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Abstract we propose a self-consistent theoretical framework of chorus wave excitation, which describes
the evolution of the whistler fluctuation spectrum as well as the suprathermal electron distribution function. The
renormalized hot electron response is cast in the form of a Dyson-like equation, which then leads to evolution
equations for nonlinear fluctuation growth and frequency shift. This approach allows us to analytically derive
for the first time exactly the same expression for the chorus chirping rate originally proposed by Vomvoridis

et al. (1982). Chorus chirping is shown to correspond to maximization of wave particle power exchange, where
each individual wave belonging to the whistler wave packet is characterized by small nonlinear frequency shift.
We also show that different interpretations of chorus chirping proposed in published literature have a consistent
reconciliation within the present theoretical framework, which further illuminates the analogy with similar
phenomena in fusion plasmas and free electron laser physics.

1. Introduction

Chorus waves are whistler mode waves with frequency (w) typically between one-tenth of and the electron
cyclotron frequency (Q) (see, e.g., Burtis & Helliwell, 1976; Tsurutani & Smith, 1974). These waves have been
demonstrated to play important roles in energetic electron dynamics in the terrestrial magnetosphere. Chorus
waves are responsible for the acceleration of a few hundred keV electrons to the MeV energy range, leading
to the enhancement of MeV electron fluxes in the outer radiation belt during geomagnetically disturbed times
(Bortnik & Thorne, 2007; Chen et al., 2007; Horne & Thorne, 1998; Horne et al., 2005; Reeves et al., 2013;
Thorne et al., 2013). Furthermore, scattering of a few hundred eV to a few keV electrons by chorus waves
into the atmosphere has been shown to be the dominant process in the formation of energetic electron pancake
distributions (Tao et al., 2011), diffuse aurora (Thorne et al., 2010), and pulsating aurora (Miyoshi et al., 2010;
Nishimura et al., 2010).

Chorus waves consist of quasi-coherent discrete elements with frequency chirping. In the terrestrial magneto-
sphere, the frequency of a chorus element may vary by a few hundred Hz to a few kHz in less than a second. Previ-
ous studies have established that coherent nonlinear wave-particle interactions play a key role in the frequency
chirping, and have demonstrated that the chirping rate for rising tone chorus is proportional to the wave ampli-
tude. Using a series of simulations, Vomvoridis et al. (1982) argued that, to maximize wave power transfer, the
frequency chirping rate and the wave amplitude for parallel propagating chorus waves is related by

d -2
—”=R<1—2> 2. §))
ot Vg

with R = 1/2. Here, v, is the cyclotron resonant velocity, v, is the wave group velocity, and w? = kviesB/(mc)
with v, the perpendicular velocity, k the wave number, and 6B the wave amplitude. Theoretical interpretation of
Equation 1 was proposed by Trakhtengerts et al. (2004) and Demekhov (2011), based on the assumption that a
chorus element is formed as a succession of sidebands separated from each other by the trapping frequency w,,
over time scales 27/w,. Meanwhile, for optimum cyclotron power exchange of electrons with a whistler wave
in an inhomogeneous magnetic field, the growth rate is determined by a Backward Wave Oscillator (BWO)
condition. Good agreement from comparisons of these chorus sweeping rate predictions with observations was
reported by Trakhtengerts et al. (2004), Macusova et al. (2010), and Tao et al. (2012). Another interpretation of
Equation 1 was proposed by Omura et al. (2008), by assuming a constant value for the phase space density of
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phase-trapped electrons, and demonstrating that the resonant current density in the direction of wave electric field
maximizes at R = 0.4, consistent with Equation 1 of Vomvoridis et al. (1982). Equation 1 has been verified by
several different particle-in-cell (PIC) type simulations (Hikishima & Omura, 2012; Katoh & Omura, 2011, 2013;
Tao et al., 2017a, 2017b) and an observational study (Cully et al., 2011). More recently, Mourenas et al. (2015)
suggested using the nonlinear chorus growth rate from Shklyar and Matsumoto (2011), based on contributions
from both trapped and untrapped resonant particles, to derive an analytical estimate of the value of R = $* maxi-
mizing this nonlinear growth rate. They obtained R = S* = 3/5 in the case of oblique chorus waves.

Despite of Equation 1 being a huge success, its derivation was based either on simulations (Vomvoridig
et al., 1982) or by assuming either a given behavior of the fluctuation spectrum (Demekhov, 2011; Trakhten
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gerts et al., 2004), or a specific form of the distribution function for phase trapped (Omura et al., 2008) an:
or untrapped (Mourenas et al., 2015; Shklyar & Matsumoto, 2011) particles. Besides, Equation 1 was derive
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assuming the pre-existence of frequency chirping (Vomvoridis et al., 1982). The reason for frequency chirping o
chorus was explained by Omura and Nunn (2011) due to the nonlinear current parallel to the wave magnetic fiel

Wﬂam

(Jp). which causes frequency shift. In this paper, we propose a new first principle based theoretical framewor
for chorus wave excitation that addresses the dynamic evolution of the fluctuation spectrum and its interactio
with trapped as well as untrapped resonant particles on the same footing. This self-consistent analysis is a novelt
of the present approach with respect to previous studies. By keeping the dominant long-term nonlinear respons&
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in the distribution function, we obtain an equation for the evolution of the distribution function of hot electro
in the form of a Dyson-like equation (Dyson, 1949; Schwinger, 1951). This model (Chen & Zonca, 2016; Zonc
et al., 2015b) explains chirping as a result of the dynamic nonlinear spectrum evolution due to coherent excita:
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tion of a narrow fluctuation spectrum that is shifting in time out of a broad and dense whistler wave spectru
Furthermore, it demonstrates the ballistic propagation of resonant structures in the hot electron phase space (Che
& Zonca, 2016; Zonca et al., 2015b), and analytically shows that maximization of wave power transfer leads e
R = 1/2 and Equation 1, fully coincident with previous results of Vomvoridis et al. (1982). At last, the prese
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theoretical framework illuminates why the original approach by Omura and Nunn (2011), based on the nonlineag-
frequency shift due to J,, yields the correct estimate of chorus chirping rate starting from a different perspectiv

ob aie ?a|

In the present analysis, we focus on the nonlinear dynamics of phase-space structures of correlated electron
which are due to nonlinear wave-particle interactions that predominantly occur “in the downstream of equator,
after the whistler wave packets have traveled through the suprathermal electron source region localized near th
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equator itself. In this respect, we construct the theoretical framework that underlies the numerical simulatio,
analysis of Tao et al. (2017a), where we showed that the time scale of chorus nonlinear dynamics is ~O(27x /
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characteristic of nonperturbative wave-particle interactions (Chen & Zonca, 2016; Zonca et al., 2015b), and thag 9

]

the wave growth is mainly due to phase bunched electrons. This work is a more in-depth analysis based on earli eg S
preliminary theoretical approach (Zonca et al., 2017). The present analysis can also be considered as theoretic
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building block for a recent simulation work (Tao et al., 2021), which proposes a novel phenomenological inte
pretation for chorus, called the “Trap-Release-Amplity” (TaRA) model. The TaRA model establishes a connec
tion between the upstream and downstream of equator regions in chorus dynamics, and shows that phase-locke
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electrons in the upstream region selectively amplify wave packets with a chirping rate that is fully consistent wit
the Helliwell analysis for a nonuniform background magnetic field (Helliwell, 1967). Meanwhile, in the down
stream region, the nonlinear wave-particle analysis in the TaRA model yields the chorus chirping expression of

ouw

Equation 1, consistent with Vomvoridis et al. (1982) as well as with former (Tao et al., 2017a; Zonca et al., 20175
and present analyses. §

The structure of the paper is as follows. Section 2 discusses the present novel theoretical framework based on the
self-consistent solution of wave equations (Section 2.1) and of nonlinear phase-space dynamics (Section 2.2).
Reduced model equations for the nonlinear evolution of spectral intensity and phase shift are presented in
Section 3. These are then applied to the investigation of chorus excitation and nonlinear dynamics in Section 4.
Finally, Section 5 is devoted to discussion and concluding remarks. Four appendixes are further devoted to
detailed derivations for interested readers.
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2. Theory

Let us adopt the standard hybrid approach, where the Earth's magnetosphere plasma is assumed to consist of a
neutralizing cold thermal ion background and a “core” (c¢) and “hot” (h) electron components. From Ampere's
law, and separating the current density perturbation 6/ in “core” (c) and “hot” (h) components, for parallel prop-
agating transverse electromagnetic waves we have

2
(1—"—C>5El ﬂaJ =€, - 6Ei——5El_—ﬂ5Jh,
CO

—~
38}
~

where considering “core” electrons as a cold fluid with density 7, €, is the usual cold plasma dielectric tensor
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3 Q &
€, -6E, = l+—2 5EJ_—i—Q—ZX5EJ_,
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o

with 2 the unit vector along the Earth's magnetic field and, adopting standard notation, @3 = 4xne®/m s the ele
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tron plasma frequency, and Q = eB/(mc) is the electron cyclotron frequency, with e the positive electron char;
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mqn auffu

and m the electron mass.

For a typical rising tone chorus event that we are addressing here, the characteristic nonlinear time and duratio

A

are much shorter than the time it takes for a whistler wave to propagate from the equator to either southern o
northern ionospheres. Thus, we assume a wave packet description for chorus, which has a dense (nearly continuz

59|rﬁ 1

ous) spectrum and is nearly degenerate with a parallel propagating whistler wave with right circular polarizatio
ie., k =2k, 0E =B, =0, 6E, = idE , and 6B = i5B,, with 6B = (ck/w)SE,. This yields

oE 1 wlz’ oE
€] - 1~ + m 1.

ess3)o11d

Thus, the problem of transverse chorus wave packet interacting with hot electrons can be approximately cast a
(Nunn, 1974; Omura & Matsumoto, 1982; Omura & Nunn, 2011; Omura et al., 2008)

~
n
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1+ —2— ) 6E 5E ———6J,
( + a)(Q—co)> L= L h

i

where the right-hand side can be formally treated as a perturbation to the lowest order propagation of the whistle,
wave packet due to the low density of hot electrons.

2.1. Wave Equations

Let us introduce the whistler wave dielectric constant, €, , and dispersion function, D, , such as

CO2

3
ew=14+————, Dy=¢€,——.
w 0(Q—w) w w 2

—
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The elements of the whistler wave packet can be written as

6EJ_(Z,I) = % Z (eisk(z’t)(sELk(Z, f) + C.C.) R

k

~
~J

with c.c. denoting the complex conjugate, denoted in the following with a * superscript, and the eikonal S, is
defined such that @, = —9,5;, k = 9.5, which satisfy the WKB dispersion relation

Du(z.k(2). 1) = 0. ®)
Meanwhile, letting
SEik(z.1) = 8|6 E k(2. 1)] Y, )

with @ the polarization vector defined such @ - 2 = 0 and & - 2" = 1; and introducing wave intensity or action as
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Ii(z.1) = |0D,,/ok| |6 E i (z.1)|?, (10) 2
o
the evolution equation for I,(z, 1) is (Bernstein & Baldwin, 1977; McDonald, 1988) g
=
(£ + vl ) Iz = 2n iz ang
o oz ' e <
@
where vy = —(0Dy/dwy)” 0D, /dk is the wave packet group velocity and -§
o
D! 8o
Ak 3
= —— 123 =
= T 9D 0w (122 s
represents the wave packet driving rate due to the hot electrons. In fact, noting 9.9,D,, = 0 (McDonald, 1988), ZE
S
H
D, =ﬂm(@—5{“'w“ ) (1323
@k |6E (2, 1)? o3
=3
>
Meanwhile, the phase shift ¢,(z. 7) is given by (Bernstein & Baldwin, 1977; McDonald, 1988) 2 %
Sl
9 9 Diy 3B
~—+ _) ) = , 143, 8
(ar Vak gz ) P = S ( 4_2:5
g2
where 23
o8
i 67 E g o
D;A=Re<@—5{”"w“‘). (158 o
Wi |6E14(z,1)]? <
2
Thus, all relevant nonlinear physics is included in the wave-particle interaction and the two functions W(z, , a):§; :;'
and I'(z, t, w), representing, respectively, the phase shift and driving rate due to hot electrons o E
dzi 8w - SE) % g
W (zt,0) +iT(z,1,0) = — ! ik O 2Lk : (163 9
@I Dw/0w |GE 14(z,1)]? k=K(z0) 25
o
o
where k = K(z, w) is obtained from the solution of the linear dispersion relation, D, = 0. Noting that, in thé g
complex wave representation adopted here, 5T - SE L = —i(w/ ke)ST pi - 5B1k for the considered right circug ﬁ
larly polarized parallel propagating whistler wave packet, Equations 10-16 coincide with those adopted b§i
=5
Nunn (1974) and Omura and Nunn (2011). With the definition of W(z, f, ®) and I'(z, f, ®) as in Equation 1(3&“\_‘9
the right-hand side of Equations 11 and 14 become, respectively, 2I'(z, t, ®)I(z, t, @) and —W(z, t, ®), wherig
I(z, 1, @) = I}z, 1)l _ k(. ) and the group velocity on the left-hand side has to be interpreted as v, (z) = v, (2)l; - Kol E
=
Equation 16 can be rewritten expressing the wave particle power transfer in terms of the hot electron response. II& §
fact, noting the hot electron right-hand cyclotron motion in the ambient magnetic field 5 ;:;—
. e 35
v - 5EJ_k = —I.UJ_Q_HI&E:, (173 3
where v, (and v)) indicate the perpendicular (and parallel, respectively) velocity with respect to the ambien(a; o
_ - I
Earth's magnetic field, « is the gyrophase (¢ = Q); and we have denoted 6 Ex = (6E J‘k)x for brevity. Meanwhile, 9
hot electron response can be represented as %
2
f,z,1) = fov,z,1) + % Z (e"SE=s (v, 2. 1) + c.c.) (18) =
g
while the hot electron perpendicular current is given by S
| 3
2 iS(z0) g J g
6Jn(z,1) = 3 ;(e 3 ’5Jhk(Z,I)+c.c.). (19) é-
s
Thus, combining Equations 17-19, we have 2
[a)
3
=
o
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Figure 1. Contour plots of W(z, r =0, )/Q, (a) and I'(z, t = 0, )/, (b) are shown for normalized parameters a)P/Q(, =5, n/n=06Xx 1073, Wy = 0.2¢,w,, =0.53c,
£=28.62x1073Q2/c%

_ 4ﬂ 8T - SELi
@ |5Elk(z, I)|2

dre vy OE[OT:
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Here, we have noted that |6 E 14(z,1)|*> = 2|6 Ex|% angular brackets (... ) denote velocity space integration, an

k=K(z,w)
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assumed Equation 31 for expressing & fi, which will be derived in Section 2.2. Furthermore, it is important to emph
size that f; is the k = 0 component of the hot electron distribution function, which evolves in time due to the nonline

86 ie

wave-particle interactions. Thus, f; is the “equilibrium” distribution function assumed initially only at £ = 0.

Since the source region of chorus is localized near the equator, we follow the usual practice of assuming a mod
of Earth's dipole magnetic field in the form B = B,(1 + £z%) (Helliwell, 1967), with B, representing the magnet
field strength at the equator and £~ the nonuniformity scale length. Thus, we take a model Q = Q (1 + £z7) wit

A& pouian

deauy

Q, the (nonrelativistic) electron cyclotron frequency at the equator. Meanwhile, following Tao (2014), we assum
an “initial” hot electron f; in the form of a bi-Maxwellian

Ho

Qr)wyuw?

folio = exp (—oi/ ) - i /).

(S
to) aAreal) 3|qed
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where ny = %, wy = w . w, ={w,,, and {2 = 1 + A&Z%/(1 + &2%), with A = wie/wﬁe — 1 > 0 the anisotrop
index computed at the equator (cf. Appendix A). Contour plots of the “initial” (linear) functions W(z, t =

w) and I'(z, t = 0, w) are given in Figure 1, for normalized parameters a)p/Qe =35.n/n=06Xx 1073, Wy = 0.2
w,,=0.53c, & =8.62x 107°Q2/c* (Tao, 2014). From Equations 16 and 20, it can be shown that both W(z, 7, w§

and I'(z, t, w) scale as ~&*, which accounts for most of the spatial nonuniformity of hot electron response, charac

St

T3u

terized by the length scale (AE)~? as clearly illustrated by Figure 1 (cf. Appendix A). Thus, at the leading order,
hot electrons can be considered as a nonuniform source neglecting magnetic field nonuniformity. Although not
necessary, this assumption will help simplifying our analytical derivations in the remainder of this work, starting
with Section 2.2 (cf. Appendix A for more details).

With the knowledge of W(z, ¢, w) and I'(z, t, @), the nonlinear evolution of the chorus spectrum can be derived
from the integration of Equations 11 and 14 along the characteristics, recalling that the right-hand sides are,
respectively, 2I'(z, t, w)I(z, t, ®) and —W(z, t, @) as noted above. Thus, solutions are formally written as

z
dz’'

1(z,1,0) = Lo (15" (To(2) = 1)) exp (2 / —I(z.1 = T(2) + Tm(z’),w)> , 22)
T; (T, (2)-1) Vg (2)

w
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W/Qe

Figure 2. Contour plots of I(z, t, @)/l ,, (a) and ¢(z, t, ®) (b) are shown for the linear evolution of the whistler wave packet and the same normalized parameters of
Figure 1. Here, I ) = const and ¢, = 0 have been assumed together with zQ /c = 50.
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for the wave packet intensity /(z, #, @), where

= od7
Tu(z) = .
@ /0 Ugo(2")

Meanwhile, a similar solution can be written for phase shift ¢(z, #. ®) = @,(z. D)l _ k.0

~
[\

dz

(T (1) Vgao(Z')

W (2 1 = To(2) + To(2). @)

~
[N
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P(z.1.0) = @uo (T (Tu(z) = 1)) —/
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In the linear limit, where W(z, t, ®) = W(z, t = 0, @) and I'(z, t, ) = I'(z, t = 0, w), Equations 22 and 24 ar
readily computed and corresponding solutions are shown in the contour plots of Figure 2 for the same paramete

_,
pau

1Aq

of Figure 1 and z& /c = 50. Nonlinear evolution is all embedded in the time dependence of W(z, t. w) and I'(

5

t, o). In particular, we will show below that chorus chirping may be understood as the spectral frequency peal

dele

of I(z, t, ®) at a given spatial position shifting in time. Meanwhile, since the growth of the spectral peak is d
to spontaneous emission of whistler waves excited by hot electrons at the proper (instantaneous) wavelengtlp’

3jqesl|

and frequency, chorus nonlinear evolution is, thus, clearly associated with maximization of wave particle pow
transfer (Omura et al., 2008; Trakhtengerts et al., 2004; Vomvoridis et al., 1982), as noted to be the case also f
Alfvénic fluctuations in magnetized fusion plasmas (Chen & Zonca, 2016; Zonca et al., 2015b). We will lat

a

)

come back to this very important point, with more insights and comments on the underlying physics. Summ:

?Ubj"ezxﬁe

&w

rizing, this analysis shows that chorus chirping rate can be predicted via analyzing dI'(z. 7, w). In particular, 9
can be derived from 9 f;, that is from manipulation of the Dyson-like equation, given in Section 2.2, as remarke
in Section 1. This derivation is carried out in Section 3, where we also show how dI'(z, ¢, w) and 0,W(z, . w) ar
interlinked (Zonca et al., 2017).

asuadITisuU

2.2. Phase-Space Dynamics

As shown in Section 2.1, hot electrons are localized about the equator and plasma nonuniformity effects are
dominated by the ~{* scaling of both W(z, t, @) and I'(z, t, ). Thus, as noted in Appendix A, hot electrons can
be approximated as a nonuniform source, characterized by the length scale (A£)~"2, neglecting magnetic field
nonuniformity. This assumption helps simplifying our analytical derivations below and, thus, we choose to adopt
it in the following. In order to simplify presentation, we also assume ®? /w} < 1, so that expressions of W(z, ¢,
w) and ['(z, t, w) are reduced to

. o L, 0(Qe — ) 1 kv 9 Q.| s
W (z.t, T(z.t,0) = =¢* L 9 2% .
(z.1,@) + il (2.1, 0) n ¢ Q. Qe+ kvyy—w | 20 dvy o fo (25
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Here and in the following, k = K(z = 0, ) will always be assumed as obtained from the solution of the linear
dispersion relation, D, = 0. Meanwhile, as illustrated in Appendix A, we have integrated Equation 20 by parts in
v, , extracted the expected hot electron nonuniformity scaling ~{*, and denoted the response neglecting magnetic
field nonuniformity as fo = n. fo. Equation 25 suggests the connection of the phase shift and driving rate by a
localized hot electron source with that by a uniform hot electron source in uniform magnetic field. To make this
more explicit, let us introduce the rescaled phase shift and driving rate, W (z.t,®) and ['(z. 7, ®), defined as

o o(Qe — ®)

Wiz,t,w)+il'(z,t,®) = S

-
<1 _ Uﬂ) [W(z, t,w) +il(z, z,a))] , (26)

Ugw

631puod

where v, = (@ — Q,)/k is the resonant velocity, and v,,, = v,,(z = 0) is the group velocity at the equator, defined

below Equation 16. Thus, we rewrite Equation 25 as

2 2
- Ure Qe kUL 2} Qe
Wi(z,t, T(z,1, 1 - _— = - —
(2.1, @) +il(z.1,0) = n < vgw) <Qe+ku|| -w |:2w duyy @

The usefulness of introducing the factor (1 — 04/ Ug)*, Where both resonant and group velocity are computed
z =0, will be clarified in Section 3. There, we will also show that residual spatiotemporal dependences of fo,
and T will be via r — Uy

\/
~
Sn%uuuo A3 uo (su

In the presence of a fluctuation spectrum in the form of Equation 7, the hot electrons distribution functio
f = n.f can be written as

Bsn jo sa|rﬁ’ 104 Kse

—
[\

fz.0) = folz.1) + % Z (e"s"(z"’)*""éﬁ(z, 1+ c,c.) .

where fj, introduced in Equation 25, denotes the k = 0 component of £ and, for brevity, we have omitted thg-
velocity space dependences of hot electron response. Similar to Equation 18, Equation 28 follows from the fa
that, given the chorus wave packet polarization properties discussed in Section 2.1

- B _ k i
£ 5EA+UX5B" -i=i£UL5Eke”’ fi.;_ X Li.,.Li )
m c ov  m ® Jvy 10) vy dvy V2 da

The evolution equation for f; can be obtained from the Vlasov equation
A 1 e - |k o ko 1 o 1 2,
Or + v)0; = —Yi—véE|—-—+(l-— )| —=—+—= || &S}
(0 + 1392 fo 4 7 Imul * [a) v < ® vy vy Ui I

3
lw.e .=.|k 0 kuy 1 o 1 2
IyitosE |2 (oY (L L) sh
42,\:lmul k [(odm < ® vL 0vy * v I

Meanwhile, the fluctuating component of the hot electron response is given by

—
8]
O

ajqeoidde ayy Aq patiianob aie §9)

3

Lisfi = [koj+Qe—w—i(0+00:)] 6/
_ k ”
m (udU” ® vy 00Uy

Here, L4 is a first-order partial differential operator that can be “formally inverted” as propagator £, which is
an integral operator. Equation 31 applies both linearly and nonlinearly; i.e., when fq is evolving in time due to

95UDIT SUOWIWIOY) BAI}ES:

—~
(9%}
—

resonant wave-particle interactions. In particular, the action of the (d; + v d;) operator on the phase modulation
due to § £ = |6 Ex|e'” must be computed noting that the hot electron induced frequency (A,) and wave number
(A shifts due to an incremental change in the fluctuation spectrum still satisfy the whistler wave dispersion
relation with good approximation. This assumption is based on observations that chorus waves propagate in
whistler mode; and it is consistent with the interpretation of chorus chirping as “whistler seeds” that are excited in
sequence and amplified by wave particle resonant interactions with hot electrons originally proposed by (Omura
& Nunn, 2011). Thus, @ and k in Equations 30 and 31 denote the wave packet frequency and wave number in
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the presence of the hot electron source and the finite amplitude chorus. The effect of the nonlinear frequency
and wave number shifts due to an incremental change in the fluctuation spectrum is discussed in Section 4.
Meanwhile, @ and k in Equations 30 and 31 are interpreted as elements of the whistler fluctuation spectrum
that is considered dense (nearly continuous) and is self-consistently evolving in time as a whole in the presence
of the hot electron free energy source (Tao et al., 2020; Zonca et al., 2017), rather than considered as properly
chosen “whistler seeds” that are representative of the selected chorus element (Omura & Nunn, 2011). This is
one of the main differences of the present work with respect to the earlier analysis by Omura and Nunn (2011), as
discussed in Section 1. The other one consists in the analytic solution for the self-consistent nonlinear hot electron

@D

response in phase space (Tao et al., 2020; Zonca et al., 2017), which is discussed below. Section 4 also allows u

Ipu

to reconcile different interpretations of chorus chirping (Omura & Nunn, 2011)) inside the same framework wit
a self-consistent comprehensive vision and to address some of the issues regarding subelements as presented i
the recent work by Tsurutani et al. (2020).

2 _ k N
5f =1L £ v, 6E, £i+ Xy 1L 9 fo
m w vy 10} vy Uy
is substituted back into Equation 30, the “formal solution” for fo is obtained and can be cast in the form of
Dyson-like equation (Dyson, 1949; Itzykson & Zuber, 1980; Schwinger, 1951)

. lw.e .= |k o koy 1 9 1
9 0: = - —v0E; | —— - — —_—— =
(01 + v)02) fo 4§1mvl k|:a)du||+< P ULaUl+Ui
- = | k0 koy\ 1 0 |
xe1d Ly sEr |24 (1o ) 2 &
K {mvl “[wdv||+< w ) oLov|”°
l o.e = |k o koy 1 0o 1
eyl [ 2L (1) =L 4 =
4§1mvl k[ a\|+< @ UJ.()UJ_+Ui
_ k .
XLy {ﬁuléEk [£i+ (1_ﬂ> Li] fo}-
m w Jv) w ) vy dvy

Connections of the present approach with the field theoretical description based on the Dyson-Schwinger equation
are extensively analyzed in Chen and Zonca (2016) and Zonca et al. (2015b) as far as magnetized fusion plasm:

When

0 A3]IM uo (ston

,\
(5]
(§e)

UHu

—~
|98}
i

By

&

applications are concerned. Interested readers may find the same analyses specialized to chorus wave excitati
in Appendix B. Here, we emphasize that the general theoretical framework (Aamodt, 1967; Al’'Tshul’ & Kar;
man, 1966; Balescu, 1963; Chen & Zonca, 2016; Dupree, 1966; Mima, 1973; Prigogine, 1962; van Hove, 195
Weinstock, 1969; Zonca et al., 2015a, 2015b, 2017) is of crucial importance for demonstrating that Equations 3

Sigey

ﬂiea;b

and 33 do indeed account for the phase-space structures that determine the dominant nonlinear dynamics an
phase space transport by chorus emission. In fact, the dynamic description given by Equation 33 accounts for phas

09 a

space nonlinear behaviors without fast temporal or spatial dependences, which correspond to the self-interaction o
the fluctuation with the wavenumber of interest with itself. The resultant distortion of the hot electron distributio

UD Ut

function, determined self-consistently in the presence of the finite amplitude fluctuation spectrum, constitutes the-
“renormalized” hot electron response of interest for the present application. Solving Equation 33 together with th

SWROIP S

wave equations, Equations 11 and 14, preserves the crucial underlying physics of chorus nonlinear evolution bu®
is beyond the scope of the present work. Here, we focus on chorus frequency chirping rather than on the details of
phase space nonlinear dynamics and transport. Thus, in the next section, we introduce a reduced (velocity space
averaged) description of the Dyson-like equation that will allow us to derive nonlinear evolution equations for
W (z,1,) and ['(z, 1, ) and, thereby, analytically address the dynamics of chorus chirping.

3. Reduced Dyson-Like Equation

Let us reconsider the simplified expressions of W(z.t,w)and I(z,t, ®), Equation 27, obtained in Section 2.2. On
the right-hand side, formally consider. fo = (0 + v”dz)"] (0 + v)0;) fg and use Equation 33 for the expression
of (0, + v9:) fo. In other words, we formally manipulate the Dyson-like equation obtained in Section 2.2 and
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integrate in velocity space in order to obtain reduced expressions for time evolving W (z, 1, w) and T'(z, #, @) rather
than solving Equation 33 in the whole phase space (Tao et al., 2020; Zonca et al., 2017). This reduced approach
becomes useful when the nonlinear particle response is dominated by resonant particles in the presence of a
quasi-coherent (narrow) wave packet such as in the case of chorus. The same approach has been successfully =
applied to study energetic particle modes (Zonca et al., 2015b) as well as the so-called “fishbone”” mode (Chen & el

1Y wouy papeojumoq 'z 'zz0Z ‘20766912

Zonca, 2016) in fusion plasmas. Let us also recall the approximation introduced at the beginning of Section 2.2,
by which we assume that hot electrons are a nonuniform source localized about the equator, while the remaining

m
=
(=9

dynamics is well described neglecting magnetic field nonuniformity. Thus, Equation 23 gives T, (z) =~

Lo)

T '(t) =~ vgut. Furthermore, at any position z sufficiently outside the localized nonuniform hot electron source I(

t, ) and @(z, t, ®) are predominantly functions of 7 — 2V, as can be verified from Equations 22 and 24 computln

9, and d_ of those expressions. Repeating the same argument, predominant dependence on ¢ — z/v,,, can be demonS

strated for fo. W, and T'. Residual z dependences are neglected, since they account for magnetic field nonunifor:

ifrpu

uol

ity, which is omitted here for simplicity, and modulation effects of the chorus wave packet due to the finite exte
of the source region. These effects are reported in detailed numerical investigations by Wu et al. (2020), illustrati

ﬁgu/\%u;(s

-pue-suial/wodAaimAIelqipuljuo//:sdi1y) suoiipuo) pue swid) Y3 995 *[£202/01/60] uo Aieiqr] sunuo KM “v'3'N'3 Ag 09£620Vr1202/6201°0L/10p/wodAsimAieiqiaurjuo’ sqndnﬁe

the role of magnetic field nonuniformity in breaking the symmetry between rising and falling tone chorus. In
more recent work (Tao et al., 2021), chorus nonlinear dynamics due to wave-particle interactions and magneti

ﬁat’muo

field nonuniformity have been analyzed on the same footing within a newly developed phenomenological “TaR
model,” as anticipated in Section 1. The present simplified theoretical description reduces the dimensionality of th

oF Areuq

problem and allows us to adopt useful simplifications; e.g.. (d,+ v\d,) = (1 — v, /v,,)0, when dealing with resona

re’ " gw

particles. Numerical studies of the complete Dyson-like Equation 33 will be given elsewhere.

Based on these assumptions, on the right-hand side of Equation 33 we can write

i(6EWLy"6E; —6E; L, SEL) =i (OEL; L LhSE; —SE[L] LT LISEL) .

—~
W

Osn jo sa|ni 1

Noting

oo 2 ole > L ] = [(Qe + kvy — w)* + (1 — u,w/uw)zaf]'l,

—~
(98]

where, again, the notation [...]~! always denotes the inverse of an operator within the square brackets, Equ
tion 34 can be cast as

i (6EWLI'6E; — SELT'SEL) i {5151 [(Q + kv — @) + (1 = 00 /04002 LASE;

—SE[(Qe + koy — @) + (1 = 00 /v0)? 0] L35 Ex }

—~
1Y)

anneal) aﬁ%audde ay3y Aq pau.lé?\oﬁ By saIMe

14

28 Exl[(Qe + kvy — @) + (1 = 0/ 0g0)?0?]

X(l - Urw/Ugw)atlaék|~

S

Here, as it can be verified by inspection, the operators action on the phase dependences in 6 Ey = |5 Ey|e%

LERU

and its complex conjugate cancel each other and only (1 — vy /Ugw)0:|6 Ex| survives. Using this expression an
substituting Equation 33 back into Equation 27, we finally obtain, after tedious but straightforward algebra (c
Appendix C1)

as5uddI sto

o
W(@)+il(@®) = < U"") <TLQ [Q +koy—a@—i(l - U,w/ugw)();] !
2

k o Q. k o
X<50——<Ul>5>(ar+U"a) Z—I(S Ia)a_U”

X[(Qe + kv = @) + (1 = 50 /00 02] " (1 = Vo Ug0)

(37)

Here, we have repeatedly integrated by parts in v,, from outside to the inside, in order to remove any d/0v, in the
final expression. Moreover, for simplicity of notation, we have explicitly indicated only the frequency depend-
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ence of W and T, leaving implicit the dependence on 7 — z/v,e. Finally <vi> = (uif0> / <f0>, and we have
denoted the current frequency and wave number satisfying the lowest order whistler wave dispersion relation as @
and k in order to distinguish them from @ and k in the running summation over the fluctuation spectrum.

Equation 37 still contains all the information embedded in the solution of the Dyson-like equation, Equation 33,
via complicated integro-differential operators. In order to make further progress, we explicitly carry out the
velocity space integration adopting two assumptions: (a) the chorus spectrum is narrow, such that (@, k) =~ (@. k)
and ;|6 Ex| ~ ;|6 Ex|; (b) chorus chirping is due to the subsequent emission of different waves belonging to the
whistler wave continuum, which are excited in turns to maximize wave particle power transfer. The assumptiog
(b) was already introduced in the remarks following Equation 33 in Section 2.2 and will be further discusse@

M

below in Section 4. Meanwhile, both assumptions are based on the chorus spectral features and are the same a
those of fluctuation spectra in the aforementioned fusion applications (Chen & Zonca, 2016; Zonca et al., 2015b

(¢]

Tsu

uo

After tedious but straightforward algebra, some details of which are reported in Appendix C2 for interested read
ers, real and imaginary parts of Equation 37 can be cast as

- 2Q2 5
QoW (@) = [Q J —‘(1_ Ur )] a2

‘00 k2 () Ve 0@

(@ -a) [(0- @)
2 o |

(@) ( (o) + (@) >

4041 = Vro/ Vo)’ 2

-1
+ Q;Zaf]

—~
W

s

and, denoting as T'; the linear (initial) normalized hot electron driving rate

2
oL =% 29”2 (1 - ﬁ) oL
0o k2 < vl > Uga o]
(- @)
X —_—
; 402
oSSy >> (F«o) +f(os>>
4941 = Vr/Vg0)* 2

[@) -T(®) =

—~
W

eﬁeaudde ay3y Aq paufaor\oﬁ 2Je s311e YO 9sh Jo sajni xoeo; Kieiqiq aunuQ Asjim

-1
+ 9;263]

where we have introduced the wave particle trapping frequency definition

(o)) = (vioi o) / (v1 /o).

—
B~

with @2, = |(e/m)k*v,8 Ex /o).

Equations 38 and 39 are still complicated nonlinear integro-differential equations, but they have been signifi

03 aAnea)

cantly simplified (or reduced) with respect to the original Dyson-like equation, Equation 33. These equations arg
the primary theoretical results of the present work and show that W and T evolution equations are interlinke

as expected and as anticipated in Section 2.1. They describe a variety of nonlinear dynamics, including chorug-
[a]

chirping and modulation of the chorus wave packets on a time scale ~ < <a)fr . > >_[/4. To see this more clearly, let u§
introduce the optimal ordering for Equations 38 and 39. The width of the fluctuation spectrum can be estimated a$

| — | N ow
2Q, Q.

(41)

Meanwhile, assuming |02y, | 2 [02T .|, ordering all terms of Equation 39 on the same footing gives

0] ~ lo — @] ~ 10a]™" ~((@* ))* ~ 7. 42)

trk

where 7. is the peak value of the linear hot electron driving rate at the equator. Equation 42 describes a whistler
wave packet that grows and saturates locally due to wave particle trapping. However, if chirping consistent with
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Equation 1 sets in as in chorus spontaneous emission, saturation at the level of Equation 42 is not possible and the
wave packet can grow further. Equation 39, then, suggests

A

Clo-al

(43)

ol ~ (@) 106

21 I

This ordering corresponds to a characteristic nonlinear time, tnz ~ |9;|™! ~ F,’VIL that is shorter than the wave
particle autocorrelation time, |Aw|™! ~ |@ — @|™". In particular, this ordering is consistent with chorus chirping,
and Equation 39 readily yields Equation 1 when we assume a quasi-coherent (nearly monochromatic) fluctuatio
spectrum. In fact, keeping the leading terms only in Equation 39, consistent with Equation 43, we have that ;>
dominates in the integral operator definition, Equation 39, and

%rmfu) (Z M) <)

MA uo (suogn&ada

—~
B~

4(1 - Urw/ugw)

This result suggests that there exists a self similar solution for Iy that ballistically propagates in w-space at

Fauuo Aay:

rate given by the square root of the quantity in square parentheses on the right-hand side. This ballistic prop
gation corresponds to the analogous ballistic propagation of hot electron phase-space structures, described bg

efq1

KA

Equation 33; and it is in one-on-one correspondence with the analogous ballistic propagation of phase spac
zonal structures connected with energetic particle avalanches in fusion plasmas (Chen & Zonca, 2016; Zonc

S0,

et al., 2015b). Details obviously depend on the actual form of the spectrum, but it is readily verified that, fo;
nearly monochromatic chorus element, Equation 44 yields

w1 (ot )"

at - _2 (1 - Urw/Ugw)

—~
Ny

O D,

=$9|0111e O :9sSh JO s8N

Thus, the present theoretical framework is consistent with both upward and downward frequency sweeping
chorus structures and, thus, consistent with the recent work by Wu et al. (2020). This is the first theoretical predi
tion for the downward chirping of parallel propagating waves, as far as we are aware of. However, it should als

O
b éue

be noted that statistical observations of chorus falling tones show that they are mainly very oblique rather tha
parallel (Li et al., 2011), and that Mourenas et al. (2015) have predicted the possible existence of both positiv
and negative frequency chirping for such very oblique chorus waves based on the maximization of the nonline:
growth rate of Shklyar and Matsumoto (2011). More detailed discussions on the chirping direction will be give

ﬁ&qﬂpauuaﬂb

edeby

below in Section 4. Focusing, here, on the positive sign of Equation 45, by direct inspection it can be noted that
coincides with Equation 1 for R = 1/2 as anticipated in Section 1 (Vomvoridis et al., 1982). Equation 45 improv:

D
el

2iq

an earlier estimate by the same authors (Zonca et al., 2017) and, to our knowledge, is the first self-consiste
analytical demonstration of the conjecture by Vomvoridis et al. (1982) in its exact initial formulation. Mor:

w
301D

generally, Equation 44 suggests why the chorus chirping rate is not always given by R = 1/2, the limiting ca:
for a nearly monochromatic spectrum, but may vary depending on the excitation conditions; e.g., the initial h

o3 o

electron distribution function.

4. On Chorus Chirping

2. 3sUddIT suoww

In order to further illuminate the features of chorus dynamics as predicted by Equations 38 and 39, we have solve
them numerically, together with the wave equations of Section 2.1, using a fourth-order Runge-Kutta method. To
exploit the dense nature of the whistler wave spectrum, we introduce the dimensionless intensity Z(w) such that
nonlinearity effects become important when Z(w) ~ O(1) (cf. Appendix D).

Assuming fixed zQ /c = 50 and parameters as in Figure 1, the nonlinear evolution of I(z = 50c¢/Q.,t, ) is
shown in Figure 3. Here, rather than assuming a specific form of the initial spectrum, we assumed vanishing
initial conditions and a constant slow external stirring that, in the absence of suprathermal electrons, would give
an intensity spectrum I = S2Q2¢%, corresponding to |8 Ey| linearly increasing with time (cf. Appendix D). In
Figure 3, the source strength is S = 2 X 107>, Furthermore, we use a discretization in @ space with 221 grid points 3
in the interval w/Q, € [0.05, 0.9] and adopt a Savitzky-Golay filter fitting subsets of 19 adjacent data points with &
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Figure 3. Contour plot of the nonlinear evolution of Z(w) for a uniform source S = 2 X 10~ in Equation D5. The position < §
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a fourth-order degree polynomial to ensure regularity of the derivatives in w-space. A fourth-order Runge-Kutta 3
w
integration in time is adopted with variable time step, gradually decreasing from an initial Q At = 1.25 x 10~! iff(s z
the early linear evolution to Q, Az = 3.125 X 102 in the later nonlinear phase at Q¢ > 1,750. This choice ensure® 3,
Q .
that Courant condition is well satisfied. The routine solving Equations D2-D6, closed by Equations D7 and D§;~. E
together with the proper boundary conditions, is written in Python and uses Python standard libraries. In order t@ >
Q
illustrate the robustness of the present numerical results as parameters are varied, Figure 4 shows the nonlineas E
Q @
evolution of I(z = 50¢/Q..t,w) for S = \/5 % 107° and same physical parameters of Figure 3. In this case, th% E
Savitzky-Golay filter is reduced to fitting subsets of 15 adjacent data points with a fourth-order degree polynomia% %
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Figure 5. Instantaneous chirping rate of the intensity peak of the rising tone chorus element beginning at Q ¢ ~ 2,600 in
Figure 3.
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40

et al. (2017a). Note that these modulations are different from the amplitude modulations within one choru
element leading to the so-called “subpackets™ or “subelements™ (Santolik et al., 2003). However, they stem fro

Orsapu

the same physics; i.e., the spectrum intensity modulation due to the finite frequency width of the wave packet
shown in Equation D2. Nonlinear oscillations, as intensity increases, are accompanied by gradually increasin,
frequency chirping, which can be both up or down. This behavior is consistent with Equation 45 and, despite n
clear falling tone chorus element is observed here, it is also consistent with the recent numerical investigatio
by Wu et al. (2020). Further strengthening of the nonlinear oscillations due to the continuous energy injectiog-

LEY]

in the system by the uniform source S, which is amplified via resonant wave particle power exchange and struc
ture formation in the phase space, breaks the up-down symmetry in the chirping process because of the lack

o6 Sie

symmetry (in frequency) of the linear drive about its maximum (cf. Figure 1) and because of the symmetry break

Udon

ing term in the first line on the right-hand side of Equation D3. Another origin of symmetry breaking in frequenc
chirping is due to the nonuniformity due to the ambient magnetic field (Wu et al., 2020), which, however, i

3q Pa

neglected for the sake of simplicity in the present theoretical analysis. Focusing on the rising tone chorus eleme
beginning at Q ¢ ~ 2,600 in Figure 3, the frequency chirping is well represented by Equation 45 and is fitted b

esyy

the average chirping rate d;wp = 7.5 x 107*Q2. For the somewhat weaker power injection in Figure 4, the chir;

%lﬁ?d

ing of rising tone chorus element beginning at Q¢ ~ 3,000 agrees remarkably well with the average chirping
rate d;wo = 5.3 X 10‘493 as obtained from PIC simulation by the DAWN code in Tao et al. (2017a) and, agai
is visually given by the white dashed line. The average chirping rate dependence on the fluctuation intensit

eaelg 5|q

further confirms Equation 45. The average chirping rate is also confirmed by the instantaneous chirping rate o
the intensity peak given in Figure 5. Noting d;m,/Q2? is starting from negative values, as noted above, is consis

oS’a

ent with the possibility of both up-chirping and down-chirping and, thus, with Equation 45. However, here, w8
cannot observe a clear formation of a falling tone chorus element unlike in Wu et al. (2020), despite the evidenc@
of initial down-chirping. As the rising tone chorus element is clearly formed with the corresponding phase-spacg-
structure, the chirping rate reaches up to its average value as visually suggested by the white dashed line i@
Figure 3. Time evolution of intensity peak Zo(z = 50c¢ /€., 1) and corresponding phase shift Agy(z = 50c/Q,, #
for this chorus element are given in Figure 6 and further clarify the underlying physics. An important conclusion
we may draw from Figure 6 is that intensity grows while Ag, ~ 0; i.e., during phase locking. This behavior is due
to phase bunching of both trapped and untrapped resonant particles, which most effectively drive the chorus wave
packet. The same behavior allows us drawing strong connection with the analogous behavior of energetic particle
avalanches in fusion plasmas (Chen & Zonca, 2016; Zonca et al., 2015b). Meanwhile, the intensity peak takes
place when A, = 7 and resonant particles phase locking is lost yielding the end of the chorus event. This mech-
anism can be viewed as the chorus wave packet slipping over the population of resonant electrons maximizing
wave particle power extraction, and suggests the analogy with superradiance in free electron lasers introduced by
Zonca et al. (2015b) and Chen and Zonca (2016) with regard to energetic particle mode convective amplification
in fusion plasmas. Analogies with the free electron laser were also noted by numerical simulation studies in
Soto-Chavez et al. (2012). That it is indeed maximization of wave particle power transfer (Chen & Zonca, 2016;
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Figure 6. Time evolution of intensity peak Zo(z = 50c/Q., 1) (a) and corresponding phase shift Ag(z = 50¢/Q,. 1) (b) for the rising tone chorus element beginning at g
Q1 ~ 2,600 in Figure 3. 3
S
e
c

(@)

Omura et al., 2008; Vomvoridis et al., 1982; Zonca et al., 2015a, 2015b) that dictates the nonlinear chorus dynam!
ics and frequency chirping is further demonstrated by Figure 7. Figure 7a shows that the nonlinear frequenc
shift, A (z = 50¢/Q,. t), remains small during the whole nonlinear evolution and, in particular, much smaller tha

0°‘a§n Joso

the dynamic range of frequency chirping, consistent with the assumption that each elementary wave constituting,
the chorus wave packet satisfies the whistler wave dispersion relation at the lowest order. Figure 7b, meanwhil

Juw%'

shows a snapshot of A (z = 50c/Q,. t = 2,875/Q,). By definition, at the intensity peak the wave particle poweg:
transfer is maximized; and, since the chirping process is spontaneously triggered by the underlying instabilit

QJE§9|

the nonlinear evolution follows the maximum possible intensity growth or minimum possible intensity decreas;
In fact, it is important to recognize that power transfer is maximized even in the intensity decreasing phase (Che
& Zonca, 2016; Zonca et al., 2015a, 2015b). Another aspect that is clarified by the present approach and is th
issue of “subpackets” or “subelements” (Santolik et al., 2003) formation within a single chorus element. Whi

=15)

qpatie

Figures 3 and 4 display the spectrum intensity only, Figure 8 illustrates the temporal structure of the perpendicus
lar magnetic field fluctuation, 16B I/B,, reconstructed from Equations 7 and 9, for the rising tone chorus eleme

ﬁ(

Hde%q

beginning at .t ~ 2,600 in Figure 3. The formation of subelements is clear, qualitatively, and quantitativel
consistent with the PIC simulation by the DAWN code done with the same parameters in Tao et al. (2017a)%

(b)

9SUDIT SUOWIWOY) dAI3EID) 3]qE3]|

0.50 0.020
0.45 - / / 0.015 , 0015
g
0.40 o
0.010 E L'%“ 0.010
0.35 A N ]
I Q00054
o 0.005 o ;
S 0301 a =
3 | 0.000 roo GEJ 0.000
0.25 ® 3
g g
-0.005 O -0.005
0.20 4 ® Il
&
0.15 4 -0.010 é -0.010
0.10 . ; ; . . . . . -0.015 y
1400 1600 1800 2000 2200 2400 2600 2800 02 04 0.6 08
Qet w/Qe

Figure 7. Contour plot of the nonlinear frequency shift, A (z = 50¢/Q,. 1) (a) and snapshot of A

(z=50c/Q,, t =2.875/Q,) (b).
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Figure 8. Temporal structure of the perpendicular magnetic field fluctuation, 6B I/B, for the rising tone chorus element
beginning at ¢ ~ 2,600 in Figure 3. Formation of “subpackets” or subelements” (Santolik et al., 2003) is clearly illustrated—

T sulluo

fAJeJq|

This evidence supports the corresponding original interpretation provided therein that chorus subelement formaz
tion is to be attributed to the phase modulation and “self-consistent evolution of resonant particle phase-spac

§a|nmo

structures and spatiotemporal features of the fluctuation spectrum,” proposed by O’Neil (1965) when analyzin,
collisionless damping of nonlinear plasma oscillations. These results also clarify that nonlinear oscillations ar

‘&sn o

connected with the width of the fluctuation intensity spectrum and stem from the same underlying physics, a§
noted above. In close connection and consistent with the present analysis, it is important to quote the rece

v

statistical results from Zhang et al. (2020) on observed typical wave packet lengths, amplitudes, and frequenc
variations of rising tone chorus elements. Short packets have been explained by Zhang et al. (2020) and Nun

aplr.fe

etal. (2021) as resulting from trapping-related amplitude modulations for packets longer than about 10 wave peri
ods, and as a result of wave superposition of two well-separated waves sensibly farther than a trapping period f

IE'S

shorter packets. Formation of subpackets in chorus emission was also recently analyzed by Hanzelka et al. (202
adopting the sequential triggering model by Omura and Nunn (2011).

R0

Aq paw

Given the present theoretical analysis and numerical solutions, the explanation of chorus frequency chirping give:
by Omura and Nunn (2011) may seemingly be in contrast with the present results. As anticipated in Section 1, th

oy

reason for frequency chirping was explained as due to the nonlinear current parallel to the wave magnetic fie
(J), which causes a nonlinear frequency shift. More precisely, the physics mechanism underlying chirping is thg’

e@qcﬂe

3iq

sequence of “whistler seeds” that are excited and amplified by wave particle resonant interactions with suprathe
mal electrons. In the present work, the fluctuation spectrum is self-consistently evolved out of a very weak “whit

303

spectrum” source. Each oscillator in the wave spectrum can be characterized by a small nonlinear frequenc
shift (cf. Figure 7). However, the wave packet that spontaneously evolves from the superposition of these osci
lators sweeps upward in frequency to maximize wave particle power exchange. While doing so, self-consistenc
between chirping and rate of change of nonlinear frequency shift should be “locked.” This is visible in Figure 9:

w‘t@og— a/tﬂe

&

where the intensity peak frequency (blue line) of the chorus element considered in Figure 3 is compared wit
the frequency of the corresponding peak of the rate of change of nonlinear frequency shift (red line). Recalling
=(1=-v 0,A

as a function of frequency is glven in

sumrFSu

the discussion preceding Equation D7, the rate of change of the resonant frequency is d,@
A snapshot at Qt = 2,875 of the fluctuation intensity and of the d,w
Figure 9b. Thus, interpreting the “whistler seeds” of Omura and Nunn (2011) as the swinging oscillators in the

res ra gw)

res

wave packet at the intensity peak, one should obtain the frequency increase due to the chorus chirping as
ho= /(1 = Ura()/ Ugwo@))0r Dayyd1',

where integration is to be intended along the red line of Figure 9a. The hence obtained frequency increase is
Aw/Q, = 0.24 over the considered time interval, against the corresponding frequency shift Aw/Q, = 0.21 of the
intensity peak. Such a good agreement confirms the present explanation that reconciles the original interpretation
of frequency chirping given by Omura and Nunn (2011) with the present theoretical analysis.
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Figure 9. (a) Time evolution of intensity peak frequency (blue line) and of the frequency of the peak of the corresponding maximum in the rate of change of nonlinear
Y P q y q y p p g g -

frequency shift (red line) for the rising tone chorus element beginning at Q,¢ ~ 2,600 considered in Figure 3. (b) Snapshot at Q r = 2,875 of the fluctuation intensity an
of the 0w _ as a function of frequency.
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Further to this, and for the sake of completeness, we would like to recall the previous discussion about the form:

0759

tion of subpackets in connection with Figure 8. Recent statistics of 6 years of Van Allen Probes observation
provided by Zhang et al. (2020) have shown that the frequency variation inside sufficiently long chorus wav
packets is generally finite, in agreement with Vomvoridis et al. (1982) and Omura et al. (2008) and the present the:
expression, Equation 45. However, faster frequency variations were found inside very short packets of duratio

O™asn

<30 wave periods. Zhang et al. (2020) explained them as due to trapping effects for relatively high amplitudesz:

Hdfle

or as due to wave superposition for very short packets of moderate amplitudes and duration <10 wave period
Such statistical results have been qualitatively reproduced by numerical simulations (Nunn et al., 2021); an

36 Sve

other previous works have also found some significant wave superposition during observations and simulation
of chorus rising tones (Crabtree et al., 2017; Katoh & Omura, 2016; Li et al., 2011).

& paulane

—

As a final remark, we would like to emphasize that the present theoretical analysis can also address some elemen

m/(

of the recent work by Tsurutani et al. (2020), based on observations using Van Allen Probe data and emphasizin
that each chorus element is made of discrete subelements with constant frequency. Figure 7, in fact, support
that each nonlinear oscillator has a nonlinear frequency shift in the order of a few percent, consistent with obse:
vations by Tsurutani et al. (2020). The discrete steps, which are the essential elements of the rising tone choru
element, are instead beyond the description of the present theoretical study since, by definition in Equation D
we assume the continuous limit to analytically derive the present reduced model for chorus nonlinear dynamic

5\u§’313—e|qeal’tld@ El

Within the same theoretical framework, it would be possible to solve the same equations in discretized for
addressing, thus, the situation described by Tsurutani et al. (2020). This, however, is beyond the scope intende
for the present work and hopefully will be addressed in the future.

5. Summary

9suadIT suoww e

In this work, we have presented a novel and comprehensive theoretical framework of chorus wave excitation,
based on field theoretical methods introduced in Zonca et al. (2017) and in earlier works (Chen & Zonca, 2016;
Zonca et al., 2015a, 2015b). This theoretical framework allows us to self-consistently evaluate the renormalized
phase space response of suprathermal electrons, i.e., the response accounting for self-interactions in the presence
of finite amplitude whistler waves.

We have, furthermore, shown that the renormalized distribution function obeys a Dyson-like equation.
Since our present aim is to investigate excitation and chirping of chorus waves, we further simplify the
Dyson-like equation by taking its velocity space moments and, ultimately, obtain equations for the nonlin-
ear growth rate and frequency shifts of whistler wave packets excited by an anisotropic (bi-Maxwellian)
hot electron distribution function. Based on the structure of the hence derived governing equations, we
analytically demonstrate for the first time that the chorus chirping rate is given by Equation 1, originally
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Figure 10. Diagrammatic representation of chorus chirping consistent

with the “rules” introduced in Figure B1. The renormalized response of
suprathermal electrons, represented by the double solid line propagator, is
unstable and emits and reabsorbs same-k fluctuations, which is the strongest
nonlinear process on long times. Chorus chirping occurs because, at

proposed by Vomvoridis et al. (1982). As argued by Omura et al. (2008)
and Vomvoridis et al. (1982), chorus chirping is due to maximization of
wave particle power transfer, similar to analogous chirping observed in
fusion plasmas (Chen & Zonca, 2016; Zonca et al., 2015a, 2015b). In the
light of present results, chorus chirping can be diagrammatically illus-
trated as in Figure 10. The double solid line propagator represents the
renormalized response of suprathermal electrons, which is unstable and,
thus, nonlinearly emits oscillators belonging to the whistler spectrum.
Emission and reabsorption of the same-k has the strongest cross sectio ¢
(Chen & Zonca, 2016; Zonca et al., 2015a, 2015b). As time progresse
emissions are those that maximize wave particle power transfer and, thu

(sdbn;i’pu

chirping occurs spontaneously.

W\ Uo

The generality of the present theoretical approach goes well beyond th&

subsequent times, different k's maximize wave particle power transfer (Zonca
etal., 2017).

d%l

analytic derivation of (Vomvoridis et al., 1982) result of chorus chirpings

Izt

It provides the insights for reconciling the present interpretation of chorug
chirping with that originally provided by Omura and Nunn (2011). It als
addresses the physics underlying the evidence of a small nonlinear frequencg

Kiergdui

shift compared with the dynamic range of chorus frequency sweeping, as recently noted by Tsurutani et al. (2020

oy

Meanwhile, it illuminates the origin of chorus subelements being the nonlinear phase modulation analogous t
the process introduced by O’Neil (1965).

The present theoretical approach also sheds light on the profound analogies of chorus chirping in space physic

asnu;o sajn.

=3

and similar nonperturbative frequency sweeping modes in fusion plasmas. In fact, the essential common elements
are the narrow fluctuation spectrum of chirping modes that are resonantly excited from a dense background
waves by suprathermal particles, which respond nonperturbatively to maximize wave particle power transfe:
(Chen & Zonca, 2016; Zonca et al., 2015b).

&de saiyre

Last but not least, this theoretical approach provides a direct proof of the one-on-one correspondence o

Neb

chorus chirping with superradiance in free electron lasers, noted first by Zonca et al. (2015b) and Chen an

[LEE)

Zonca (2016). It is also worthwhile emphasizing that the theoretical approaches presented in this work hav

o

interesting possible applications to nonlinear phenomena in high power radiation devices such as gyrotro
backwave oscillators, where they may not only be applied, but also yield in-depth understandings (Chen
Chen, 2012, 2013).

Appendix A: The Chorus Linear Dispersion Relation

17eaJ) 9|qedidde abn?Kq

Here, we briefly derive the liner dispersion relation for chorus fluctuations (Kennel & Petschek, 1966), emphag &
sizing the properties that are used for discussing the nonlinear physics addressed in this work. Reconsider Equa
tions 16 and 20, and cast them as follows:

% U2 [kofo (| _ku) 1 ofo
nwoDy /0w \ Q+ kv — | ® dyy ® ) vy dvuy

_ oQ-w) v1/2 kofo 2 kUu
= T e \atky—o oo =\ fo

where, in the second line, we have integrated by parts in v; and used Equation 6 to make dD,/dw explicit, assum-

Wz, t,w)+il'(z,t,w)

—

95U SUOWIWIOY) BAI

(A

ing @? /w3 < 1 for simplicity (cf. Section 2.2). Using the initial (linear) expression for f; given in Equation 21,
the spatial dependence of density and thermal speeds are connected with the magnetic field nonuniformity by the
condition that f; be a function of constants of motion € = v*/2 and u = v} /2B. The exponent in the bi-Maxwel-

2 2

_&  HB.B [W. Wi
2 2 B, 2 2 |

LLll u’le e LUH wl

lian is then written as
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For this to be constant for arbitrary £ = v?/2 and y = v} /2B, we need to set w; = w;, and w; = {w,,, with {2
=1+ A(l — B/B) =1 + A&Z%/(1 + £z%), as noted below Equation 21. Furthermore, the prefactor in the bi-Max-
wellian is constant only if no/n. = w? /w}, = ¢*. Meanwhile, performing the velocity space integration, it is
possible to write

2
W(z0,0)+iT(z0,0) = "= - [1—(A+1)C2+(A+1)§2 Q- z( ®=Q >
(A2)

nQ \/_|k|LU||L \/§|k|wlle
B Q Z< ®w—Q >
\/§|k|w||e \/Elklwllt’

Here, from Section 2.1, we have recalled n, = {?n, and Z(x) = z~!/2 I_ e /(y — x)dy is the plasma dispersio
function. Noting A + 1 — =2 = A/(1 + £72), Equation A2 can be rewritten as

. _ne(Q_w)2 4 A AQe_(A+l)Cl) w—Q
rEber e = TR [_1+512+ V2Iklwe Z(\/Elkluuw)} @

This expression shows that w/Q, = A/(A + 1) is the frequency where wave particle power exchange with h
electrons changes sign and the driving rate becomes a damping (Kennel & Petschek, 1966). Meanwhile, Equ
tion A3 also shows that W(z, 0, w) and I'(z, 0, w) scale as {*. Thus, recalling from Section 2.1 that {2 =1 + A&z
(1 + &£z2), the length scale of the hot electron contribution to the chorus dispersion relation is ~(A&)~2, whic

@ogupuo:

0A3IM uo (s

Jo;\mﬁq@vau”u

Sin

already at moderate values of A, rapidly takes over the nonuniformity due to the ambient magnetic field, th
is B = B,(1 + &%) (Helliwell, 1967), as illustrated in Figure 1. This suggests that formal simplification can b

fos

@98n

achieved in the analytical investigation of chorus nonlinear dynamics, addressed in this work, by assuming a nonug
niform source of hot electrons, localized about the equator, neglecting, meanwhile, magnetic field nonuniformit

Vﬁ

As noted in Section 2.1, this assumption, although not strictly necessary, helps simplifying the analytical deriv
tions in this work; and can be formally obtained for A > 1. In fact, as noted above, the ~(A&)~"? length scale i

Emffz

the hot electron nonuniform response takes over the magnetic field nonuniformity already at moderate values of

Appendix B: The Dyson-Schwinger Equation Approach
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Here, we elaborate the Dyson-Schwinger equation approach presented in Chen and Zonca (2016) and Zon
et al. (2015b), with the applications to magnetized fusion plasma presented therein, specializing it to nonline

dde gq;

dynamics and phase space transport by chorus emission.

geol|

The “Dyson-like equation” terminology, by analogy with the earlier work by Al’'Tshul’ and Karpman (1966), w.

{=~}

introduced by Chen and Zonca (2016) and Zonca et al. (2015b) as a tribute to Freeman J. Dyson, who recent
passed away (https://en.wikipedia.org/wiki/Freeman_Dyson). The Dyson-Schwinger equations, as equations

18e15 o

OAl

motion of Green functions, provide a complete description of the theory (Dyson, 1949), since they describe thé
propagation as well as interaction of the fields themselves. From this point of view, Dyson-Schwinger equation:
and Equation 33 as a particular case, can be used to generate perturbation expansions in the weak field limit, ¢
Figure B1b, but can also be adopted for the more general strong-coupling case.

(a) (b)

OF 1 SF 1, Lk SE.) SELk

)/ *—»—0—&—&—&—

fo fo fo fo
5ELk/‘

asuadI] suolmuSD

fo fo 5fy

Figure B1. (a) Diagrammatic representation of the elementary processes of Equations 32 and 33. (b) Diagrammatic
representation of the renormalized fj hot electron response as solution of the Dyson-like Equation 33.
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The elementary process that underlies this dynamics is illustrated in Figure Bla, where we have borrowed and
suitably modified the Feynman diagram rules as in Chen and Zonca (2016) and Zonca et al. (2017) to illustrate
Equation 32 and its reverse. In particular, straight lines represent linearized propagators (Green functions) of
particle distribution functions, while wavy lines stand for linearized propagators (Green functions) of fluctuating
electromagnetic fields. Arrows indicate the direction of propagation. Meanwhile, nodes represent (nonlinear)
interactions/couplings. Furthermore, because of energy and momentum conservation in particle and electromag-
netic fields field interactions, propagation of fields is equivalent to the opposite propagation of corresponding
complex conjugate fields (Zonca et al., 2015a). For example, emission of § E; corresponds to absorption of 6 E

s

k
because of symmetry under parity and time reversal transformations. Thus, the left node (vertex) in Figure B1§ ¢

represents (the c.c. of) Equation 32; while the right node (vertex) represents the first two lines of Equation 3

!ﬁﬁu

In the present theoretical approach, emission and reabsorption of § E; and 5E* can occur repeatedly. Here, b
emission we mean “generation of waves” because of the instability driven by the spatially averaged electro

&(s

distribution function fo. Meanwhile, by reabsorption we intend to mean the “nonlinear interaction™ of electro.
magnetic fluctuations with the perturbed electron distribution function that modifies fy itself. This is illustrate

/(@[IN\ u

in the upper part of Figure B1b in the form of a Dyson series, and dominates the nonlinear dynamics since i
can be shown to cause the most significant distortion of fy on the long time scale (Aamodt, 1967; Al'Tshu
& Karpman, 1966; Balescu, 1963; Chen & Zonca, 2016; Dupree, 1966; Mima, 1973; Prigogine, 1962; va
Hove, 1954; Weinstock, 1969; Zonca et al., 2015a, 2015b, 2017). Such a distortion of the hot electron distributio
function, determined self-consistently in the presence of the finite amplitude fluctuation spectrum, constitutes th
“renormalized” hot electron response, denoted with the double solid line in Figure B1b. It is this renormalize

@Jqﬁ SUHUD

neI0P A

hot electron fo, which is evolving in time, that self-consistently causes the evolution of the fluctuation spec
trum according to Equations 11-16 and as illustrated in the lower part of Figure B1b. Equation 33, meanwhil

asn-?o 3|

is a nonlinear integro-differential equation and can be used to close the chorus wave equations discussed i
Section 2.1. In fact, it describes the response of the k = 0 hot electron distribution function by continuous emis

VO

sion and reabsorption of whistler waves, shown in Figure B 1b, which are amplified due to wave particle resona
interactions. Again, we note that this emission and reabsorption occur with any generic whistler wave pack

1€ sSpnde

as denoted by the summation over the whole fluctuation spectrum, which is evolving in time self-consistentl
with the k& = 0 particle distribution function. In this respect, as noted already, Equation 33 can be viewed as t
renormalized hot electron distribution function evolving on the nonlinear time scale, which justifies dubbing it a
Dyson-like equation (Chen & Zonca, 2016; Zonca et al., 2015a, 2015b).

Appendix C: Detailed Derivation of Equations 37 and 38
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C1. Derivation of Equation 37

In this appendix, we briefly summarize the derivation of Equation 37 from Equation 27 based on Equations 3
and 36. For consistency with Section 3, we also denote the current frequency and wave number satisfying the,

f130/qe0)

lowest order whistler wave dispersion relation as @ and k in order to distinguish them from w and k in the runnin
summation over the fluctuation spectrum. Formally, we can rewrite Equation 27 as

-1

_ _ 2 [ _
W) +il(®) = ’; <1 - ”"”) <7*Q [Qc + kvy — @ — i(1 — vra/ Vga)O1]

Ugar

x (@i - 3%><a,+vua> 0+ 0y0- )fo>
wav” v: W

where, for brevity, we have omitted the dependences on 7 — z/v,e. From this, upon substitution of Equation 33

a

s3I suowwogfal\l

and noting Equation 36, we have
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To derive Equation 37, the last step is to integrate by parts twice in v, in order to eliminate d,,, taking into accoung ;

that >
Q .

3 Z

~ v? f 0 ? % ;

<Uif0>zzg’ (ng;‘:é

<f0> o =

22

for the anisotropic Maxwellian of Equation 21. E 9

i

o

(==

C2. Derivation of Equation 38 = g
a3

Velocity space integration in Equation 37 is naturally (and more rigorously) performed in the Laplace-rather thai E

in the time-representation (Chen & Zonca, 2016; Tao et al., 2020; Zonca et al., 2015b, 2017). Here, however, fi %3

©

the sake of simplicity and conciseness, we directly manipulate Equation 37 in the time-representation formallg =

. . S . ®

handling operator symbols. Let us first note, considering Equation 35 oN

5%

Q k D — 1 - 2 =12 20 - E

[Qe+ koy =@ —i(1 = v /vea)0] T = |(Qe+kvy— @) + (1 = Vo /V0)0; 08

X [Qe + kvy — @ + i(1 = Uy /0g0)] (C43 8

[=E)

_ S =

~ [+ "[x +ial, =3

25

2o

having denoted symbolically x = k(v — v,e)and a = (1 — v/ Vg0)0:. Here, a as an operator is meant to be actin® 9

on |6 Ez| and what follows in the representation of the integrand, that is |6 £,|? and fo. In fact, in the derivation é

of Equations 20 and 25, we have normalized the wave particle power exchange to |5 Ez|?. Thus, the nonlinear S

frequency and wave number shift due to the incremental change in the wave packet amplitude and phase are reab- %_

sorbed into k(v — vye) as will be further discussed in Section 4. We can adopt the same symbolic representation -g

for Equation 36 and, thus §
=]

[(Qe + ko = @) + (1 = 070/ 050V 02] (1 = r/0g)Os = [(x = x0)* + 5] ', (C5) %

g

where xo = f‘) — @ _AU’“’(k —k)~(1- Urep [ Vgow)(@ — @) and b = (1 — vm,/vgw)dt as an operator is meant to be E

acting on |6 E | and fo. Meanwhile, for resonant particles, we note that, for Rea > 0, Reb > O and |a|, |b|, |xo| < 1 E
[a)

3

=

o
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[+ al(x—x0? +82] b = (x/2)[x2+(a+bY] (a+b)(5(x) + 6(x — x0))
. (C6)
—(x/2)[x2 + (@ = 7] (@ = ) (6(x) = 6(x = x0)).

inside the velocity space integrand; and

[x2 + az]_]x[(x —x0) + bz]ilb ~ (z/2) [x(z) + (a+ b)z]ilxo (6(x) + 6(x — x0))

~
@)
<
»

~(2/2)[x2 + (a = 5] x0 (8(x) — 6(x = x0))..

wo1}Ipuo

while those depending o
O(x — x,) are computed at vj = v,. We can further simplify these expressions noting that, for a narrow spectru

r’

Terms depending on 4(x) in the velocity space integrand are computed at vy = v

é(s
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contributions « (6(x) — 6(x — xo)) can be neglected. Furthermore, the symbolic expression of (a + b) can also b
simplified noting assumption (a) in Section 3 and, thus

INPU

(a+b)

1

|6E_k|_3f0_l(l - Urw/Ugw)ar|5Ek|3f0

HOEx|™ 5 (1 = vr/ Ug0) U S E] fo

o)
Méd”qn auljuQ As1

14

206Ed2f5' (1 = o/ Ug) Ot S Ex|* fo.

0=Se|m 10}

Again, these symbolic relations are more rigorously interpreted in the Laplace-rather than the time-representatio
(Chen & Zonca, 2016; Tao et al., 2020; Zonca et al., 2015b, 2017). Interested readers are referred to the origin
references for more details.

ﬁ;

Based on these relations, one can derive Equations 38 and 39, where we have noted that

J 1 J

1
; dUrw h (1 - Urw/Ugw) 5’

a

6 e:?sapgue VO ‘as

UJBAO

justifying the usefulness of introducing the normalization of W and I as in Equation 27 in Section 2.2. The pres
ence of the integral operator
_\2 -1
(0 — @)
402

o33 Aq pa

+ Q%07

a

is what allows us to neglect the nonresonant particle response (Cauchy principal value) in the derivations abov:

@Aneao 9ieoydd

Appendix D: Evolution Equations for Numerical Solution of the Reduced Dyson-Lik
Equation

To exploit the dense nature of the whistler wave spectrum, we introduce the dimensionless intensity Z(w) suc
that

— 95U3adI7 SUBWWO)

E

<<wtr )) 2 [ do /2
Z - _%/ Q. I(a))(Q w)?

Here, the /2 /(Q. — w)*/* factor accounts for the ~I k* scaling 0f< (w:‘rk> > This normalization is chosen ad hoc
to have nonlinearity effects being important when Z (@) ~ O(1).

To invert the integral operator of Equation C10, let us introduce the auxiliary functions
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, . ) )
— 1
(0= 0) + Q20| Gri(w, @) = 72 L@
L 493 1_ Q(Z, (1 - U’w/Ugw)4
L - ] 2
— e 1
% +Q20%| Gro(w, @) = é%
[ i 1 ¢ — Urow/ Vg
(oo — 72 I(w
% +Q;%20?| Gnpi(w, @) = y_z#“
= 49(’_ ) E {221» (1= ;rw/Ugw)
M + Q%207 | Gya(w, @) = y_"z#“
4Q; ] Q2 (1 = Vyo/Vgo)

I:L(CU),

(@),
D2) %
INION

Tne(@);
where, from Equation 39

_ 202 ) 32
M@ = |el-—%_(1-te)lql fdo_or _
o k2 <Ui> Vgar 007 Qe (Q, — w)*?

1
Xg [GLi(w,®) + Gra(w, @) + Gnri(@, @) + Gyz(w, @)] .

5]

Meanwhile, Equation 38 can be cast as

GloWw@ = |Q.

0 202 | _ U 0 ,dw w3/? (w — @)
9o k2 (v?) 007 Qe (Q.—w)? 29

1
X3 [GLi(®, @) + Gra(®, D) + GNLi(@, @) + Griz(@, @)].

Vg

(=]

Equations D2-D4 are closed by the intensity evolution equation,

Q;‘d,l(w) = 251((0)]/2+21( )a)(Q—w) [(3;( e, t€4 /) >l—~(w)

2
+</ RSE )afr(a»] (l—”"");
Vgo

(5]

and the wave packet phase evolution equation

2 ’
Q' dpw) = _—“’(Q”Q;“’) [a, (/zfuw,€4(z')‘f—z> W (@)

2
+</” e ')—)@W(w)}/( ”—“)
sw! Vgw

which can be readily derived from Equations 11 and 14 keeping in mind the discussion given in the first par:
graph of Section 3. Note that we have added a source term 257 ()" on the right-hand side of Equation D5. Th&
value of S represents the injection rate of fluctuations in the |8 E;| spectrum. We adopted it because it gives u

d&e ay3 Aq pausanob e;e?sa|3g119 VO ‘9sn jo se|$ 104 Areaqry suluo Aaﬁ’m uo (suonipuod

=]

510 ajqeo)|

a variety of possibilities rather than assuming an initial spectrum; e.g., using S as a random source stirring th
system or a constant uniform source. Figure D1 gives a comparison of the linear evolution of Z(z = 50¢ /., t,

wioy aMme

Tsu%

in the case of a random (a) and uniform source (b) of the same strength S = 2 x 1075, Parameters are the same aj
in Figure 1. In both cases, we clearly note the predominance of a narrow spectrum at the most unstable frequenc

strod|

after the whistler wave packet has been convectively amplified by crossing the localized hot electron source at th®
equator. Because of this, we will focus on the uniform source case in the following, and discuss random or more
general sources in later studies. Equations D2-D6 fully characterize the self-consistent nonlinear evolution of a
whistler wave packet spectrum excited by wave particle resonances with a hot electron source that is localized
about the equator. As anticipated in Sections 2.2 and 3, they assume that the whistler wave packets belong to a
dense (nearly continuous) spectrum that are continuously emitted and reabsorbed (cf. Figure B1 and correspond-
ing discussion) to maximize wave particle power transfer (Chen & Zonca, 2016; Zonca et al., 2015b). When
solving these equations by advancing them in time by one step Az, one has to keep in mind that the wave packet
amplitude and phase are shifted nonlinearly and cause hot electron induced frequency (A(A,) = —At9?p(w)) and
corresponding wave number shifts, introduced in Section 2.2. Despite A /A, = v,,. and, thus, the shifted wave
packet still satisfies the whistler dispersion relation, the hot electron induced phase shift causes a corresponding
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Figure D1. Contour plot of the linear evolution of Z(z = 50c /., t, @) for (a) a random source and (b) a uniform source of the same strength S =2 x 107 in §'
Equation D5. The position is fixed at zQ /¢ = 50 and parameters are the same as in Figure 1. 3
-
o
small but finite shift in the resonant velocity kAv,, = A — v, A, = (1 — v, /v, )A,. This means that, afteg

(b)

_ . ro " gw
advancing in time by one step At, the functions I'x; and Wy are actually evaluated at @ + A(A,). Thus, notin
Equation C9, these functions have to be updated as

‘asn ;@fse|

Fy@) — FNL@)—A(AQ)%FNL@),

S

= _ = _ 0 = _
Wni(@) — Wni(@)— A(Aw)ﬁ WiL(®).
A similar argument applies to Z(w) and ¢(w), such that

Io) = 1@ - AR = 1),

>
qeougde El /{qor'bau.la/\oﬁ ale sapg;?'e YO

PO) = (@) = Ad) = p(o);

after each time step. Note that Equation D8 corresponds to changing d; — d; — 92¢(®)d,, on the left-hand side
Equations D5 and D6; i.e., to solving the wave kinetic equation (Bernstein & Baldwin, 1977; McDonald, 19888

for wave packet intensity and phase. i
Z

Considering I (w) = 0 together with ¢(w) = 0 at ¢ = 0, initial conditions for Equation D2 are particularly simplé
3

G(CO, a_))lt:O = Os g

_ (D93,

atG...(w, w)lt:O = 0’ o

3

o

where, for brevity, we have generically denoted by ... the subscripts of G (@, ®) functions defined in Equa
tion D2. Furthermore, for Equations D3 and D4

FNL(w)],=0
WNL(CU)I’=O = 0.

0,

(D10)

Finally, considering a frequency domain such that the fluctuation spectrum at the boundary is sufficiently small
that it can be neglected, boundary conditions are the trivial ones; i.e., G._(w, ®) functions, I'y . (w) and Wy (@)
vanish at any time. However, more realistically and to avoid undesirable discontinuities at the boundary of the
frequency simulation domain, we assume that values at the boundaries are obtained by linear extrapolation of the 3
inner solution.
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