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Abstract: Rare earth elements (REEs) are strategic materials widely used in different applications
from Information and Communication Technologies (ICT) to catalysis, which are expected to grow
more in the future. In order to reduce the impact of market price and reduce the environmental effect
from soil extraction, recovery/purification strategies should be exploited. This paper presents a
combined acid-leaching/oxalate precipitation process to recover lanthanum from spent FCC catalyst
using nitric acid. Preferred to hydrochloric and sulphuric acid (preliminary assessed), HNO3 showed
a good capability to completely leach lanthanum. The combination with an oxalate precipitation
step allowed demonstrating that a highly pure (>98% w/w) lanthanum solid can be recovered,
with a neglectable amount of poisoning metals (Ni, V) contained into the spent catalyst. This
could open a reliable industrial perspective to recover and purify REE in the view of a sustainable
recycling strategy.

Keywords: rare earth elements; FCC catalyst; acid leaching; REE recycling

1. Introduction

In the last decades, different chemical elements have received wide attention, due
to their use in specific applications such as battery, hybrid and electric engines, energy
storage, electronic devices, high-tech devices and light emitting diodes, and some of the
elements are not abundant on Earth. As an example, worldwide reserves of cobalt were
estimated at 6600 thousand tonnes, at the end of 2018, and about 52% of such reserves is
concentrated in the Democratic Republic of Congo. Lithium reserves are concentrated in
Chile (more than 57% of global availability), and the world estimated reserves (end 2018)
are close to 14,000 thousand tonnes. Rare earth metals and natural graphite reserves are
more abundant than lithium and cobalt (respectively, about 117,000 thousand tonnes and
307,000 thousand tonnes, estimated at the end of 2018), and there are large reserves of
rare earth metals in China (about 38% of global reserves) [1]. China is recognised as the
largest producer, consumer and exporter of rare earth elements (REEs) in the world [2,3].
The concentration of large reserves in one country can lead to price, distribution and
sales imbalances. Technologies able to recover these kinds of materials after their use are
welcome to reduce the dependence from the producing countries and control the prices.

REEs are considered critical and strategic materials in a wide range of current and
innovative applications, causing an important growing in both demand and price of
REEs [4–9]. The recycling of rare earths carried out on effluents, waste and scraps generally
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consists in the recovery of a single rare earth element or a mixture of rare earths. Electronic
waste can be considered a great source of rare earths. Of the 50 million tonnes of WEEE
estimated to be disposed of annually in landfills around the world, only about 12.5% is
currently recycled for all metals. This type of waste contains high concentrations of rare
earth metals as well as metals such as Au, Sn, Ag and Pt [10]. In the case of waste from
electrical and electronic equipment (WEEE) containing rare earths in small quantities, the
critical step is very often the dismantling of the waste, which is generally carried out by
hand despite the numerous attempts by the industry to automate this process for individual
types of WEEE. The chemical attack to bring these rare earth elements into a solution is the
next step normally performed. Either acid or base attacks are usually adopted, although
more complex strategies are also developed, as in the case of the presence of particularly
recalcitrant rare earth chemical species. The recovery of rare earths from the fluorescent
lamp powder is an example [11–13]. Hydrometallurgy is the main technique used for the
separation and purification of rare earths, although other processes are also applied, such
as pyrometallurgy [14]. Specifically, the counter-current separation with two immiscible
phases, one aqueous containing the rare earths to be separated and the other organic
containing the extractant, by using mixer-settler equipment, is an industrial technique used
not only for rare earth recycling but also for their industrial production from the minerals.
Given the massive environmental impact of hydrometallurgical techniques, numerous
studies have been carried out to mitigate them, such as those in which the organic solvent
is replaced with an ionic liquid [15–19].

Sprecher et al. [20] studied the production of neodymium and compared the virgin
production route of NdFeB magnets with two hypothetical recycling processes in terms of
environmental impact. The life cycle assessments, described in this work, indicated that
recycling is a promising alternative to conventional production processes. Nevertheless,
rare earth recycling is not simple to achieve, which is a challenge for research in the future.
Nowadays, the lanthanides are not recycled in large quantities mainly because of low yield
and cost; a very high price of feedstock or a government mandate could push towards the
development of large-scale recycling processes. End-of-life light-emitting diodes (LED)
are electronic waste containing valuable and critical metals such as rare earth elements
and gallium. De Oliveira et al. reported the current recovery techniques of LED waste
using examples from other e-waste such as fluorescent lamps, liquid crystal displays,
and LED production dust [21]. The possible technologies to recover gallium and REE
from LED are physical processes, pyrolysis, bioleaching, and acid leaching, followed by
purification processes such as solvent extraction and precipitation. Based on this work,
hydrometallurgical processing has been identified as the most suitable method to recover
gallium and REE from LEDs due to its high efficiency in recovering metals from low-
grade secondary raw material. Lorenz and Bertau examined and optimised the solid-state
chlorination method for mobilising RE elements from waste streams, in particular from
fluorescent lamp scraps and Fe14Nd2B magnets. They found that, without producing
strongly acidic wastes and with NH4Cl as a cheap source for hydrogen chloride, solid-state
chlorination provides various advantages in terms of cost and disposal [22]. Becci et al.
showed an LCA study on the recovery of REEs from end-of-life permanent magnets, an
example of LCA as a support tool for the definition of circular economy strategies for REE
recovery [23].

Catalysis also represents an important market for REEs, due to unique properties
offered by these materials. In fact, about 20% of REEs are used for catalytic application. It
is estimated that about 30,000 tonnes of rare earth oxides, mainly lanthanum and cerium, is
used in fluid catalytic cracking (FCC) process and for automobile catalytic converters [2].

The FCC process was established in the last century in order to improve the gasoline
production and increase the octane number of the fuel. The FCC feed is normally composed
by heavy atmospheric gasoil and light/heavy vacuum distillate, and the catalyst is named
USY (ultra-stabilised zeolite Y, FAU-type zeolite). In order to increase the stability, reduce
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the coke formation and increase the gasoline and olefin yields, medium-pore zeolite (such
as ZSM-5) and/or REE are added to the USY catalyst [24,25].

The FCC catalyst consists of spherical particles in which zeolite crystals are dispersed
in amorphous silica-alumina and binders [26–28]. The presence of amorphous silica-
alumina allows having large pores that promote mass transfer of heavy molecules in the
pellets, improving the efficiency of the catalyst. In the last years, olefins are the most
important products from the FCC process, due to their increasing market price. C3 and C4
olefins have multiple application: other than commercialisation, they can used in refineries
as feed for alkylation processes and for the production of MTBE and MTPE (methyl tert-
butyl ether and methyl tert-pentyl ether, respectively), which are used as high octane
number gasoline and anti-knocking agent in gasoline blend.

Olefins are the most important product obtained from an FCC plant; the larger
world production is by steam cracking technology, but currently other processes such
as MTO-MTH (methanol-to-olefins and methanol-to-hydrocarbons) processes are consid-
ered an emergent technologies because in this case it is possible to start from renewable
sources [29–32].

The feed of FCC plants contains heavy metals, especially Ni and V, which tend to
deposit on the catalyst surface causing poisoning of active sites or hindering diffusion of
reactants. Heavy metals also exhibit red-ox catalytic properties, promoting coke formation.
Moreover, the doping with rare earth is designed with the aim to have a catalyst able to cap-
ture and immobilise the vanadium over REE sites with high capacity and selectivity [33–36].
The presence of rare earths in the FCC catalyst is then fundamental to obtain a catalyst
with a significant activity, high selectivity and good stability [37–39].

From these premises, it is then important to develop technologies and processes
able to recover strategic materials, such as REEs, from spent FCC catalysts. Although
several studies have been performed on the recovery of REEs from batteries, glass scarps
and other high-tech devices [40–42], few studies have been published on their retrieval
from spent FCC catalysts [43]. In this concern, the aim of this study was to explore the
possibility to recover REEs (mainly lanthanum) from fines of industrial FCC catalysts
(waste from Petrobras refinery), by using acid leaching and selective separation (the oxalate
precipitation method). Different parameters were investigated such as acid type (i.e.,
HNO3, HCl and H2SO4) and concentration, temperature and time of treatment aiming
to optimise the process, in terms of lanthanum recovery and purity. Treated zeolite was
also characterised in order to give insights about the effect of leaching on zeolite structure.
Zeolite recovery is also an interesting aspect that might be considered in future works.

2. Materials and Methods

The spent FCC catalyst was kindly provided by Fábrica Carioca de Catalisadores S.A.
(Rio de Janeiro, Brasil) and the particle size distribution of the as-received sample was mea-
sured with Mastersizer2000 (Malvern Instruments). The catalyst was also characterised by
X-Ray powder diffraction (APD 2000 Pro) to verify the catalyst structure and zeolite phase,
whilst the morphology of the particles was observed on a scanning electron microscope
(FEI model Inspect). Textural properties were estimated by nitrogen adsorption–desorption
isotherms at 77 K performed with a ASAP 2020 (Micromeritics) instruments. B.E.T. and
t-plot methods were adopted for the calculation of surface area and micropore volume,
respectively [44]. In order to check the content of the residual coke present in the spent
catalyst, thermo-gravimetric analysis was also carried out with a DTG-60 (Shimadzu)
instrument, in air flow and by heating the sample from room temperature (RT) to 850 ◦C
(heating rate of 5 ◦C/min). Inductively coupled plasma optical emission spectrometer
(ICP-OES, Perkin Elmer, Optima 8300 model) was also used for chemical analysis.

REE recovering was performed via acid-assisted leaching. For this purpose, analytical
grade (Sigma Aldrich) hydrochloric acid (HCl 37%), sulphuric acid (H2SO4 96%) and
nitric acid (HNO3 65%) were used, with a maximum acid concentration of 12, 35 and
14 N, respectively. Acid solutions at different concentrations were prepared by dilution
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with demineralised water and checked by titration with standard NaOH (Sigma Aldrich)
solution. An automatic titrator (Metrohm 905 Titrando) was used to determinate the
molar concentration of acidic solution. The acid leaching was performed using 500 mg of
exhausted catalyst and 50 mL of acid solution at different concentrations. A thermostatic
bath, equipped with an PID thermal controller under stirring, was used to investigate the
effect of temperature (in the range 20–80 ◦C) on the REE recovery process. A water reflux
condenser was used to avoid loss of material during the experiments. At the end of the
experiment, filtration was performed in order to separate leaching solution from catalyst
particles. A selective precipitation of lanthanum, by using a large excess of oxalic acid,
was obtained from leaching solutions. ICP-OES was then used for chemical analysis of the
liquid filtrate and oxalate metal salts.

3. Results and Discussion
3.1. Characterisation of as Received Sample

The powder XRD pattern of the as received catalyst is reported in Figure 1. Peak
analysis indicates FAU-type zeolitic phase as main crystalline phase that may be detected.
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The presence of a slight background in the 20–30◦ range may be related to the presence
of the binder, usually used for the industrial catalyst preparation [44].

Figure 2 shows the particle size distribution, and the profiles clearly indicates that size
is in the range 30–300 µm, with a symmetric distribution centred at the value of 104 µm.
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The particle size distribution is in accordance with the SEM images reported in Figure 3,
where a very uniform size distribution may be noticed.
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The SEM images also shows the presence of spherical particles with size below 200
µm, typical of FCC catalyst, with roughness on the external surface due the presence of
zeolite crystals [45,46].

The TG/DTA profiles reported in Figure 4 clearly indicate the absence of coke on the
investigated samples, as no weight loss is observed above 300 ◦C [47,48]. The low water
content (about 2 wt%), calculated as weight loss in the range of RT-200 ◦C is typical of
hydrophobic materials. In fact, FCC catalyst usually consists of 30–40 wt% of dealumi-
nated FAU-type zeolite and hydrophobic binders (e.g., silica oxides). The absence of coke
indicates that the investigated equilibrium catalyst was sampled from the regeneration
unit of the FCC plant.
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Textural and chemical properties of the investigated sample are summarised in Table 1.

Table 1. Physical properties and chemical composition of the investigated FCC sample.

Average particle size (µm) a 104

Specific area (m2/g) b 107

Total pore volume (cm3/g) c 0.128

Micropore volume (cm3/g) d 0.039

Mesopore volume (cm3/g) 0.089

Chemical composition (wt%) e

Al 22.70
La 1.49
Fe 0.74
Ni 0.49
V 0.35

Co 0.0028
Cr 0.0055

Si, O, H, Na rest of 100%

Calculated: a from PSD; b from BET; c at P/P0 = 0.99; d from t-plot; e from ICP.

The relatively low both surface area and micropore volume are due to the presence of
binders. The mesopore volume is calculated as the difference between total and micropore
volume. By considering the pore volume, zeolite content should be about 30% [49].

ICP analysis results reported in Table 1 show a lanthanum content of 1.49 wt%. As
already mentioned, this metal is inserted as counter-ion to the zeolite by a post-synthesis
ion exchange treatment, and it is active in cracking catalytic reaction [20]. Iron, nickel and
vanadium are the most common contaminant metals in exhausted fluid catalytic cracking
(FCC) catalysts. In particular, nickel and vanadium are the most relevant poisons for FCC
process [50,51]. In fact, the depositing of these metals on the catalyst surface is one of
the main causes of catalyst deactivation. Moreover, the presence of such metals favours
dehydrogenation reactions leading to a higher coke deposition [26].

3.2. Metals Leaching by Acids: The Effect of Operation Condition on Lanthanum Selectivity

Experimental tests were carried out as previously described using HCl, HNO3 and
H2SO4 in different concentration, from 0.1 N to the maximum concentration of commercial
acid: 12, 14 and 35 N, respectively. The leaching reaction was performed at 20 ◦C and
atmospheric pressure, for 3 h of contact time. A blank test was performed, by using
demineralised water (pH = 7) without acid addition, and no traces of La3+ in the aqueous
phase were detected, after 3 h of contact time.

Figure 5 shows the recovery of metals ions, calculated as the percentage amount of
metal ions leached from the catalyst (aqueous phase) with respect to the total ions amount
in the spent catalyst.

The obtained results show that the investigated acids are effective towards lanthanum
leaching in the whole investigated acid concentration range, with a maximum recovery
of about 60%. At 0.1 N, the recovery of lanthanum is comparable for the different acids:
about 35% for both HCl and HNO3 and 38% for H2SO4. When HCl is used, the lanthanum
recovery increases up to 60% when increasing the acid concentration to 2 N, and no
significant recovery change is observed above this value. On the contrary, for both HNO3
and H2SO4, the maximum lanthanum recovery of about 60% is obtained at 5 and 10 N,
respectively, with a decrease observed when further increasing the acid strength.
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20 ◦C, 3 h).

The investigated acids can also leach vanadium, with a recovery of about 20% at 0.1 N
concentration and a maximum of 25–30% for higher concentration. For any other metal, a
recovery lower than 10% is measured. In particular, Ni seems to be the most stable against
leaching, as the recovery was always lower than 1.5%. The selectivity of leaching process
may be defined as follows (Equation (1)):

Si =
Reci

∑i Reci
(1)



Processes 2021, 9, 1369 8 of 15

where Reci is the recovered mass of metal i.
Therefore, although the increase of acid concentration seems to favour lanthanum

leaching, the lanthanum selectivity is always 0.58 ± 0.02, without any specific effect of acid
concentration or acid type.

The effect of temperature on lanthanum recovery was studied for HNO3 only, since
this acid may be preferred in an industrial environment for safety reasons. Furthermore,
nitric acid is used during the preparation process of the FCC catalyst, in particular during
the dealumination step of the zeolite. Therefore, industries fabricating the FCC catalyst, and
that may recycle it for lanthanum recovery, have consolidated technologies and knowledge
on the handling of nitric acid. Experimental data reported in Figure 6 show the favourable
effect of temperature increase on lanthanum recovery, significant for acid concentrations
up to 5 N. In particular, a temperature increase from 20 to 80 ◦C promotes the lanthanum
recovery from ca. 35% to ca. 80% and from ca. 50% to ca. 90%, for acid concentrations of
0.1 and 2 N, respectively. The lanthanum recovery approaches 100% for acid concentration
of 5 N at 80 ◦C. It is indeed well-known that metal leaching is a temperature-favoured
phenomenon [52].
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However, a similar effect is also observed for the other elements, as reported in
Table 2. For 5 N HNO3 concentration, aluminium leaching increases from 4.5% to 21.7%
by increasing the temperature from 20 to 80 ◦C. However, it should be considered that
the increase in aluminium concentration in the liquid phase can also derive from the
zeolite framework dealumination, a well-known phenomenon favoured by acids at high
temperature [53,54].

Similar trends are observed for Fe, Ni and V. In particular, Fe recovery increases up to
24.4% and V recovery up to 43%. Ni is confirmed to be the most stable element, since only
6.3% is recovered at 80 ◦C.

Figure 7 shows that lanthanum selectivity (as defined above) exhibits a volcano
trend with temperature, with an optimal temperature depending on the acid concentra-
tion. For acid concentrations equal to 0.1 N, lanthanum recovery selectivity increases
from 0.55 to 0.60 by increasing the temperature from 20 to 80 ◦C. On the contrary, for
higher acid concentrations, the maximum in selectivity is reached at 40 ◦C, with a value
above 0.6. For acid concentrations equal to 5 N, by increasing the temperature from 40 to
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80 ◦C, lanthanum selectivity drops from 0.63 to 0.51, which can mainly be attributed to a
mass extraction of Al and Fe higher than the lanthanum one.

Table 2. Effect of temperature and HNO3 concentration on metals recovery.

Temperature (◦C) [HNO3] (N) Al (%) Fe (%) Ni (%) V (%)

20 ◦C

0.1 2.6 3.2 1.0 22.1
1 3.7 4.5 1.1 24.7
2 4.0 5.1 1.1 27.2
5 4.5 5.4 1.3 29.5
10 4.0 5.1 1.2 28.4

40 ◦C

0.1 4.6 5.4 1.6 24.2
1 5.8 6.6 1.8 28.1
2 6.1 7.0 1.9 29.1
5 6.5 7.9 1.9 31.8
10 6.5 7.9 2.0 32.3

60 ◦C

0.1 7.6 7.8 2.3 28.3
1 9.3 10.4 2.7 30.1
2 9.6 11.2 2.7 32.4
5 10.9 13.3 3.1 33.8
10 10.8 13.3 3.1 35.5

80 ◦C

0.1 10.5 9.9 2.9 27.9
1 15.1 16.5 4.3 34.5
2 18.0 19.6 5.0 37.3
5 21.7 24.4 6.3 43.0
10 19.6 24.4 6.2 41.6
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In order to check the effect of contact time on the metal recovery, HNO3 5 N solution
was used in the process time range 2–300 min. As expected (Figure 8), the obtained results
show that the recovery of all metals increases with time, reaching a plateau after 3 h. Due
to the differences between metals in leaching over time, the mass concentration of the
recovered metals also changes with time.
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Figure 9 reports the relative weight fraction of metals (Wi) calculated as follows
(Equation (2)):

Wi =
[M]i

∑i[M]i
· 100 (2)

where [M]i is the concentration of metal i (expressed in mg/L) in the liquor.
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Figure 9. Effect of contact time on metal distribution recovery (test conditions: HNO3 5 N, 60 ◦C).

As reported in Figure 9, WLa decreases from about 45 wt% to about 30 wt% by
increasing the treatment time from 15 min to 3 h. This is mainly due to the aluminium
extraction also coming out from the zeolite framework as explained above.

With the above-discussed tests, it is only possible to recover an aluminium-rich
solution; therefore, if pure lanthanum is the target, a second step of purification should be
considered. In this concern, in order to recover the extracted lanthanum from the solution, a
selective precipitation in oxalic acid was performed. A mother acid solution was prepared,
using nitrate salts of La, Al, V, Ni and Fe, with the same metal ion mass fractions of the test
with [HNO3] = 5 N, T = 60 ◦C and t = 3 h. By using an excess of oxalic acid, the metals are
selectively precipitated as oxalates, and the distribution of recovered metals is reported
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in Table 3. From the reported data, it clearly appears that lanthanum is 96.3% in mass
of the precipitated metals, and the yield of La recovered from the acid solution after the
secondary precipitation approaches 100%. It is noteworthy that, even though the initial
solution is rich in aluminium, the final concentration of this metal is below 0.034, indicating
a good selectivity toward lanthanum of the oxalate precipitation method. In addition, other
metals, poisonous for the FCC process (Ni, V), account for a total mass fraction of 0.0022 of
the precipitated solid.

Table 3. Metal composition of recovered powder after oxalic acid precipitation.

La
wt%

Al
wt%

Fe
wt%

V
wt%

Ni
wt%

96.3 3.33 0.13 0.22 0.02

The results clearly show that the adopted precipitation procedure is highly effective
and selective towards lanthanum recovery and purification. It is worth noticing that the
neglectable amount of poisoning species from the treated refinery cut makes the recovered
lanthanum oxalate recyclable for addition to fresh FCC catalyst.

In addition, as mentioned before, the presence of aluminium in the leaching solution
is due to a partial dealumination of the catalyst framework [55], even though the treatment
does not compromise the zeolite structure, as may be observed from the XRD patterns of
the solid phase recovered after acid attack in Figure 10.
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Figure 10. XRD pattern of parent sample and sample treated with HNO3 5 N (60 ◦C, 3 h).

The relative intensity of the peak is not affected by acid treatment, suggesting that no
significant change in crystalline structure occurs upon treatment.

Contrariwise, the acid treatment causes some change in textural properties. Figure 11
reports a comparison between parent and treated samples of N2 adsorption–desorption
isotherms, showing that the amount of adsorbed N2 by the treated sample is higher than
the parent catalyst, at any relative pressure. Because of the acid treatment, the B.E.T. surface
area increases from 107 to 141 m2/g, while micropore volume decreases from 0.039 to
0.033 cm3/g. Furthermore, the mesopore volume (calculated as the difference between total
pore volume at P/P◦ = 0.99 and micropore volume) increases from 0.089 to 0.131 cm3/g.
The mesopore volume increase may be associated to both metal leaching from the zeolite
framework (mainly aluminium [56]) and potential binder dissolution. Figure 11 also
reports the pore size distribution of treated and parent samples, confirming the increase in
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mesopores as a consequence of the acid treatment. This evidence is also supported by the
SEM analysis of the treated sample (Figure 12), as the presence of roughness is clear on the
external surface of the particle, coherently with the measured mesopores.
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4. Conclusions

In this study, the rare earth element recovery from spent FCC catalyst via acid leaching
was investigated. Aiming at investigating a combined acid-leaching/oxalate precipitation
process, hydrochloric, sulphuric and nitric acids were tested for the extraction step. Differ-
ent acid concentrations were used, and the data show that the leaching process depends on
acid solution strength with an optimal concentration around 5 M. Any further increase in
the acid molarity did not impact on the leaching efficiency, whatever the acid type. For
this reason, the assessment of the other process parameters was performed by using only
nitric acid, which is less dangerous than the other two when handled in an industrial
environment. Temperature increase from 20 to 80 ◦C favourably impact on the lanthanum
recovery from the solid, even though the selectivity toward this metal decreases above
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60◦ as a consequence of a more effective aluminium leaching from the zeolite structure.
As for the contact time in batch experiment, it was demonstrated that short contact time
(corresponding to a reduced number of equilibrium stages in an industrial extraction plant)
did not allow the complete recovery of the REE that takes place only after 3 h of treatment,
also enhancing the phenomenon of aluminium leaching. Oxalate salt precipitation was
investigated as purification step of the metal ion-rich solution, and a precipitated solid that
contains more than 96% of lanthanum was obtained, the rest being essentially aluminium.
The neglectable amount of other metals (such as Va and Ni, poisonous for the catalyst)
suggests that the recovered REE could be recycled to dope fresh FCC catalyst. As a general
point, even though the price of REEs has been very fluctuating over the last decades, in
view of a further increase in the demand of such metals for new widespread applications,
the suggested separation/purification method could represent a reliable alternative to reuse
lanthanum, reducing the potential economic damage from price increases of this REE.
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