Pearson et al.,1 i.e., separate measurements of ρ and n,

was followed in the subsequent determinations of majority-carrier
mobility. The approach of Haynes and Shockley,2 i.e., injection of
carriers of a given species in a semiconductor filled with carriers of
the opposite species, was followed in the subsequent determinations
of minority-carrier mobility. Consequently, μc and μd can be taken
as synonymous of the majority- and minority-carrier mobilities,
respectively. Concerning μc, despite the Backenstoss suggestion that
n can be obtained from N by calculating the fraction of ionized
donors or acceptors,3 in the course of the years, assuming n = N
also in the high-doping range (N ≥ 1018 cm−3) became customary in
measuring and modeling μc. However, partial ionization of dopants
was suggested again for determining μc in Refs. 4–9. To a continuous
increase with N of such a quantity, as argued in Refs. 4–6, a localized
increase around the Mott critical concentration, Nmott , was opposed
in Refs. 7–9. In Refs. 7 and 8, Altermatt, Schenk, Schmithuesen, and
Heiser (ASSH) derived a model for incomplete ionization, where all
dopant atoms are “electronically active,”7 i.e., Na = N, where Na is
the active-dopant density, at any N-value. To validate their model,
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ASSH fit data of μc/μH , where μH is the Hall mobility, in both p- and
n-type Si, with n/N-curves calculated by using parameterizations of
the density of states and occupancy probability of the dopant band
such that, as aforementioned, n < N only occurs in a doping region
around the Mott concentration.8 In this paper, we propose a new
more general model for incomplete ionization, where, in addition
to Na = N, assuming Na < N is also allowed. The phenomenon that
will be interpreted differently when using the new formulation com-
pared to Refs. 7 and 8 is, therefore, the activation of dopants. The
possibility that Na < N is considered in the new model by intro-
ducing a displacement of the Fermi level with respect to the case of
full activation of dopants in the Boltzmann approximations for n.
Curves of n/Na vs N calculated at partial dopant activation with
the new model overlap exactly with the curves of n/N vs N cal-
culated with the ASSH model8 both with and without the ASSH
parameterizations.8 Consequently, the n(N)-curves calculated with
the new model differ from the n(N)-curves calculated with the ASSH
model.8 The n(N)-curves obtained with both the new and ASSH
models with and without the ASSH parameterizations8 are assigned
in (1) to calculate μc(n)-curves. With the ASSH parameterizations,8
comparisons with μH-data extracted from the μc/μH-data reported
in Refs. 7–9 show that around Nmott , the n-values calculated with the
new model are more accurate than the n-values calculated with the
ASSH model.8 However, we find that only the new model without
the ASSH parameterizations8 is consistent with the band theory in
the entire high-doping range. In this case, the new model calculates
n << N already at N > 1018 cm−3 allowing to calculate μc(n)-curves
with (1) that fit reported measured μd(N)-data at high dopings and
agree closely with μd(N)-curves calculated with the Klaassen mobil-
ity model for device simulation.10 Experimental results have been
published (e.g., Refs. 11–19), which show that, in Si at N > 1018 cm−3,
for the same carrier species, μd exceeds μc up to a factor of three
at N = 1020 cm−3. To account for such a discrepancy, in the litera-
ture, n = N in highly doped Si is “a priori” taken for granted, and it
is assumed that at n = N minority carriers are less scattered than
majority carriers by Coulomb interaction with ionized dopants.20

The results presented in this work allow taking into consideration
another possibility, which is that the aforementioned discrepancy
may be simply due to the aforementioned conventional assignment
n = N in the measurement of μc, which may provide underestimated
values of this quantity at high dopings. This possibility is corrobo-
rated by band-gap narrowing models based on experiments,18 which
calculate curves of majority-carrier density vs N that at high dopings
overlap with the n(N)-curves calculated with the new model with-
out parameterizations. As a further confirmation, these n(N)-curves
allow calculating curves of Auger lifetime fitting experimental data.
As aforementioned, the new model implies that, for the same carrier
species, the majority- and minority-carrier mobilities are the same
at high dopings. This is contrary to conventional assumptions.
The devices and applications that are impacted by the model are
consequently Si devices such as JFETs, MOSFETs, and MOS tran-
sistors, where currents are calculated by using the majority-carrier
mobility,21 and the relevant modeling and simulation.

II. MODEL
The ratio of free-carrier density, n, and dopant density, N, can

be expressed by using the Fermi–Dirac statistics as21

n
N
= 1 −

1
1 + g exp[(ED − EF)/kT]

(2)

in n-type Si, and21

n
N
= 1 −

1
1 + g exp[−(ED − EF)/kT]

(3)

in p-type Si, where g is the degeneracy factor, EF is the Fermi energy,
ED is the dopant energy, k is the Boltzmann constant, and T is the
absolute temperature. It is worth mentioning that (2) and (3) are
derived by assuming N = n + N0, where N0 is the density of bound
carriers, and the ratio at the right members of (2) and (3) represents
the occupation probability of the dopant level, f (ED). As long as the
Fermi–Dirac distribution can be approximated by the Boltzmann
distribution, n can be calculated with the widely used Boltzmann
expressions as

n = NC exp[−(EC − EF)/kT] (4)

in n-type Si, and

n = NV exp[(EV − EF)/kT] (5)

in p-type Si,21,22 where EC is the energy at the bottom of the con-
duction band, EV is the energy at the top of the valence band, NC is
the effective density of states in the conduction band, and NV is the
effective density of states in the valence band. Due to the aforemen-
tioned assumption that n =N at room temperature,21 (4) and (5) are
required to converge to

N = NC exp[−(EC − EF)/kT] (6)

and

N = NV exp[(EV − EF)/kT], (7)

respectively, at room temperature.21 Altermatt, Schenk, Schmithue-
sen, and Heiser (ASSH) neglect the possibility that not all dopant
atoms are “electronically active,”7 i.e., Na <N, where Na is the active-
dopant density. We take into account such a possibility by exploiting
the fact that the Fermi-energy level is sensitive to charge-density
variations. We model (6) and (7) as

N = NC exp{−[EC − (EF0 − ΔEF)]/kT} (8)

and

N = NV exp{[EV − (EF0 − ΔEF)]/kT}, (9)

respectively, with EF0 being a Fermi level defined as EF0 = EF+ΔEF ,
where ΔEF is an energy displacement, so that by using (8) and (9),
Na can be defined as

N exp(ΔEF/kT) = Na = NC exp[−(EC − EF0)/kT] (10)
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in n-type Si, and

N exp(−ΔEF/kT) = Na = NV exp[(EV − EF0)/kT] (11)

in p-type Si, and, hence, be equal to N when ΔEF = 0 eV. In such a
way, (10) and (11) model the general case, where both Na =N and Na
< N are allowed at any N-value, which reduces to (6) and (7) in the
particular case, where Na = N. Assigning EF = EF0 as calculated with
(10) and (11) in (2) and (3), respectively, and assuming Na = n + N0
allows expressing the ratio of free-carrier density and active-dopant
density as

n
Na
= 1 −

Na

Na + gNC exp[(ED − EC)/kT]
(12)

and

n
Na
= 1 −

Na

Na + gNV exp[(EV − ED)/kT]
(13)

in n-type Si and p-type Si, respectively.

III. VALIDATION
Altermatt, Schenk, Schmithuesen, and Heiser (ASSH) express

n/N as8

n
N
= 1 −

bn
n + gNC exp(−ED/kT)

(14)

in n-type Si and

n
N
= 1 −

bn
n + gNV exp(−ED/kT)

(15)

in p-type Si, by parameterizing f (ED) and ED such as n/N < 1 around
Nmott . In particular, ASSH multiply f (ED) by b = [1+(N/Nb)d]−1,
where Nb and d are adjustable parameters,8 and parameterize ED
as ED = ED0/[1+(N/Nref )c], where ED0 is the constant energy level
of dopants in Si and Nref and c are adjustable parameters.8 Iterating
(14) in n-type Si and (15) in p-type Si with the assignments to Nb,
d, Nref , and c for P:Si and B:Si, respectively, which are reported in
Ref. 8, at the same ED0- and g-values as used in Ref. 8 and NC and
NV being given the 300○K values from Ref. 23 yields the curves
of n/N that are drawn with full lines in Fig. 1, where measured
n/N-curves from Ref. 24 are also reported. The aforementioned
ASSH parameterizations8 can be removed from (14) and (15) by
assigning ED = ED0 and b = 1 while leaving the assignments to g,
NC, and NV unchanged. Iterating (14) and (15) without parameter-
izations yields the curves of n/N that are drawn with dashed lines
in Fig. 1. In the model presented in this work, Na, n, and ΔEF can be
calculated with and without the ASSH parameterizations8 by solving
iteratively the equation system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Na = N exp(
ΔEF

kT
), a

n
Na
= 1 −

bNa

Na + gNC exp[(ED − EC)/kT]
, b

ΔEF = kT ln(
n

Na
) c

(16)

FIG. 1. n/N-curves calculated in Ref. 8 with (14) and (15) and n/Na-curves calculated in this work with (12) and (13) without (dashed lines) and with (full lines) ASSH
parameterizations.8 Reported values of μc /μH and n/N are shown.
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in n-type Si, and the equation system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Na = N exp(−
ΔEF

kT
), a

n
Na
= 1 −

bNa

Na + gNV exp[(EV − ED)/kT]
, b

ΔEF = −kT ln(
n

Na
) c

(17)

in p-type Si. In solving (16), attention must be paid to the fact
that ED cannot be higher than EC,25,26 and hence, −ED0 must be
assigned. This can be neglected in the ASSH model, where −ED
is directly assigned in n-type Si,8 as can be seen in (14). At each
N-value, iterations end when

n
Na
≈

Na

N
. (18)

Both with and without the parameterizations of ASSH8 iterat-
ing (16) in n-type Si and (17) in p-type Si yield n/Na-curves that
reproduce exactly the n/N-curves obtained with (14) in n-type Si
and (15) in p-type Si, respectively. This is due to (18) and the fact
that, both with and without the ASSH parameterizations,8 n as cal-
culated with (14) in n-type Si and (15) in p-type Si is equal to Na as
calculated with (12) in n-type Si and (13) in p-type Si, respectively,
as can be seen in Fig. 2. Consequently, n as calculated in this work
and n as calculated in Ref. 8 do not have necessarily the same value,
as can be seen in Fig. 2 as well. Figure 2 shows in addition that the

FIG. 2. Curves of n(N) calculated with the model used in Ref. 8 (green lines) and
curves of n(N) and Na(N) calculated with the model presented in this work (TW)
(black lines) with and without the ASSH parameterizations.8 The NC-, NV -, and
Nmott -values used by ASSH8 are reported.

discrepancy between the model presented in this work and the ASSH
model8 is more remarkable without parameterizations.

IV. COMPARISONS
ASSH assume8

μc

μH
=

n
N

(19)

and validate the calculated n/N-curves by comparisons with data
of μc/μH ,8 as shown in Fig. 1. The μc/μH-data were obtained by
measuring μH and μc in the same samples.7 Moreover, incomplete
ionization is neglected in μc but included in μH .7 Consequently, the
μH-data can be extracted from the μc/μH-data using

μH =
μc(N)
[μc/μH]

, (20)

and (19) implies that

μH = μc(N)
N
n

. (21)

We calculate μc(N) in (20) and (21) with (1) at n = N and
ρ(N) being calculated with the expressions in Refs. 27 and 28. In
(20), the N-values of the samples, where the μc/μH-data are mea-
sured, are used. The μH data and curves calculated with (20) and

FIG. 3. Curves of mobility vs N calculated with (1) using different assignments to n
(black lines) are compared to μH-values extracted with (20) from the μc /μH-values
shown in Fig. 1 (hollow squares) and μH-curves calculated with (21) (green dashed
lines).
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(21), respectively, are compared in Fig. 3 to μc(n)-curves calculated
with (1) using the n(N)-curves relevant to the ASSH parameteriza-
tions,8 which are shown in Fig. 2(a), and ρ(n)-curves calculated with
the expressions in Refs. 27 and 28. As can be seen, around Nmott , the
n(N)-curves calculated with the model presented in this work appear
to be more accurate than the n(N)-curves calculated with the model
presented in Ref. 8. Regarding these comparisons, it should be noted
that (20) and (21) agree with each other as long as n/N-curves agree
with the μc/μH-data. As can be seen in Fig. 1, this only occurs in
n-type Si. Regarding μH , it is worth mentioning that, rather than a
conductance mobility, it seems to be a drift mobility.29

We repeat the calculation of μc(n) by assigning in (1) the n-
curves calculated without any parameterization, which are shown
in Fig. 2(b). The obtained μc(n)-curves are drawn in Fig. 4, where
they are compared to reported measurements of μd (symbols),
μd(N)-curves calculated with the Klaassen mobility model for device
simulation10 in the simulation program PC1D630 (gray full lines),
and curves of the mobility contribution from electron–hole scatter-
ing, μeh(N), which are calculated according to Klaassen10 (dotted
lines). As can be seen, the n(N)-curves calculated with the model

FIG. 4. Curves of conductance mobility vs N calculated with (1) using various
assignments to n are compared to measured μd (N)-values11–19 (symbols) and
mobility curves calculated after Ref. 10.

presented in this work yield μc(n)-curves of majority electrons and
holes that fit μd(N)-data of minority electrons and holes, respec-
tively, and agree with the μd(N)-curves calculated with the Klaassen
mobility model10 at all dopings. The n(N)-curves calculated with the
model presented in Ref. 8 yield, instead, μc(n)-curves for electrons
and holes that only agree with μd(N)-curves and data at medium-low
dopings, where they cannot be distinguished from majority-carrier
mobility.

V. DISCUSSION
ASSH8 obtain (14) and (15) by substituting (4) in

n
N
= 1 −

b
1 + g exp[−(EF + ED − EC)/kT]

(22)

in n-type Si, and (5) in

n
N
= 1 −

b
1 + g exp[−(ED − EF + EV)/kT]

(23)

in p-type Si, at all dopings. Boltzmann approximations for n are
substituted in (22) and (23) in Refs. 25 and 26 as well, to calculate the
n/N-curves. Moreover, in Refs. 25 and 26, the Ed(N)-curves are used,
which, in Fig. 5, are compared to the Ed(N)-curves used by ASSH.8
The modeling approach in Refs. 25 and 26 is then similar to the
modeling approach in Ref. 8. However, in Refs. 25 and 26, the
n/N-values are not calculated at high dopings.

According to the band theory, n can be assigned (4) and (5)
only if the occupation probabilities of EC and EV , f (EC) and f (EV ),
respectively, are such as21

f (EC) =
1

1 + exp[(EC − EF)/kT]
≈ exp[−(EC − EF)/kT] (24)

FIG. 5. ED(N) calculated according to reported parameterizations and without
parameterizations.
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in n-type Si, and

f (EV) =
1

1 + exp[−(EV − EF)/kT]
≈ exp[(EV − EF)/kT] (25)

in p-type Si. In Fig. 6, EF(N)-curves calculated with (4) and (5) using
the n(N)-curves reported in Fig. 2 are shown along with EF(N)-
curves calculated with (4) and (5) at n = N. In the same figure,
ΔEF(N)-curves calculated with (16) and (17) are also reported.
As can be seen, only the EF(N)-curves calculated with the model
presented in this work without the ASSH parameterizations8 are
capable of satisfying (24) and (25) in the whole high-doping range,
making the Boltzmann statistics a reasonable approximation for
Fermi–Dirac. Consequently, only the full-line μc(n)-curves, which,
in Fig. 4, fit μd-data, are in perfect agreement with the band theory at
high dopings. As aforementioned, experimental results show that, in
Si at N > 1018 cm−3, for the same carrier species, μd exceeds μc up to
a factor of three at N = 1020 cm−3. Based on the results obtained in
this work, such a discrepancy may be ascribed to the conventional
assumption of full dopant ionization at all dopings in measuring
μc, which may involve underestimating the experimental values of
this quantity at high dopings. On the other hand, the EF(N)-curves
calculated with (4) and (5) at n = N that are drawn in Fig. 6 with
short-dotted lines are inconsistent with (22) and (23) at high dopings

FIG. 6. EF (N)-curves calculated with (4) and (5) using the n(N)-curves shown
in Fig. 2. EF (N)-curves calculated with (4) and (5) at n = N and ΔEF (N)-curves
calculated with (16) and (17) are also shown.

and, hence, do not allow deriving any of the models studied in this
work in that doping range.

Klaasen models μc as follows:10

1
μionD(N)

=
1

μc(N)
−

1
μL

, (26)

where μionD is the mobility due to ionized dopants, μL is the lattice
scattering mobility, and μc is assigned the empirical expression of
Masetti et al.31 Based on (26), μionD is homogeneous with μc and,
hence, is a species of conductivity mobility. In Fig. 4, the Klaassen
μd(N)-curves10 and the Klaassen μeh(N)-curves10 overlap with each
other at high dopings. This is consistent with the theory that injected
carriers are mostly subjected to the carrier–carrier scattering at
high dopings.32 However, in the Klaassen mobility model, μeh(N) is
modeled as a fraction of μionD(N) and, hence, can be considered as
a conductive mobility. μc = μd at high dopings then appears to be
consistent with the Klaassen mobility model as well. On the other
hand, as aforementioned, μH can be considered as a drift mobility.
This results from the standard definition of the Hall correction
factor, 29,33

r =
μH

μd
. (27)

ASSH, instead, use7,9

r =
μH

μc
. (28)

VI. APPLICATIONS
A change with N of the electron–hole product at thermal equi-

librium with respect to its value in undoped Si, ni
2, is observed in

highly doped Si.18,34,35 This change is due to the anomalous increase
of minority-carriers density compared to the expected value ni

2/N.
To model the increase of minority carriers, an “apparent” energy
band-gap narrowing (BGN), ΔEg , was introduced,18,34,35 such that
an “effective” doping density, Ne, can be calculated as

Ne = N exp(−ΔEg/kT), (29)

and the enhanced minority-carriers density at high dopings can
be assigned ni

2/Ne. Therefore, Ne represents the “effective” den-
sity of free majority carriers. Ne and ΔEg have been denoted as
“effective” and “apparent,” respectively, because, although sufficient
for device modeling, they are retained to have a doubtful physi-
cal significance.18 Many empirical expressions for ΔEg have been
proposed (see Refs. 18, 34, and 35). In Fig. 7, Ne(N)-curves obtained
with five BGN models18,35 are compared to the n(N)-curves (full
lines) calculated in the present work with (16) and (17) without
the ASHS parameterizations,8 which are shown in Fig. 2(b) as well.
As can be seen in Fig. 7, there is remarkable agreement at high
dopings between the n(N)-curves and some of the Ne(N)-curves.
On the other hand, an analogy between (29) and (16 a) or (17 a)
is undeniable as well as the fact that a change in the bandgap Eg
involves a change in EF . These observations along with the results
shown in Fig. 7 allow providing a physical meaning to Ne and ΔEg .
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As aforementioned, ΔEg is empirically determined.18,34,35 Figure 7
shows that ΔEg is adjusted such that Ne→n at high dopings. Ne and
ΔEg appear then to be equivalent to Na and ΔEF under the condi-
tion that ΔEF is such that Na = n at high dopings. The Ne(N)-curves
shown in Fig. 7 are consequently deformations of the Na(N)-curves
shown in Fig. 2. At any rate, all the BGN models are fits to measured
data. Consequently, the comparisons in Fig. 7 corroborate exper-
imentally the physical validity of the n(N)-curves calculated with
(16) and (17) without parameterizations in the present work, which
yield the full-line μc(n)-curves, which, in Fig. 4, fit μd-data,

Hangleiter and Haecker introduced an enhancement of
minority-carrier Auger recombination due to Coulomb interactions
among carriers36 to express the Auger lifetime, τA, at any N-value as

τA =
τHD

genh
, (30)

where genh is an Auger-recombination enhancement factor and

τHD =
1

CHDN2 (31)

is the lifetime in the high-doping range (1019–1020 cm–3) with
CHD-values depending on the doping species. The Hangleiter and
Haecker approach was adopted in subsequent Auger lifetime models
(e.g., Refs. 32, 37, and 38). In these models, genh has the form

genh = g0,enh + f (n), (32)

where g0,enh = 1 and f (n) is a function such that genh→1 in the
high-doping range. In Fig. 8, τA(N)- and genh(n)-curves for minority
holes and electrons are reported (short-dashed lines) as calculated
in P:Si and B:Si, respectively, with (30) and (32) using the relevant
Altermatt et al.32 parameterizations of CHD and f (n) at n = N as in
Ref. 32. Using the parameterizations in Ref. 38 gives less accurate
results at low dopings. The parameterizations in Ref. 37 have not

FIG. 7. Comparisons between the majority-carrier density, Ne, implied by five
BGN models reported in the literature and the n(N)-curves calculated with (16)
and (17) without parameterizations in the present work, which are also shown in
Fig. 2(b).

been checked. As can be seen, τA(N)-curves reduce to the Dziewior
and Schmid39 lifetime, τDS, at high dopings. We calculate τA(N)-
curves for the majority holes and electrons in B:Si and P:Si, respec-
tively, with (30) by assigning in (32) the relevant n(N)-curves cal-
culated in the present work with (16) and (17) without the ASHS
parameterizations,8 which are shown in Figs. 2(b) and 7. In (32),
g0,enh = 0.80544 and g0,enh = 0.802208 are assigned in B:Si and P:Si,
respectively, to impose genh = 1 at high dopings, and the Altermatt
et al. assignments for minority carriers32 are assigned to majority
carriers. For example, the parameterization of f (N) for minority
electrons in B:Si32 is used for majority electrons in P:Si. The resulting
genh(n)- and τA(n)-curves for majority carriers (full-line curves) are
compared in Fig. 8 to the corresponding genh(N)- and τA(N)-curves
for minority carriers (short-dashed line curves). As can be seen,
all the τA-curves fit lifetime data (symbols), which are taken from
Refs. 16, 18, 38–43. This means that, as well as measured mobility,
measured lifetime is the same for minority and majority carriers of
the same species. The comparisons in Fig. 8 further confirm exper-
imentally the physical validity of the n(N)-curves calculated with
(16) and (17) without parameterizations, which yield the full-line
μc(n)-curves, which, in Fig. 4, fit μd-data. It is worth mentioning that
evaluations of majority-carrier lifetime have not been reported so far
in the literature.

FIG. 8. Comparisons among experimental values of the hole and electron life-
time in doped Si (symbols), τA(N)-curves calculated with (30) using the shown
genh(N)-curves32 (short-dashed line), and τA(n)-curves calculated with (30) using
the shown genh(n)-curves (full line). The genh(n)-curves are calculated with the
n(N)-curves obtained with (16) and (17) without parameterizations, which are
shown in Figs. 2(b) and 7. τA(N) is the lifetime of the minority carriers. τA(n) is
the lifetime of the majority carriers.
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VII. CONCLUSION
In this work, a reported model for incomplete ionization of

dopants in Si has been modified to include the possibility that not
all the dopants are active at room temperature. The most impor-
tant achievement of the new model is the exact calculation of curves
of free-carrier density vs doping that are most coherent as possible
with the conventional band theory using Fermi–Dirac statistics and
Boltzmann statistics. These curves are such that, at room temper-
ature, free-carrier density is much lower than dopant density at
medium–high dopings. This is inconsistent with both the common
assumption of full dopant ionization at all doping levels at room
temperature and the aforementioned reported model for incomplete
ionization, which only forecasts partial ionization around the Mott
concentration. The new model is, instead, consistent with both
reported experimental models for bandgap narrowing and lifetime
data. An important consequence of the model presented in this work
is that using the aforementioned new curves of free-carrier density to
calculate conductance mobility leads to a new interpretation of this
quantity in Si. In particular, we find that, contrary to the conven-
tional assumption, for the same carrier species, the majority- and
minority-carrier mobilities are the same not only at low dopings
but also at high dopings. This implies that available measurements
of conductance mobility are affected by a systematic error due to
the aforementioned conventional postulation that at room temper-
ature all dopant atoms are ionized not only at low dopings but
also at high dopings. Since, in most electron devices such as JFETs,
MOSFETs, and MOS transistors, currents are calculated using the
majority-carrier mobility, the results presented in this work could
be of interest to device designers and Technology CAD/modeling
experts concerned with Si.
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