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ABSTRACT
We present our blind prediction of the toluene–water partition coefficients in the context of the SAMPL9 challenge. For the calculation of
the solvation free energies in water, toluene, and 1-octanol, we used an efficient MD-based nonequilibrium alchemical technique relying on
the GAFF2 non-polarizable force field. The method is based on the fast-growth of an initially decoupled solute. Canonical sampling of the
associated end-state is efficiently obtained by performing a Hamiltonian replica exchange simulation of the gas-phase solute molecule alone,
combined with equilibrium configurations of the solvent. Before submitting the prediction, a pre-assessment of the method and of the force
field was made by comparing with the known experimental counterpart the calculated octanol–water partition coefficients using different set
of atomic charges. The analysis allowed to optimize our blind prediction for the toluene–water partition coefficients, providing at the same
time valid clues for improving the performance and reliability of the non-polarizable force field in free energy calculations of drug-receptor
systems.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0143824

I. INTRODUCTION

The Statistical Assessment of the Modeling of Proteins and
Ligands (SAMPL) is a well-established international initiative for
advancing the computational techniques in drug design.1–5 New
experimental data, such as host–guest dissociation free energies,
hydration free energies, acid–base dissociation constants, or parti-
tion coefficients, are undisclosed to participants until the prediction
submission deadline so that the true predictive power of methods
can be assessed.

In modern methodologies based on atomistic molecular
dynamics (MD) simulations,6–11 SAMPL challenges are aimed to a
two-fold scope, i.e., that of testing the accuracy of the physical model
or “force field,”12–20 often leading to systematic errors, and that of
assessing the reliability of a computational procedure or protocol,
likely producing random errors. In the latest SAMPL9 challenge,21

participants were required to predict the toluene/water partition
coefficients, LogPtw, for a series a compounds with disparate flexibil-
ity or molecular weight and coarsely spanning a significant portion

of the “drug-like” chemical space, including moieties such as car-
boxyl, carbonyl, sulfonic, oxydryl, amino, amide, halogen, phenyl,
hetero-cyclic, and alkyl (see Fig. 1). Given that the drug–receptor
binding affinity is implicitly driven by the difference of two sol-
vation free energies, namely, that of the drug when bound to the
receptor and that of the drug in bulk solvent,22–24 the capability of
accurately predicting partition coefficients, strictly related to solute
transfer free energy between the two solvents, is an essential require-
ment for applying any methodology to the challenging case of drug
design.

Partition coefficients are generally computed using very
efficient knowledge-based (KB) empirical techniques, such as
XlogP3,25–27 or using ab initio (QM) approaches mixed with trained
parametric models for the polarization continuum, as in the Consor-
tium for Small Scale Modeliing (COSMO)28 or the solvation model
based on density (SMD)29 implicit solvation models. In SAMPL
challenges, these approaches generally outperform30,31 much more
costly MD methodologies, based on the explicit representation of
the solvent to account for micro-solvation phenomena and largely
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FIG. 1. Compounds for the SAMPL9
blind challenge for toluene/water parti-
tion coefficient.

relying on the so-called alchemical protocol.6,7,32 However, when
the KB methodology or QM-based techniques are applied to the
calculation of host–guest or drug–receptor binding affinities, their
performances are significantly degraded.3,5 On the contrary, the reli-
ability of the MD-based approaches is much less affected when
passing from LogP predictions to drug–receptor or host–guest bind-
ing affinities calculations,33–36 systematically resulting, in this last
case, as the best performing methods.3,5 Apparently, as demon-
strated in SAMPL challenges, QM or KB methods are presently
unable to effectively cope with the heterogeneity of the solute envi-
ronment in the calculation of the solvation free energy of a host-
bound solute. Hence, testing an MD-based approach on a LogP blind
prediction involving bulky and flexible compounds with diverse
chemical groups is important since a successful protocol in this
context has a good chance to produce reliable predictions when
transferred to the more challenging case of drug–receptor binding
affinities.

Most of the MD submissions in SAMPL challenges are based on
the well-established alchemical approach, whereby the free energy
between the two end-states (solvated solute and gas-phase solute)
is recovered by setting up a so-called λ stratification of n interme-
diate non-physical states where the interaction between the solute
molecule and the explicit solvent molecules is progressively decou-
pled via the alchemical parameter λ.6,37 The n intermediate states

at the fixed coupling parameter λ are chosen so that the potential
energy distributions of contiguous λ states have a significant over-
lap,6 allowing the calculation of the solvation free energy as a sum of
n − 1 individual free energy contributions along the λ-stratification
by way of free energy perturbation38 (FEP). FEP is an equilibrium
technique requiring canonical sampling on the end-states and on
each of the intermediate λ states. For flexible compounds with many
rotatable bonds and high torsional barriers, canonical sampling can
be problematic especially when dealing with solute molecules that
are characterized by a complex conformational landscape, requir-
ing long simulations whose convergence depends in an unknown
way on the level of the λ coupling parameter.39–41 In such cases,
it may be necessary to combine the λ-stratification approach with
costly enhanced sampling techniques, such as Hamiltonian Replica
Exchange41,42 (HREM).

In Refs. 33 and 34, we have recently analyzed and discussed the
reliability of unidirectional or bidirectional nonequilibrium tech-
niques (NE) in the calculation of solvation free energies. In the
alchemical NE approach, the end-states are connected, rather by
a stratification of equilibrium states, by a swarm of fast NE inde-
pendent trajectories (initiated from canonically sampled end states)
where the solute–solvent coupling parameter is continuously var-
ied. The solvation free energy is recovered from the NE work data,
exploiting the Crooks theorem43 via the Bennett acceptance ratio44,45
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(BAR) if the NE transitions are performed in both senses or using the
Jarzynski theorem46 or the Gaussian assumption47,48 if the NE trans-
formations are conducted in one sense. Unlike in FEP, in the NE
variant of the alchemical approach, canonical sampling is required
only at the end states. This is a huge advantage with respect to FEP,
especially if the NE transformations are performed only in the direc-
tion of the fast growth (NE-FG), i.e., starting from an end-state
where the solute is completely decoupled from the solvent. In this
case, canonical sampling can be reliably and cheaply obtained by
performing an enhanced sampling of the gas-phase solute molecule
alone, combined with equilibrium configurations of the solvent.

In this paper, we present our blind predictions on LogPtw for
the 16 compounds shown in Fig. 1 proposed in the latest SAMPL9
challenge. Given the expected confidence interval for the NE-FG
method,33,34 the availability of experimental LogPow

49 provided the
opportunity to attempt to disentangle the systematic error due to the
force field (mostly affected by that due to the fixed-charge represen-
tation50) from the methodological error, hence improving our blind
prediction for the SAMPL9 LogPtw. Our submission had a good
ranking among all submitted blind predictions (mostly based on
empirical or QM methodologies), revealing as the best-performing
and, at the same time, most efficient approach among the MD-based
submissions.

II. THEORETICAL ASPECTS
The theory of NE alchemical variant for the calculation of sol-

vation free energy in the context of LogP determination is described
in full detail in Ref. 33 for the bidirectional, BAR-based approach
and in Ref. 34 for unidirectional methodologies. Here, we sketch
out the crucial methodological aspects of the latter with emphasis
on the expected accuracy and precision and on efficiency. Unidi-
rectional methodologies imply that the NE alchemical transitions
are performed in one sense, i.e., recoupling an initially decoupled

FIG. 2. Scheme for NE-FG calculation of the LogP: NE-FG transitions are done
from left (equilibrium state of the ghost solute in the solvent to NE state of the fully
coupled solute in the solvent).

solute molecule in the solvent or decoupling an initially fully inter-
acting solute in a swarm of independent fast-growth trajectories
with a common time protocol. Both these NE processes must be
started from a canonical sampling of the initial end-state, ending
in a nonequilibrium sampling final end-state. In the annihilation
direction, one needs to prepare a canonical sampling of the solvated
compound, a task that for flexible and bulky solutes, such as those
of Fig. 1, may require the usage of HREM on the full system. In the
growth sense, the initial equilibrium states can be prepared by sam-
pling the conformations of the isolated (gas-phase) molecule using
HREM and then by combining such gas-phase configurations with
equilibrium configurations of the pure solvent. This approach has
the advantage to apply the HREM to a single molecule system with
a very limited computational cost, while a single ordinary MD sim-
ulation can be used for the sampling of the solvent configurations
to be combined with the HREM sampling of any given solute. The
fast-growth procedure for the calculation of the LogP is illustrated
in Fig. 2. For each NE-FG trajectory in a given solvent, the externally
driven λ parameter does on the system the work W = ∫ τ

o
∂H(λ)
∂λ λ̇dt,

where τ is the duration of the NE trajectories. The corresponding
solvation free energy ΔGs is then computed from the work histogram
values using

ΔGs = ⟨W⟩ − σ2

2RT
, (1)

ΔGs = −RT ln⟨e−W/RT⟩ + BJ(n, σ), (2)

where T is the temperature and R is the gas constant. Equa-
tion (1) is valid and exact if and only if the work distribution
is normal and can be straightforwardly proved using the Crooks
theorem.47,51 If the distribution is non-Gaussian, Eq. (2) must be
used. The latter is based on the Jarzynski exponential average plus
the bias correction BJ(n, σ) due the finite size of the work sam-
ple.52 Whenever normality of the work distribution can be reliably
assumed, Eq. (1) provides an unbiased estimates of the solvation
energy and should hence be preferred to the Jarzynsky-based esti-
mate [Eq. (2)]. For work samples with n ≥ 100, normality can be
ruled with 95% confidence if the quantity A2 of the Anderson Dar-
ling (AD) test is larger than 0.752.53,54 A probability exceeding 50%
from the p-value55 associated with AD that the distribution is nor-
mal is obtained when A2 ≤ 0.34. Given a n value work histogram
with variance σ2, the bias BJ in Eq. (2) can be estimated by sam-
pling n values from a normal distribution 𝒩 with the same variance
and zero mean and by comparing the exact value for the associated
free energy, ΔG𝒩 = −βσ2/2, with that obtained from the exponen-
tial average on the normally distributed n points with σ2 variance,
ΔGJ(n, σ) = −RT ln( 1

n∑i∈𝒩 e−βWi), yielding the bias as Bj(n, σ)
= ΔG𝒩 − ΔGJ(n, σ). In the assumption that the initial sampling of
the fast-growth process is canonical (see Fig. 2), the parameters
affecting accuracy and precision of the method are the number of
NE-FG trajectories and the time duration τ of the NE-FG trajecto-
ries, related to the resolution of the work distribution entering the
solvation free energy. In the contour plots of Fig. 3, we show the con-
vergence of the solvation free energy for the SM02 molecule in water
(left) and the SM13 molecule in octanol [computed with Eq. (1) or
Eq. (2) depending on the character of P(W)] as a function of τ and
of the number of sampled work values.
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FIG. 3. Convergence of NE-FG solvation free energy of in SM02 in water (left) and of SM13 in octanol as a function of τ [time duration of NE-FG trajectories and n (number
of NE trajectories or work values)].

The work data were taken from Ref. 33. The green arrow on the
z-scale indicate the reference value computed with BAR using 480
trajectories lasting 2.6 ns. The rectangle marked with a green grid
corresponds to a plateau where the solvation free energy estimate is
basically constant and coincident with the BAR reference value. We
can see that NE-FG estimates of then solvation free energies for these
two molecules are already close to the reference value for n = 100 and
τ = 450 ps for SM02 in water and for n = 100 and τ = 600 ps SM13
in octanol.

Finally, LogPab is computed from the difference of the solvation
free energies of the solute in the two solvents a, b as

LogPab = log
[a]
[b] = −

(ΔGa − ΔGb)
RT ln(10) . (3)

III. METHODS
The starting structures for the solute was prepared with Open-

Babel, by converting the SMILES code to a PDB file, using the
–gen3D option.56 OpenBabel creates first a non-optimal structure
using fragment templates followed by a steepest geometry opti-
mization with the MMFF96 force field.57 Fixed atomic charges in
our blind submission are readily computed on the OpenBabel-
generated structure at the popular AM1-BCC level with the prospect
of an easy and automatable implementation of our NE-FG pro-
tocol for LogP and host–guest predictions. We used the GAFF217

force field for the compounds of Fig. 1 and for the 1-octanol and
toluene solvent molecules. The force field assignment and AM1-
BCC charges were obtained from the web tool “PrimaDORAC”19

(www1.chim.unifi.it/orac/primadorac). Given the sensitivity50 to
atomic charges of the solvation free energies, we tested two sets
of atomic charges for the solutes, namely, the AM1-BCC charges58

from PrimaDORAC and the Electrostatic Potential charges (ESP)
computed at the HF/6-31Gd level according to the Merz–Kollman
scheme with dipole restraint.59 For water, we used the OPC3
model.60

We must warn that the choice of the initial 3D structure for
fixed atomic charge determination may have a non-negligible impact
on the finally accuracy. In this respect, iterative refitting or adap-
tive parameterization of the atomic charges based on the gas-phase
and bulk conformational sampling may be of help in the selection
of the best conformation-dependent fixed atomic charges, as shown
in a recent SAMPL challenge study.61 However, part of the empha-
sis on the present sample LogP challenge was on the benefit/cost
ratio. Participants were, in fact, required to provide details on the
computational resources used for their predictions. Smart adaptive
methodologies for optimization of 3D-dependent atomic charges,
such as those described in Ref. 61, are expensive and system depen-
dent and, hence, are not suited for low-cost automatable screening
protocol in drug design.

HREM of the gas-phase of the solute in the NVT ensemble62

at 300 K was done by scaling only the potential energy of the iso-
lated molecule with a minimum scaling factor of 0.1, corresponding
to a “temperature” of 3000 K using eight replicas with scale factor
progression63 given by cm = c(m−1)/8, m = 1 . . . 8. HREM simulations
lasted 8 ns, collecting 96 solute conformations on the target state
(T = 300 K).

Pure solvents were equilibrated in the constant temperature
constant pressure ensemble (NPT) ensemble for 1 ns with P = 1
atm and T = 300 K, imposed via a Parrinello–Rahman Langrangian
with isotropic stress tensor64 and Nosé thermostats coupled to the
translational and internal degrees of freedom of the system. 96 con-
figurations (to be combined with the decoupled 96 configuration
of the solute) were collected in the following 1 ns of production
run. Solvents were simulated in cubic boxes under periodic bound-
ary conditions (PBCs) with 1728 for water, 343 for toluene, and
216 for 1-octanol, yielding a mean side-length of 37.43, 39.38, and
38.62 Å for water, toluene, and 1-octanol, respectively. The calcu-
lated densities for 1-octanol and toluene were 0.81 g/cm3 (experi-
mental value 0.82 g/cm3) and 0.86 g/cm3 (experimental value 0.87
g/cm3), respectively. The density of OPC3 water was 0.992 compared
to the experimental value of 0.997.
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The (n = 96) NE-FG simulations, starting from the canonical
sampling obtained by combining the HREM gas-phase configura-
tions of the solute molecules with that of the pure solvent, were
launched in the NPT ensemble. The λ alchemical coupling para-
meter was switched on in τ = 450 ps for toluene and water and in
600 ps for 1-octanol, according to a common protocol whereby the
Lennard–Jones interactions were first turned on using a soft-core
regularization65 in 300 ps for water and toluene and in 390 ps for
1-octanol, followed by the electrostatic interactions in the last 150 ps
for water and toluene, and in the last 210 ps for 1-octanol. The choice
of n and τ for the parameters in the NE-FG runs was dictated by the
results on past SAMPL challenges on drug-like molecule, as shown
in Fig. 3.

In all simulations, the equations of motion were integrated
using a multiple time-step r-RESPA scheme64,66 imposing con-
straints only on the X–H bonds with X being any heavy atom. The
long range cut-off for Lennard–Jones interactions was set to 13 Å in
all cases. Long range electrostatic were treated under PBC using the
smooth particle mesh Ewald method,67 with an α parameter of 0.38
Å−1, a grid spacing in the direct lattice of about 1 Å, and a fourth
order B-spline interpolation for the gridded charge array.

The NE-FG calculations were run on the CRESCO6 cluster68

using the ORAC program.69 For the calculation of a solvation
energy, the associated parallel job engaged 576 cores (96 MPI process
each using six OpenMP threads) lasting about 1.5 and 2 wall-time
clock hours for water/toluene and 1-octanol, respectively.

IV. RESULTS AND DISCUSSION
The SAMPL9 challenge calls for the prediction of the

toluene/water partition coefficients of the compounds of Fig. 1 for
which no experimental results were available. Given the sensitivity
of solvation free energies to the selected atomic charges in non-
polarizable force fields,50 before submitting our prediction, we made
a pre-assessment of the NE-FG performance with the GAFF2 atomic
types force field on the LogPow coefficients (for which experimental

data are available from the PUBCHEM database49) using two sets of
atomic charges, namely, (i) the AM1-BCC charges, consisting in the
Mulliken charges computed using the semiempirical AM1 method70

plus a bond-charge correction tabulated in Ref. 58, and (ii) the ESP
charges computed at the HF/6-31Gd level. Both these approaches
are widely adopted in free energy calculations based on fixed-charge
force fields

In Fig. 4, we report the mean unsigned (MUC) and signed
charge (MSC) difference between the AM1-BCC and HF/6-31Gd
charges averaged on all the atoms in the SAMPL9 compounds
belonging to a given atomic GAFF2 type. Atoms belonging to the
same atomic type are characterized by a common chemical envi-
ronment and are hence expected to bear similar charges. Hence,
when MSC is positive, it implies that the HF/6-31Gd average charge
for that atomic type is systematically lower than the corresponding
AM1-BCC charge. On the other hand, where the difference was ran-
dom within a given atomic type, we should see MSC close to zero
and MUC of the order of the mean unsigned deviation between
the two sets of charges. In some cases, MUC and MSC are signifi-
cant (>0.2 e) and almost coincident, indicating that the HF/6-31G
charges are systematically more negative with respect to the AM1-
BCC counterpart. This occurs, in particular, for the nitrogen atoms
in aromatic systems, in amino and amide groups, bearing, in gen-
eral, a much more pronounced negative charge when ESP charges
are evaluated at the HF/6-31Gd level. For the carbonyl carbon, MUC
and MSC are similar in magnitude but with opposite sign MSC,
implying the HF/6-31Gd charge is systematically more positive with
respect to the AM1-BCC charge. In general, we may say that when
using the HF/6-31Gd, we observe a higher charge separation within
the molecule. We may therefore expect that the solvation free energy
is affected by these differences in the two sets of charges in manner
that depends on the polarity of the solvent.

In Tables S1 and S2 of the supplementary material, we report
the detailed results for the NE-FG-computed solvation free energy
estimates in the three solvents for the compounds of Fig. 1 using
the AM1-BCC atomic charges and the HF/6-31Gd ESP charges,

FIG. 4. Mean signed MSC
= ⟨qam1−bcc − q6−31Gd⟩type and
mean unsigned charge difference
MUC = ⟨∣qam1−bcc − q6−31Gd∣⟩type in
electron units for the GAFF2 atomic
types of the compounds of Fig. 1. MUC
and MUE are averaged over all atoms
belonging to a given GAFF2 atomic
type.17
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respectively. The reported estimates in Tables S1 and S2 are based on
Eq. (1) if A2 < 0.34, implying a p − value > 50% (i.e., the null hypoth-
esis referring to the normal distribution is true with a probability
exceeding 50%), and on Eq. (2) otherwise. The errors (95% confi-
dence interval) have been computed by bootstrap with resampling
from the 96 work data.

In Fig. 5, we show the differences in the solvation energy with
the two sets of charges in the three solvents. We may say, in general,
that the use of the HF/6-31Gd charges produces more negative sol-
vation free energies in all solvents. Differences tend to be higher in
water with respect to less polar solvents, such as 1-octanol of toluene.
More in detail, the free energy gain when switching form AM1-BCC
to HF/6-31Gd charges significantly increases in water (by up to
7 kcal/mol in compound 8) in all cases except for compound 9 and
16 where the solvation free energy computed with the HF/6-31Gd
charges is similar to that evaluated using the AM1-BCC charges.
This result is consistent with the fact that, in general, charge separa-
tion is higher in the HF/61Gd charges with respect to the AM1-BCC
charges, and the free energy gains are expected to increase with
increasing polarity of the solvent, hence preventing a compensating
effect in the calculated LogP between a non-polar solvent and water
when switching between the two sets of atomic charges.

The reliability of NE-FG calculated LogPow can be assessed in
Fig. 6 where we report the correlation plots between experimental
and NE-FG-calculated LogPow [computed from the solvation ener-
gies of Tables S1 and S2 by way of Eq. (3)] with the different charge
sets. In one case (plot on the top left in Fig. 6), we used the AM1-BCC
charges of the solute in both water and 1-octanol. In a second case
(top central plot), we used the HF/6-31Gd ESP charge in both water
and 1-octanol. Finally, in the third case (right top plot), we used the
HF/6-31Gd ESP charges for water and the AM1-BCC charges for
1-octanol. The usage of two different set of charges in the two sol-
vents is justified by the fact that charge separation on a molecule
is a function of the polarity of the solvent so that the large HF/6-
31Gd charges should be appropriate for water, while the smaller
AM1-BCC charges should be used in the much less polar 1-octanol

FIG. 5. Solvation free energy differences computed using the HF/6-31Gd and
AM1-BCC charges for the 16 compounds of Fig. 1, computed as ΔΔG = ΔG6-31Gd
− ΔGam1-bcc. Lines are drawn as a guide for the eye.

TABLE I. Agreement between experimental and calculated LogPow for the NE-FG
approach with three different sets of solute atomic charges and for the xLogp3 empir-
ical method as measured by R (Pearson correlation coefficient), a and b (in kcal/mol)
(slope and intercept of the best fitting line), MAE and MSE [the mean absolute and
signed errors (in kcal/mol)], and τ (Kendall rank coefficient).

Charge set R a b MAE MSE τ

AM1-BCC 0.83 1.22 2.30 2.97 −2.92 0.62
HF/6-31Gd 0.88 1.38 0.88 1.98 −1.95 0.60
Mix 0.76 1.41 −0.33 1.63 −0.81 0.55
xLogp3 0.89 0.79 0.85 0.57 −0.27 0.62

solvent. Correlation metrics for the plots shown in Fig. 6 is collected
in Table I.

We can see that while correlation, as expressed by the Pearson
and rank Kendall coefficients, is good and comparable to that of the
reliable xLogP3 estimate in all cases, the mean absolute error (MAE)
and MSE are found to critically depend on the selected charge set,
highlighting the sensitivity of the solvation energies and LogP to
electrostatic interactions. In this regard, we note that both MAE
and MSE improve significantly when switching from AM1-BCC
to HF/6-31Gd charges with correlation still being very strong. The
slope and intercept of the best fitting line, on the other hand, are
still far from their corresponding ideal value of 1 and 0, values that
are more closely approached by the xLogP3 predictions. The best
MAE and MSE were obtained when we used the mixed approach,
i.e., HF/6-31Gd charges in water and the AM1-BCC charges in
1-octanol.

In the bottom plots of Fig. 6, we show the experimental and cor-
responding NE-FG-calculated LogPow for each of the 16 compounds
of Fig. 1. For the AM1-BCC charge set in both solvents (bottom left
plot in Fig. 6), all LogPow of the nitrogen containing compounds
are overestimated except for compounds 10 and 12, which are in
good agreement with experiment. Compound 10 does not contain
nitrogen, while compound 12 has one amide nitrogen. Switching
to the HF/6-31Gd charges in both solvents (bottom central plot in
Fig. 6), overestimation is tamed and the calculated LogPow of com-
pound 6 (besides 10 and 12) is now in excellent agreement with the
experimental counterpart.

Finally, when using HF/6-31Gd charges for the solute in water
and AM1-BCC charges in 1-octanol, the agreement with experiment
becomes satisfactory for all compounds except for four clear outliers,
namely, compounds 3, 5, 9, and 16, where still we have a signifi-
cant overestimation of LogPow, comparable to that observed in the
two previously discussed charge sets. On the other hand, the deci-
sive improvement of LogPow of compounds containing one or more
sp2/sp3 nitrogen atoms in cycles (1, 4, 5, 7, 11, 13, 14, 15, and 16)
with respect to LogPow computed with the AM1-BCC set leads us to
believe that AM1-BCC charges on nitrogen containing cycles do not,
in general, reflect the real electron density in hetero-cycles in water,
possibly due to an effect of the nitrogen lone pair71 and/or polariza-
tion of the solvent. Such systematic overestimation of LogPow when
using AM1-BCC charges in both solvents for solutes with nitrogen
containing cycles (SM41-SM46) was also detected in the SAMPL7
batch of compounds in our NES-1 (GAFF2/OPC3)G submission as
well as in other FEP-based alchemical submissions.31
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FIG. 6. Top: correlation diagrams between experimental49 and calculated octanol–water partition coefficients using different set of atomic charges (see text). Bottom: details
of the corresponding differences for the compounds of Fig. 1 (lines are drawn as a guide for the eye).

The outliers in the mixed charge set, 3, 5, 9, and 16 all share
a tertiary amino group where the GAFF2 atomic type of the nitro-
gen is n3 (see Fig. 4). Compound 16 has five nitrogen atoms in
cycles and a chlorine atom where the role of the positive charge on
the extra center72 due the so-called “sigma-hole” (not included in
our model for compound 16) may be, in part, responsible for the
observed discrepancy. It is worth mentioning that substantial over-
estimation of MD-based LogPow with the GAFF2 parameterization
for tertiary amine solutes with n3 type was also detected in Ref. 50.

The mixed approach can be considered as a sort of zero-order
polarizable model, where we use a stronger charge separation (see
Fig. 4) and, hence, higher electric moments in the solvent with a
high dielectric constant where the mean field induction effects are
supposed to be more important. Such an approach has, however,
drawbacks since we still have four clear outliers (see Fig. 6) and R
and τ correlation coefficients inferior to those observed using the
same charge set in both solvents (see Table I). While most of the sol-
vation free energy in non-polar solvents is recovered when switching
on the Lennard-Jones potential36 and the electrostatic contribution
is minor, in water, the recharging stage produces by far the major
contribution to the free energy.36 If the solute atomic charges do not
reflect with sufficient accuracy the electron density in liquid water,

large errors in LogP may arise. We can hence infer that most of the
observed discrepancies in the mixed approach are probably due to a
non-optimal charge parameterization for the solute in water, in par-
ticular, for the four outliers when using the mixed charge set. On
the overall, the analysis of LogPow data reported in Fig. 6 appears
to confirm31,50 that the parameterization of electrostatic interactions
in the popular GAFF2 force field for tertiary amino compounds or
for solute bearing sp2 or sp3 nitrogen containing cycles should be
carefully revised. Based on these results, we decided to submit our
prediction for the unknown LogPtw, exploiting the knowledge of
experimental LogPow and using the solvation energies computed in
the less polar solvents toluene and 1-octanol with the AM1-BCC
charges set as reported in Table S1 of the supplementary material.
The LogPtw toluene–water partition coefficients in our submission
have been computed as LogPtw = LogPto + LogPow(Exp).

Results for this prediction (named logP_NE-FG on the
SAMPL9 GitHhub site21) are collected in Fig. 7, where, on the left,
we report the experimental and calculated LogPtw with 95% con-
fidence interval for the SAMPL9 compounds and, on the right,
the corresponding correlation plot. Experimental and NE-FG-
calculated values are well correlated, yielding a Pearson coefficient
(R) of 0.83, a Kendall rank coefficient (τ) of 0.58, a mean absolute
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FIG. 7. Blind prediction for the
toluene–water partition coefficients in
SAMPL9. Left: experimental values vs
NE-FG-calculated with 95% confidence
interval for all compounds of Fig. 1 (lines
are drawn as a guide for the eye). Right:
corresponding correlation plot.

error (MAE) of 1.12 LogP units, and a Lin concordance coefficient
(CCC) of 0.82.

The latter metrics combines73 in a single coefficient a measure
of the accuracy, as assessed by the MAE, and of precision in rank-
ing as assessed by the correlation coefficient R. Our blind prediction
ranks fifth for the MAE and sixth for the CCC among the 20 submit-
ted predictions in the challenge. Compound 8 (Glyburide), in our
case as well as in most of the MD-based predictions,74 is a clear out-
lier, with a discrepancy between experimental and calculated value
by more than four LogP units. In parentheses in the correlation plots
of Fig. 7, we have reported the values of R, τ, MAE, and CCC com-
puted by discarding the outlier glyburide, with R hitting 0.90 and
with a MAE below 1 LogP unit.

It should be stressed that the deviations from the experimental
values in our blind prediction mirror the discrepancies between the
calculated and experimental transfer free energy from 1-octanol to
toluene (evaluated from the knowledge of experimental LogPow and
LogPtw; see the caption of Fig. S1 in the supplementary material).
In nine cases, these differences (see Fig. S1 of the supplementary
material) are below 1 kcal/mol, and in only one case (compound 8),
they exceed 2 kcal/mol. Glyburide (8) is a challenging test for unidi-
rectional NE-FG calculations. Such a compound is the bulkiest (61
atoms) among all SAMPL9 molecules, bearing amide, halogen, sul-
fonic, phenyl, oxo, and amino moieties and a rotatable bond count
of eight. The main source of the error for compound 8 is method-
ological, as it can be assessed by the unusually large confidence
intervals found for the solvation energy in 1-octanol and in water
(see Table S1 of the supplementary material). The statistical uncer-
tainty of the solvation energy is strictly related to the variance of the
fast-growth work distribution. The latter, in turn, is directly propor-
tional to the dissipation of the NE unidirectional process. Hence,
the NE growth in 1-octanol of the conformationally complex and
bulky Glyburide is a strongly dissipative process because of the many
disparate metastable conformations that the solute can exhibit in
solution. In the case of 1-octanol, such large dissipation is due to
the fact that the solvent is slow in rearranging the solvation shell,
while the solute–solvent interaction is being switched on. In other
words, 1-octanol as a solvent experiences a larger resistance to move-
ment or diffusion of neighboring portions relative to one another

especially for large solutes, hence exhibiting a much larger viscosity
with respect to toluene.

In water, whose viscosity is only marginally larger than that
of toluene, the large dissipation is likely due to a combined effect
of the conformational disorder and the polar nature of many gly-
buride moieties engaging in a variable number of strong H-bonds
upon recharging, hence widening the work distribution. Very likely,
the ≃4, 3.5 kcal/mol wide growth work distribution of compound
8 in 1-octanol and in water, respectively, is given by a mixtures
of normal distributions due to disparate gas-phase starting confor-
mations.75 The number of work values (96) is too low to afford a
reliable estimate of the coefficients of a mixture of Gaussian via,
e.g., the expectation-maximization algorithm,76,77 and the bias of the
Jarzynski unidirectional estimate (see the section titled “Theoretical
Aspect”), in this case, is overestimated, leading to a correspond-
ing strong overestimation of the solvation energy in 1-octanol,
negatively affecting the Logto estimate used in our blind prediction.

V. COMPARATIVE ANALYSIS OF THE LOGP
SAMPL9 SUBMISSIONS

Performances of all SAMPL9/LogP submissions are reported
in Table S3 of the supplementary material. As expected, the
best-performing methods are low-cost knowledge-based empirical
approaches. Most of the QM-based approaches had an excellent
correlation as measured by R and τ, but they show an accuracy
(measured by the MAE) somewhat below expectations compared to
previous SAMPL results,30,31,78,79 probably due to the not sufficiently
optimized parameterization of the implicit model for the unusual
toluene solvent. A full analysis including correlation plots for all
submissions and histograms of deviations for all compounds can be
found in Ref. 74

Here, we are interested in comparing MD-based submissions
by assessing accuracy and precision in ranking (i.e., MAE and R),
with an eye on the benefit/cost ratio, an implicit requirement in this
challenge, given that participants were requested to detail the cen-
tral processing unit (CPU)/graphics processing unit (GPU) cost of
their protocol in the submission template. We recall that MD-based
approaches are systematically found among the best-performing
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TABLE II. Comparative analysis of the MD-based blind predictions in the SAMPL0 LogPtw challenge (see text for details).

Subm. Method FF Charges Ranked tsim/ns CCC MAE R

VoltzLab FEP/alchemy/EE OpenFF-2.0 AM1-BCC T ≃3 × 104 0.82 1.26 0.90
NE-FG NE/alchemy GAFF2 AM1-BCC T 90 0.82 1.12 0.83
Beckstein–Iorga FEP/alchemy GAFF/TIP3P AM1-BCC F ≃250 0.75 1.50 0.79
Beckstein–Iorga FEP/alchemy OPLS/M24 mol2ff T ≃250 0.73 1.72 0.88
Beckstein–Iorga FEP/alchemy OPLS/TIP4P CM1A F ≃250 0.72 1.88 0.91
Sprick FEP/alchemy/HREM GAFF/TIP3P IpolQ-Mod T 240 0.47 3.03 0.66
Oxford E-S/MCC GAFF2/TIP3P AM1-BCC T 1200 0.42 1.78 0.44
MD (Patel) FEP/alchemy CGenFF/TIP4P cGenFF F 216 0.21 2.63 0.25

methods when dealing with drug–receptor or host–guest complexes.
In Table II, we succinctly report the main methodological aspects
of the eight MD-based submissions, along with their performances.
Submissions are ranked according to the Lin concordance correla-
tion coefficient, CCC. CCC ranges from −1 and 1 and cannot exceed
the Pearson correlation coefficient R. CCC effectively73 measures the
inter-rater reliability among two independent observables, combin-
ing the R metrics regarding ranking and the MAE outcome sensing
the accuracy.

Among the eight submissions reported in Table II, six are done
using the standard alchemical FEP method, based on λ-stratification.
Two of these (VoletzLab and Sprick) are implemented as λ-hopping
techniques.80,81 Our blind prediction is the only one produced using
the nonequilibrium alchemical methodology. Finally, the Oxford
submission relies on the end-state determination of the energy and
entropy with the latter computed according to the so-called multi-
scale cell correlation.82 As to the force fields, all are based on the
fixed-charge approach, with GAFF or GAFF2 used in four cases,
the Optimized Potentials for Liquid Simulations (OPLS)18 in two
cases and CHARMM/CGenFF83 and OpenFF84 in one case. The cost
reported in Table II is measured in invested simulation time (in
ns) on a per-solute basis, deduced from the information reported
in the methodological sections of the submissions csv files.85 Such a
measure is independent of the power of the MD engine and of the

hardware configuration. The best-performing methods according to
CCC are the NE-FG and VoeltzLab. The latter, combining standard
FEP with the so-called extended ensemble81 λ-hopping approach,
required, for a single LogP determination, a total simulation time in
the order of the tens of microseconds, i.e., a cost ≃300 times higher
than that of our NE-FG method.

In Fig. 8, we compare our prediction, based on the GAFF2 force
field and AM1-BCC charge set, with the FEP predictions relying on
the AM1-BCC parameterization for the solutes. As it can be seen, the
three predictions sets, NE-FG, VoeltzLab, and Beckstein–Iorga, are
strongly correlated one to the other with mutual R exceeding in all
cases 0.85. This mutual correlation and the similar agreement with
the experimental data occur despite the usage of three different force
fields for the intramolecular and intermolecular Lennard–Jones
interactions, highlighting the prominent role played by the fixed-
charge modeling for the electrostatic contribution to the solvation
free energies.

Figure 8 appears to confirm that the discrepancy observed
for glyburide (compound 8) in our case is methodological due
to the wide and non-Gaussian nature of the work distribution
in the 1-octanol solvent used in our prediction (see Table S1 of
the supplementary material), as the VoeltzLab and Beckstein–Iorga
submissions predict a similar value for compound 8 much closer
to the experiment. On the other hand, the error provided by the

FIG. 8. FEP or NE alchemical predic-
tions based on the GAFF/AM1-BCC FF
for all compounds. (a) NE-FG-calculated
and VoletzLab prediction. (b) Experi-
mental values vs NE-FG-calculated and
Beckstein–Iorga prediction. Lines are
drawn as a guide for the eye.
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NE-FG method via work bootstrapping, essentially proportional
to the width of the work distribution, appears to be credible also
in the case of compound 8, where the upper bound of the con-
fidence interval is not far from the experimental value. The LogP
SAMPL9 challenge has once again shown that the error determi-
nation is clearly a weak point in FEP calculations based on the
equilibrium simulations of the intermediate λ states. Mean reported
FEP errors74,85 range from 0.05 (Beckstein–Iorga) to 0.43 (Patel)
kcal/mol, with no apparent relation with the invested simulation
time. The errors are computed in most cases by block averaging or
bootstrapping in the intermediate λ states and summing in quadra-
ture the resulting errors and in one case (Patel) by running the whole
FEP calculation in triplicate.

VI. CONCLUSION
We have presented our blind prediction for the toluene–water

partition coefficients in the context of the SAMPL9 challenge using a
very efficient MD-based nonequilibrium alchemical technique rely-
ing on the popular GAFF2 non-polarizable force field for the solutes.
A pre-assessment was made based on the knowledge of the exper-
imental octanol–water partition coefficients for all 16 compounds
included in the challenge. The calculation of the solvation free ener-
gies in the various solvents were done using different approaches
for the determination of the atomic charges on the SAMPL9 com-
pounds. In particular, we used in our MD-based calculations of the
solvation free energies the standard AM1-BCC atomic charges and
the ESP atomic charges computed at the HF/6-31Gd level of the-
ory. The comparison of calculated and experimental LogPow with
various combination of the charge sets revealed that the HF/6-
31Gd charges, yielding, in general, a stronger charge separation
between atoms with disparate electronegativity, appear to be, in
most cases, more appropriate for the water solvent. The analysis
allowed to identify some important critical issues in the GAFF2
parameterization connected to the nitrogen atoms in cycles or in
tertiary amine, providing a valid clue for improving the perfor-
mance and reliability of non-polarizable force field in free energy
calculations of drug–receptor systems. Based on the outcome of
the pre-assessment, we therefore decided to use only the calculated
solvation free energies of the non-polar toluene and 1-octanol sol-
vents with the AM1-BCC charge set, exploiting the knowledge of
the experimental value of the octanol–water partition coefficients to
arrive at our blind submission for the SAMPL9 challenge. Our sub-
mission, based on nonequilibrium alchemy, was the best-performing
and most efficient MD-based approach among the eight MD-based
submissions.

SUPPLEMENTARY MATERIAL

See the supplementary material for solvation free energies in
water, 1-octanol, and toluene using AM1-BCC and ESP charges.
Compact analysis of all ranked and not ranked LogP challenge
submissions. LogPto correlation plot.
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