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Simulations of energetic plumes from plasma thrusters are of great interest for
estimating performances and interactions with the spacecraft. Both in fully fluid
and hybrid (particle/fluid) models, the electron population is described by a set of
fluid equations whose resolution by different numerical schemes can be strongly
affected by convergence and accuracy issues. The case of magnetized plumes is
more critical. Here, the numerical discretization of the electron fluidmodel of a 3D
hybrid simulator of plasma plumes was upgraded from a finite-differences (FD)
formulation in a collocated grid to a finite-volumes (FV) approach in a staggered
grid. Both approaches make use of structured meshes of different resolutions and
are compared in two scenarios of interest: 1) an unmagnetized plasma plume
around a spacecraft and 2) a magnetized plume expansion in free space. In both
physical scenarios, the FD scheme exhibits a global continuity error related to
truncation errors that can be reduced only by refining the mesh. The origin of this
error is further investigated and explained here. The FV scheme instead can save
much computational time using coarser meshes since it is unaffected by these
errors due to the conservativeness of its formulation. The physical advantage of
the FV scheme over the FD approach is more evident for magnetized plumes with
high Hall parameters since it allows us to reach higher anisotropy conditions, here
assessed in order to gain insights into the plumemagnetization effects, finding that
the already foreseen saturation of circulating electric current occurs for Hall
parameters of several hundreds.
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1 Introduction

Electric thrusters for space propulsion [1] eject a plasma plume, which is made of hypersonic
ions moving at speeds of tens of km/s and a cloud of confined electrons that drifts with a
comparable velocity to guarantee current ambipolarity. The peak electron temperature at the
thruster exit is typically in the range of 5–50 eV, depending on the thruster technology [2]. These
plasma plumes can be either unmagnetized, as in the case of an ion thruster (IT), or magnetized,
meaning that electrons are bound to the lines of an externally generatedmagnetic field, as inHall-
effect thrusters (HETs) or in electrodeless plasma thrusters (EPTs), featuring a divergent
magnetic nozzle (MN) for plasma plume expansion and acceleration [3]. Ions, on the other
hand, are nearly unmagnetized in these thrusters, with a Larmor radius exceeding the
characteristic plume size by several orders of magnitudes. When operating in low Earth

OPEN ACCESS

EDITED BY

Jayr Amorim,
Aeronautics Institute of Technology,
(ITA), Brazil

REVIEWED BY

Mario Pinheiro,
University of Lisbon, Portugal
Ralf Schneider,
University of Greifswald, Germany
Paulo A. Sá,
University of Porto, Portugal

*CORRESPONDENCE

Alberto Modesti,
alberto.modesti@uc3m.es

RECEIVED 31 August 2023
ACCEPTED 27 September 2023
PUBLISHED 19 October 2023

CITATION

Modesti A, Cichocki F and Ahedo E
(2023), Numerical treatment of a
magnetized electron fluid model in a 3D
simulator of plasma thruster plumes.
Front. Phys. 11:1286345.
doi: 10.3389/fphy.2023.1286345

COPYRIGHT

© 2023 Modesti, Cichocki and Ahedo.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 19 October 2023
DOI 10.3389/fphy.2023.1286345



orbits, all plasma thruster plumes are further affected by the presence of
the geomagnetic field of amagnitude of approximately 0.5 G, which can
induce non-trivial three-dimensional electron and electric current
structures [4–6], yielding to significant plasma plume deformation
farther downstream.

In the context of plasma plumes for space propulsion,
simulations are extremely important as they enable the study of
two fundamental phenomena: 1) spacecraft–plume interaction,
which is paramount for a correct installation of electric thrusters
onboard the satellite platform, minimizing their negative impact on
sensitive surfaces, such as optical sensors or solar arrays [7], and 2)
facility effect estimation, required to extrapolate the performance of
a thruster tested inside a vacuum chamber to real in-space
operations. Numerical models for magnetized plasma plume
expansions include kinetic approaches, which can be split into
methods solving a simplified Boltzmann’s equation for the ion
and electron distribution functions [8] and full particle-in-cell
(PIC) techniques [9, 10], featuring ion and electron macro-
particles, and treating collisions through Monte Carlo techniques.
These approaches are extremely expensive from a computational
point of view, especially when it comes to plume expansions [11], for
which other approaches are more computationally efficient. In
particular, hybrid models [11–15], in which electrons are
assumed as a magnetized or unmagnetized fluid while ions are
followed as PIC macro-particles, and fully fluid models [5, 16, 17],
where both ions and electrons are treated as one or more fluids, are
computationally much more affordable. In these cases, electrons are
described by a set of differential equations for continuity,
momentum, and energy [18, 19]. A magnetic field introduces
strong anisotropy in electron mobility, and the solution of these
equations is strongly affected by convergence and accuracy issues,
which depend on the numerical scheme adopted. This greatly limits
the application of magnetized electron fluid models to 2D scenarios,
as shown in [17], with only a few examples of 3D magnetized
electron models existing in the literature [4, 6, 15, 20, 21].

Electron fluid models can employ different discretization
schemes for a set of differential equations. A common
classification features the following [22, 23]: 1) finite differences
(FD) schemes, 2) finite elements (FE) methods, 3) finite volumes
(FV) methods, and 4) spectral methods [24]. Narrowing the field,
gradient terms can be discretized with an FD approach, while, for
conservation equations, FV, FE, or FD discretization can be adopted.
Although FE methods use variational techniques to minimize an
error function, FV methods are normally the most conservative by
definition since the conservation equations are expressed and
discretized in their integral form on a control volume, and the
flux entering a given volume is set equal to that leaving the adjacent
volume. This allows us to represent the mass and energy balances
consistently, while momentum and heat flux equations can still be
discretized with an FD approach. On the other hand, if a
conventional FD approach is also used for the discretization of
continuity equations and of their corresponding right-hand sides,
global continuity errors can arise, coming from the derivative
truncation error at every order of accuracy. Although there exist
flux-conserving FD approaches, they employ high-order
reconstruction schemes to guarantee conservativeness, thus being
more computationally burdening. This focus on FD and FV
methods comes from the fact that they share many similarities

and can lead to the same discretization in some cases [25], eventually
causing confusion when it comes to the choice of the scheme.

EP2PLUS is a 3D PIC-fluid code for magnetized and
unmagnetized plumes [11], where 1) electrons are modeled as a
magnetized fluid subject to both continuity and momentum balance
equations and a polytropic pressure closure; 2) ions are followed as
macro-particles of a PIC submodel, which move according to the
local electric and magnetic fields, and are subject to discrete
collisional events, through standard Monte Carlo collision (MCC)
techniques. The PIC and the electron fluid meshes coincide and are
of structured Cartesian type, non-uniform in space, in general. In
this work, EP2PLUS, which originally solved the electron fluid
equations with an FD formulation [4, 11], is upgraded to employ
an FV conservative method on a staggered grid for the electron
continuity equation. The new FV approach is benchmarked against
the previous FD approach in two 3D physical scenarios of interest: 1)
an unmagnetized plasma–spacecraft interaction scenario,
introduced in [11], and 2) a magnetized plasma plume expansion
under the effect of a geomagnetic field, first studied with an FD
approach in [4]. Both scenarios feature a structured mesh, although
of different types. This paper then aims to compare and benchmark
the two particular formulations of FD and FVmethods first in terms
of the conservativeness and quality of the obtained solution for a
varying mesh resolution; second, for magnetized plumes only, in
terms of the maximum allowed Hall parameter for a reasonable
solution quality.

The rest of the paper is structured as follows: Section 2 describes
the hybrid PIC-fluid model considered, with emphasis on the latter;
Section 3 focuses on the numerical schemes for the resolution of
electron fluid equations; Section 4 reports the settings and
simulation results for the chosen unmagnetized benchmark
scenario, while Section 5 reports the settings and simulation
results for the magnetized scenario, in which the new FV scheme
enables to extend a previous study [4] on the effects of the maximum
simulated transport anisotropy. Conclusions and future work are
summarized in Section 6.

2 The plasma plume model

The plasma plume model assumes both ions and neutrals as
macro-particles of a PIC submodel and electrons as a magnetized
fluid. The PIC and electron submodels are described in the following
paragraphs, with a special emphasis on the latter. In addition to PIC
and electron fluid submodels, both a plasma sheath and circuit
solver models are used to obtain the appropriate boundary
conditions (BCs) for the electron fluid (in terms of electric
current reaching the surface of simulated objects). This latter
feature is relevant mainly for the simulations of the
spacecraft–plasma interaction; details can be found in [11].

2.1 The particle-in-cell submodel

A detailed description of the PIC submodel used for the heavy
species can be found in [11, 26]. This advances both ion and neutral
macro-particles with the same PIC time step and includes a series of
algorithms: 1) particle injection from an upstream boundary, which
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typically coincides with the thruster exhaust section; 2) particle
movement, according to Newton’s equation and the local electric
and magnetic fields E and B; 3) particle collisions, including
ionization and charge-exchange reactions (CEX) with MCC
techniques; 4) particle interaction with the material walls of the
spacecraft (S/C), if any, including the computation of the ion current
density to the material cell faces, ion recombination into neutrals,
and neutral reflection; and 5) particle weighting to the nodes of the
PIC mesh to obtain plasma bulk properties, such as the number
density and the particle fluxes of each species.

2.2 The electron submodel

For a quasi-stationary (∂/∂t = 0) and inertialess electron fluid,
the electron momentum equation reads

0 � −∇pe − ene −∇ϕ + ue × B( ) −∑
s

]esmene ue − us( ), (1)

where ne represents the electron number density, me represents the
electron mass, ue represents the electron fluid velocity, ϕ represents the
electric potential, B represents the externally applied magnetic field,
index s extends to all heavy populations (neutrals, singly or doubly
charged ions, . . .), and ]es represents the momentum transfer collision
frequency of the electrons with the generic sth particle population, which
features a fluid velocityus. Additionally, Eq. 1 assumes isotropic electrons
with a scalar pressure pe ≡ neTe, with Te in appropriate energy units.

For the purposes of this work, the electron fluid model is closed,
assuming a polytropic equation of state pe ∝ nγe , with γ ≥1 as a
constant coefficient. Then, it is possible to define a barotropy
function [11]

he ne( ) �
Te0 ln

ne
ne0

( ), γ � 1,

− γTe0

γ − 1
1 − ne

ne0
( )γ−1[ ], γ> 1,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

satisfying ∇he = ∇pe/ne and with Te0 and ne0 reference values at the
point where he = 0. Furthermore, it is convenient for the numerical
schemes to define the thermalized potential [4]

Φ � ϕ − he/e. (3)
We observe that ifΦ = 0 everywhere, ϕ(ne) satisfies the Boltzmann’s
polytropic relation.

We let je = −eneue and ji =∑seZsnsus be the electron and total ion
current density (with Zs and ns as the charge number and the
number density of the generic sth particle population, respectively);
]e =∑s]es represents the total electron momentum transfer collision
frequency; jc � (ene/]e)∑L

s�1]esus represents an effective current
density grouping collisional effects from heavy species [4]; σe =
e2ne/(me]e) represents the electron scalar conductivity; χ = ωce/]e
represents the Hall parameter, with ωce = eB/me being the electron
gyrofrequency; and 1b � [b1, b2, b3] the unit vector locally aligned
with the applied magnetic field so that B = B1b. Applying all these
definitions and solving Eq. 1 for the total electric current density, j =
je + ji, yields the generalized Ohm’s law

j � −K · σe∇Φ + jc( ) + ji, (4)

where

K �
1 χb3 −χb2

−χb3 1 χb1
χb2 −χb1 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
−1

(5)

is the normalized conductivity tensor, for which K−1j � j +
χ(j × 1b).

The additional scalar equation to solve for the four scalar
unknowns (Φ and j) is the electric current continuity

∇ · j � 0. (6)
The system of Eqs 4, 6 is solved by applying boundary conditions

either on Φ (i.e., Dirichlet condition) or, more commonly, on the
normal component of the local electric current density, jn ≡j ·1n
(i.e., a Neumann condition), with 1n being the normal unit vector at
the boundaries, directed toward the plasma. BCs are typically an
issue in plume models; the effects of different formulations have
been investigated in [4, 27].

Once the Φ value is obtained, the electric potential is
retrieved from Eq. 3. Although the barotropic function he
(ne) is updated at each PIC time step as it depends only on
ne, the thermalized potential Φ is updated with a lower cadence.
This permits us to save computational time and has no impact
on the final solution, as long as we are primarily interested in
stationary plasma plumes. In low-density non-neutral sub-
regions of the plume, a non-linear Poisson’s equation is
solved, in order to retrieve the non-neutral plasma density
and electric potential:

∇2ϕ � e

ε0
ne ϕ( ) −∑

s

Zsns⎛⎝ ⎞⎠, (7)

where ne(ϕ) is given by Eq. 3 (with the use of Eq. 2). The
computational domain is indeed split into quasi-neutral, non-
neutral, and transition regions, according to the physical criteria
described in [11].

3 Numerical approaches for electron
fluid equations

3.1 The old finite difference solution scheme

Substituting Eq. 4 into Eq. 6, an elliptic equation for Φ is
obtained:

K: ∇∇Φ + ∇Φ · ∇ ·K( ) +K · ∇Φ · ∇ ln σe( ) � ∇ · ji −K · jc( )
σe

, (8)

where ∇∇Φ represents the Hessian tensor of the thermalized
potential, the symbol “:” means a contracted product, and ∇ ·K
represents the divergence of the conductivity tensor. Each term of
Eq. 8 can be discretized using FD schemes of 2nd-order accuracy on
a structured mesh, given as follows.

A generic 3D physical domain in (x, y, and z) is represented by a
parallelepiped in the computational domain, with each mesh node
being identified by three integer computational coordinates (ξ, η,
and ζ) along the three structured mesh directions.
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If the number of nodes along each direction is Nξ, Nη, and Nζ,
such computational coordinates can vary within the ranges [1, Nξ],
[1, Nη], and [1, Nζ ]. Generalized difference schemes on a non-
rectangular, non-uniform physical mesh require the computation of
the inverse Jacobian matrix, given as

J −1( )ij � ∂xi

∂ξj
, (9)

where (x1, x2, x3) ≡ (x, y, z) and (ξ1, ξ2, ξ3) ≡ (ξ, η, ζ). Each
Jacobian term is evaluated with an FD scheme of 2nd-order
accuracy, applied to the nodes physical coordinates (x, y, and z).
In particular, centered schemes with two nodes are applied to inner
nodes, and forward/backward schemes (involving three nodes) are
applied to the boundaries, along each direction. The direct
transformation matrix J then appears in generalized difference
schemes for the derivatives of Φ, given as

∂Φ
∂xi

� ∂Φ
∂ξj

∂ξj
∂xi

� ∂Φ
∂ξj

J ji, (10)

where Einstein’s summation convention is assumed.
Applying Eq. 10 recursively, it is then possible to obtain FD

schemes for each term of Eq. 8, as shown in Supplementary
Appendix SA, for the term involving the Hessian matrix. The
right hand side of Eq. 8 involves a divergence operator, which, in
FD, is affected by a truncation error. As explained in Supplementary
Appendix SB, the discretization error associated with the right-hand
side of this equation is the main weak point of this formulation as it
introduces an integral error in electric current continuity.

BCs on the electric current are imposed with 2nd-order accuracy
schemes for the directional derivative of Φ at the simulation
boundaries (be they free loss or material walls). By projecting
Ohm’s law, Eq. 4, on the boundary normal direction 1n, one obtains

σe K · ∇Φ( ) · 1n � σe∇Φ · KT · 1n( ) � ji −K · jc( ) · 1n − jn, (11)

where the local normal electric current density is set to either 0 (at
free loss boundaries) or to the value requested by the sheath model
(at material walls). Equation 11 essentially imposes the directional
derivative of Φ along the direction KT · 1n. The imposition of the
normal component of the electric current by means of the
thermalized potential directional derivative constitutes an
additional error source for this approach, as explained in
Supplementary Appendix SB. Finally, without a loss of generality,
a Dirichlet condition Φ = 0 is imposed at one mesh node, at least, to
have a full-rank non-singular linear system.

The application of the aforementioned BCs yields the following
linear system of equations for the thermalized potential Φ at the
mesh nodes:

FD[ ] Φ{ } � rhs{ }, (12)
where {Φ} represents the solution vector at the mesh nodes, [FD]
represents the overall coefficients matrix, and {rhs} represents a
column vector constituted by the right-hand side of Eq. 8 at inner
nodes and of Eq. 11 at boundary nodes. A maximum of 19 non-zero
elements per matrix row are obtained when the Jacobian matrix is
completely filled with non-zero elements (e.g., for a generic non-
uniform non-rectangular mesh).

3.2 The new FV solution scheme

The proposed new numerical approach for the discretization of
Eqs 4, 6 is an FV scheme on a staggered mesh [22]. A sketch of this
mesh is shown in Figure 1 for a 2D domain. Current densities are
computed at cell face centers, while the thermalized potential is
obtained at cell centers, including ghost cells beyond the external
boundary and within any inner solid object.

The use of an FV approach to solve Eq. 6 for the electric current
guarantees that the scheme is conservative, without any numerical
electric current sink/source, as is the case of the FD method.
However, since the unknowns are located at staggered points,
interpolation is needed to go from mesh nodes to face or cell
centers and vice versa. Finally, centered FD schemes of 2nd-order
accuracy are applied everywhere for the gradient discretization of
Eq. 4, thanks to the use of ghost cells, as shown in Figure 1. Ghost
cells are employed to apply boundary conditions on the external
surface of the domain, so they are placed corresponding to each
external cell face of the domain, thus surrounding it except for the
edges and corners of the 3D domain.

We let vectors {j} and {ji} group the three components of the
electric and ion current density vectors at all cell face centers and the
vector {Φ} group, the thermalized potential at all cell centers. We let
nnodes, ncells, and nfaces represent the total number of nodes, cells
(including ghost ones), and faces of the 3D computational mesh,
respectively. Then, Eq. 4 can be discretized as

j{ } � −σe H[ ] ∇[ ] Φ{ } − H[ ] jc{ } + ji{ }, (13)
while the matrices [∇] and [H] are explained in the following.The
(3nfaces × ncells) matrix [∇] permits to go from Φ values at the
surrounding cell centers toΦ physical derivatives at cell face centers,
expressed as in Eq. 10. Thus, [∇] includes the components of the

FIGURE 1
2D sketch of a staggered mesh on a plasma domain with an
interior object (in orange). The location of the discretized equations
affected by the boundary conditions on currents is represented with
circles; solid circles refer to the normal electric currents imposed
explicitly, while dashed circles refer to current continuity equations, in
which the normal current of the adjacent material cell face is imposed
as a known right-hand side. Ghost cells surround the surface
boundaries of the domain, except for the edges and corners, where
they are not needed.
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Jacobian matrix J . Figure 2A shows the considered stencil for in-
plane derivatives (i.e., along a direction parallel to the cell face plane)
appearing in the matrix [∇]. First, Φ is averaged from four cell
centers to obtain it at the two sides of the considered cell face, and
then, a central scheme is applied. It should be noted that theΦ values
of the two involved central cell centers appear with a + sign in one
average and with a − sign in another, so they cancel out in the
derivative (the number of non-zero entries in the matrix is, thus,
only four). Figure 2B shows the same in-plane derivative, but at a
corner/edge boundary face, employing the same centered scheme as
for internal faces while considering the absence of ghost cells along
the domain edge. The (3nfaces × 3nfaces) matrix [H], on the other
hand, contains the coefficients derived from K entries.

Specifically [H] is the matrix relating {jx, jy, and jz} to the physical
derivatives of the thermalized potential {∂Φ/∂x, ∂Φ/∂y, and ∂Φ/∂z}.
Therefore, it is shaped as

H[ ] �
K[ ]1 0 0
0 K[ ]2 0
0 0 . . .

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (14)

with [K]i�1,2,... as the conductivity tensor from Eq. 5 referring to
the ith face center location. The [H] matrix then has three non-zeros
per row and three non-zeros per column at maximum.

If {jn} represents the vector containing, for each face, the electric
current density normal to it, then, we can introduce a rectangular
matrix [F] of size nfaces × 3nfaces, such that {jn} = [F]{j}. Introducing
this into Eq. 13 yields

jn{ } � −σe F[ ] H[ ] ∇[ ] Φ{ } − F[ ] H[ ] jc{ } + F[ ] ji{ }. (15)
At the same time, Eq. 6 and BCs can be easily discretized as

R[ ] jn{ } � C{ }, (16)

where {C} contains source/sink terms (at cell centers) or known
values of jn at the boundary cell face centers, and the (ncells × nfaces)
matrix [R] is defined as

R[ ] � A[ ]
BJ[ ][ ], (17)

where [A] represents the continuity matrix (referred only to plasma
cells, excluding the 3D object inner cells touching a plasma cell, and
ghost cells beyond the external boundary), and [BJ] groups the BC
equations on known normal electric currents at all boundary cell
faces (be they external or material boundaries). The continuity
equations and BCs are actually interlayered, following the
employed cell numbering system, which includes ghost cells.
Referring to Figure 1, at the row index corresponding to a ghost
cell, the BC relative to the boundary face belonging to that ghost cell
is applied. Additional BCs on internal objects, on the other hand, are
implemented by substituting the continuity equation of the cell right
inside the object (with respect to the considered face) with an explicit
BC on jn. At the edges of internal objects, if the internal cell row has
already been used to impose explicitly a normal current density, an
external plasma cell continuity equation is modified by bringing to
the right-hand side the known current density of the considered face
(see dashed circles in Figure 1).

Substituting Eq. 15 into Eq. 16, the linear system

−σe R[ ] F[ ] H[ ] ∇[ ] Φ{ } � C{ } + R[ ] F[ ] H[ ] jc{ } − R[ ] F[ ] ji{ } (18)
is finally obtained. Thus, the final matrix of the system to be solved is
[M] = −σe [R] [F] [H] [∇]. This is a square matrix of size ncells × ncells,
and its maximum rank is obtained by imposing the Dirichlet
condition on Φ at one or more cell centers. The BCs on the
thermalized potential, contrary to those on the electric current
density, are directly applied at the level of this final matrix [M].

FIGURE 2
(A) Stencil for the in-plane face derivative (at the red face location, along the direction of the black arrow), employing six cell centers (blue dots). Red
dots are at the location of the two averages over the four adjacent cell centers. A centered FD scheme is then applied to the red dots to obtain the
potential derivative, analogously to the across-face derivatives. (B) Stencil for in-plane face derivatives at domain corner/edge boundary faces. Yellow
(and the red) faces show simulation boundary faces. Ghost cells “b,” “c,” and “e” are highlighted in blue. A non-existent cell “f” exists since we are near
a domain edge, and its contribution is expressed as a function of the other cells, specifically a trivial linear extrapolation from the location “g” is applied,
and the derivatives at “g” along the horizontal and vertical directions are obtained with centered schemes from cells “a–c” and “d–e”, respectively.
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For instance, at a cathode injection surface, continuity equations of
the cells right inside the cathode surface are substituted with the
condition on Φ, expressed as an average potential over internal and
external cells.

The developed code first builds the elementary matrices [R], [F],
[H], and [∇]; then, it performs their sparse products with the vectors
{ji} and {jc} at each integration time step and solves for the obtained
linear system with a PARDISO [28] direct solver.

Although Φ and jn are obtained at cell and face centers,
respectively, they are later interpolated to mesh nodes for the
computation of ϕ and for post-processing purposes.

The maximum number of non-zeros per row of the matrix [M]
is equal to 19, which is the same as in the FD scheme. For a given
mesh, since the number of non-zero entries and the size of the
matrix are the same, the two methods do not show relevant
differences in terms of the CPU time.

In the following sections, the aforementioned FV scheme is
compared with the previous FD approach for two plume
configurations with different physical properties, aiming at
testing different aspects of the numerical approach. The
comparison between the numerical methods is carried out at the
first fluid solution for Φ, in order to avoid propagation, in time, of
the solution differences. The considered simulation parameters are
summarized in Table 1.

4 Unmagnetized scenario benchmark

Scenario 1 considers a non-neutral unmagnetized plasma plume
that interacts with a S/C; an ion beam is emitted by an ion thruster
and neutralized in both the electric charge and current using an
external cathode. In this first scenario, taken from [11], a non-linear
Poisson solver is employed in non-neutral regions of the domain
(i.e., inside the spatially resolved plasma sheaths near the material
boundaries) and the considered internal objects are the spacecraft
main body, a thruster case with an accelerating grid on top, a

cathode keeper, and two solar arrays. Figure 3A shows the employed
mesh for both the PIC and electron submodels, including the
mentioned 3D material objects. The relevant physical and
computational simulation parameters are summarized in the left
column of Table 1. Ions are injected from both the thruster and
neutralizer exit planes with a Gaussian radial density profile and a
mean injection velocity along the +z direction. Although only
parameters for Xe+ are shown, the simulation features the
injection of doubly charged ions from the thruster exit plane; a
Xe++ mass flow of 0.105 mg/s is injected with a velocity of 55.3 km/s.
Moreover, a fraction of 5% of the total neutralizer mass flow is
emitted in the form of singly and doubly charged ions from a
thermal reservoir at 0.2 and 0.4 eV, respectively, and a neutral mass
flow of 0.27 mg/s is injected from the thruster exit plane
(corresponding to a thruster mass utilization efficiency equal
to 90%).

The satellite ground (including the cubic body, thruster case,
and the back face of the solar arrays), the cathode external
surface, and the most external grid of the thruster are
modeled as conductive objects, while the front face of the
solar arrays is modeled as a dielectric object [11]. The external
boundaries of the computational domain feature a local current-
free condition, jn = 0. At the surface of material objects, a local
condition on jn is imposed, with a value depending on the surface
type; a metallic surface features a locally non-zero electric current
density, while a dielectric surface features jn = 0. On the cathode
emission surface, on the other hand, the Dirichlet conditionΦ = 0
is applied so that the required cathode current IC arises
automatically from satisfying the global electric current
continuity. A spatial smoothing of PIC inputs for the fluid
equations over two nodes is also applied, to mitigate the noise.

To illustrate the expansion of this unmagnetized plume,
Figure 3B shows the map of ne at the steady state (from the FV
solution with the finest mesh). Insights into the plume physics can
be found in [11]. Here, the focus is on the comparison between the
two numerical approaches.

TABLE 1 Simulation setup parameters and variables for both physical scenarios. The reference electron density ne0 represent the quasi-neutral density at the
reference node for electrons, produced by the injected ion profile.

Variable Unit Scenario 1 Scenario 2

Thruster-injected Xe+ mass flow mg/s 2.30 2.38

Thruster-injected Xe+ velocity km/s 39.1 39.1

Neutralizer total mass flow rate mg/s 0.35 0.0

Considered collisions for ions (−) Ionization of Xe, Xe+, CEX of Xe+, and Xe++ with Xe None

Considered collisions for electrons (−) Elastic collisions with Xe, Xe+, and Xe++; ionization of Xe and Xe+ Elastic collisions with Xe and Xe+

Reference electron temperature, Te0 eV 3.5 1.0

Reference electron density, ne0 m−3 1.46 · 1016 1.36 · 1016

Uniform background neutral density, nn,min m−3 5.0 · 1014 1.43 · 1018 (for χmax = 50)

Electron polytropic cooling coefficient (−) 1.1 1.0

PIC time step μs 0.25 0.0625

Total simulation time ms 2.0 1.5

Number of nodes for the coarser mesh (−) 51 × 51 × 61 41 × 41 × 101
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The electric current density jxz �
������
j2x + j2z

√
isolines and the

direction in the plane x − z (y = 0) obtained with the two
numerical schemes are compared in Figures 3C, D, for two
different mesh resolutions. The electric current j goes from the
thruster exit plane (larger rectangle) to the cathode exit plane
(smaller rectangle) and quickly reduces to zero farther
downstream. As the mesh becomes fine enough [subplot (d)], the
two schemes agree almost perfectly in both the magnitude and
current direction. However, in the coarser mesh case [subplot (c)],
the FV method seems to perform much better. The FV solution is
nearly the same as that obtained with the finer mesh, while the FD
solution changes significantly (in both magnitude and direction).
This is confirmed in Table 2, which reports, for both numerical

schemes and meshes, the electric current through the cathode, IC,
and the corresponding numerical continuity error εI � ∑kIk/|IC|,
where Ik refers to the electric current through a generic object k
(including the cathode), which is positive/negative if emitted/
absorbed, respectively. The cathode electric current (negative as it
“enters” the cathode) barely varies with resolution in the FV
approach, while it changes significantly in magnitude (three
times as much) in the FD scheme. Regarding εI, it is lower than
1% in the FV staggered scheme and is actually different from zero
due to the spatial smoothing of the PIC inputs, which introduces
small inaccuracies in the surface variables. In the FD case, on the
other hand, it is significantly larger and decreases with the cell size,
as expected.

The better fluid solution in the FV approach leads to a better
coupling with the electric circuit and non-neutral solver models.
This is an advantage when it comes to detecting stray currents in
objects, as carried out in [29]. Stray currents are relevant as they
contribute to S/C charging, an issue of high interest in the field of
plasma interaction with the space environment or even in ground
facility characterization. These currents are typically small, so if
the numerical scheme is affected by a current continuity error,
the code is not able to resolve them accurately. In summary, when
dealing with objects and even in the absence of magnetic fields,
the staggered FV approach, being more natural since it obtains

FIGURE 3
Cross sections at y= 0 (through the satellite center) of (A) employedmesh for the unmagnetized scenario 1, (B) electron density steady-state profile,
and (C,D) obtained electric current density jxz isolines and direction (shown by the arrows) for the FD (black solid lines) and FV schemes (red dashed lines),
respectively. In all subplots, the S/C body is shown by the large square, while the thruster case and the neutralizer are shown by the large and small
rectangles on the top S/C surface, respectively. Thin solar panels are placed on the sides of the S/C body, at z= 0. In subplot (A), one out of every two
nodes is shown for the sake of clarity. In subplots (C) and (D), the electric current isolines, from the periphery to the near plume region, refer to values of
0.1, 0.2, 0.5, 1.0, and 5.0 A/m2. Electric current plots refer to solutions obtained with (C) coarse (dx, dy, and dz = 4 cm) and (D) fine meshes (dx, dy, and
dz = 2 cm).

TABLE 2 Electric currents at the cathode and their global error for FV and FD
schemes.

Mesh node 51 × 51 × 61 101 × 101 × 121

IC,FV A) −1.734 −1.808

εI,FV 0.40% 0.11%

IC,FD A) −1.646 −1.837

εI,FD 4.7% 1.7%
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currents at material cell faces rather than at the nodes, is much
more robust, and its solution converges much faster with the
mesh resolution.

5 Application to a geomagnetic plume
expansion scenario

In this section, the new FV scheme is compared against the
previous FD approach for a scenario featuring an initially current-
free plasma plume expanding in a magnetized environment
(scenario 2).

5.1 Simulation settings

In this scenario, taken from [4], the plasma is assumed to be
quasi-neutral everywhere, and electron magnetization is due to a
background uniform geomagnetic field of 0.5 G along the +x
direction (i.e., toward the reader). All relevant physical and
computational simulation parameters are summarized in the
right column of Table 1, while Figure 4A shows an x = 0 cross
section (through the plume centerline) of the employed non-
uniform conically expanding mesh for both the PIC and electron
submodels. This choice permits us to reduce the statistical noise
downstream due to the PIC. Only singly charged ions are injected
from the z = 0 cross section with a radial Gaussian density profile
and a mean velocity along the z direction. The injection surface is
circular, with a maximum radius of 0.20 m, while the 95% ion
current radius is assumed to be 0.14 m. For the case of Table 1, the
injected Xe+ mass flow corresponds to a total ion-injected current
Iinj,i = 1.724 A. Since very large values of the Hall parameter still pose
problems of numerical convergence [4], a uniform neutral
background density nn is included and is used to limit the
maximum Hall parameter in this numerical study.

Regarding BCs, all external boundaries of the computational
domain feature a local current-free condition jn = 0. The Dirichlet

condition Φ = 0 is applied only at the reference node for polytropic
electron properties, i.e., at x = y = z = 0, where ϕ = 0, Te = Te0, and
ne = ne0. The plume injected into the domain is already locally
current-free so that no external neutralizer is included in the
simulation.

5.2 Results comparison and discussion

Figures 4B, C show the electron density and electric potential
steady-state profiles (from the FV solution with the finest mesh) to
illustrate the geometry of the plasma expansion in this physical
scenario, respectively. The downstream potential gradient that arises
opposes the Lorentz force on ions so that no net plume deflection
occurs. The resulting effect is a compression of the plume z cross
section along the direction y, which is perpendicular to both the
plume centerline (z) and the magnetic field direction (x). Further
insights into the involved physics can be found in [4].

Figures 5A–D show a comparison of the electric current density
in-plane component magnitude jyz �

������
j2y + j2z

√
in the meridional

plane x = 0 obtained with the two numerical schemes, in terms of
isolines and direction for a varying maximum Hall parameter χmax

(along each row, increasing from the left to the right) and mesh
resolution (along the columns, increasing from top to bottom).
Additional intermediate cases in terms of the maximum Hall
parameter and mesh resolution can be consulted on demand to
authors.

As explained in [4] and referring to Figure 5, the magnetic field
induces an electric current loop in the yz plane, with a positive
current tube on the left and a returning negative current tube on the
right. In particular, the current flowing in these tubes increases
slightly with the Hall parameter (i.e., from the left to the right).
Noticeably, larger oscillations appear in the FD approach, and these
clearly reduce for finer meshes and lower maximum Hall
parameters. Therefore, a mesh resolution that is enough at a low
χmax value might be inappropriate at a larger χmax value. When this
happens, the solution seems to oscillate around an average value.

FIGURE 4
Cross sections at x = 0 of the (A) employedmesh for the magnetized scenario 2, with the blue dot representing the +xmagnetic field vector coming
out of the plane, (B) steady-state electron density, and (C) steady-state electric potential. The results of subplots (B,C) are obtained with the FV staggered
scheme using the finest mesh. In subplot (A), one out of every five nodes is shown along both directions.
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These oscillations are not associated with the global continuity error
(i.e., the artificial current rising at the Dirichlet node, whose origin is
explained in Supplementary Appendix SB) but are due to the stencil
used, and the fact that the unknowns are solved in collocated grids. A
non-staggered mesh is what produces these sawtooth “cell-size”
chequerboard oscillations, which are still a solution of the discretized
equations. The staggered FV scheme, on the other hand, is more
robust, but nonetheless, it is still subject to some oscillations in very
stiff problems like this, due to both ill-conditioning and the gradient
scheme, which involves the contribution of more cells. It should be
noted that both numerical schemes are affected by flux discretization
errors which depend on the stencils employed and the number of
surrounding points contributing to the discretized derivatives. In
both cases, higher-order schemes would mitigate these errors but the
computational burden would increase. The adopted schemes are
considered adequate and are commonly used in these kinds of
problems. Moreover, since numerical diffusion is absent in this
scenario (with the magnetic field parallel to a mesh axis), errors in
flux discretization are expected to be small. The FV and FDmethods

tend to almost coincide as the mesh resolution increases; this also
constitutes the validation of the physical solution of the newly
implemented FV approach in EP2PLUS.

The staggered FV approach, thus, converges quicker at coarser
meshes, and more importantly, it is not affected by a global
continuity error like the FD approach. Table 3 shows the value
of the integrated electric current I+z through the positive electric
current tube (where jz >0) at the z = 10 m cross section for both
numerical schemes and for all the maximum Hall parameters and
mesh resolutions investigated. The FV method is capable of
reproducing this global physical property already with the
coarsest mesh (with an underestimation of less than 1%), while
the FD results show a much larger dependence on the mesh
resolution.

In the magnetized scenario 2, when using the FD scheme, the
Hall parameter must be limited to values not larger than 50–100 in
order to maintain an acceptable quality in the solution for
reasonable mesh resolutions. As mentioned previously, this is
achieved here through an ad hoc neutral density background to

FIGURE 5
Comparison at x = 0 of the electric current density jyz isolines and direction (shown by arrows) with the FD (black solid lines) and FV methods (red
dashed lines) obtained with the (A,C) coarsest and (B,D) finest mesh. (A,B) refer to χmax = 35, and (C,D) refer to χmax = 100. The electric current isolines,
from the periphery to the plume core and the injection region, assume values of 0.01, 0.1, 0.5, 1.0, and 5.0 A/m2.
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increase the minimum electron collisionality. This limitation is
mainly due to the non-conservativeness of the FD approach,
which does not exactly solve the divergence equation. The overall
consequence of the discretization error is that, at the Dirichlet node,
the local electric current density in the direction normal to the
boundary is not 0, and its integrated value IDir (with the surface
associated with the node) quantifies the global continuity error. It
turns out that it is almost inversely proportional to the square of the
number of nodes in each mesh direction, confirming that it is
ultimately related to FD truncation errors, as can be seen in
Figure 6. Here, εI,FD � |IDir|/Iinj, i, and it represents the relative
error (normalized with the total injected ion current) and ~N
represents the number of nodes along each direction normalized
with the coarsest mesh case (for which ~N � 1). It should be noted
that the artificial current can reach values that are even larger than
the injected ion current, for the lowest resolution case with the
highest maximum Hall parameter. We point out, however, that
simulations in [4] had a quite lower global continuity error, in the

order of 5%, since they considered a more carefully selected mesh
with an increasing resolution close to all boundaries (where physical
gradients are the largest), a fact that has not been adopted here since
the focus is on highlighting the advantages of the new FV scheme
and in showing the origin and consequences of the discretization
errors associated with the FD approach.

5.3 Effects of the maximum transport
anisotropy on the circulating electric current

The conservativeness of the FVmethod has enabled an extended
analysis (compared to what was carried out in past studies [4]) on
the effects of the neutral background on the obtained physical
solution. A set of simulations with a varying neutral background
density to reproduce a maximum Hall parameter of 20, 35, 50, 100,
250, 400, and 500 have been considered, with the conservative FV

TABLE 3 Comparison of the integrated electric current I+z flowing through the positive current tube of the diamagnetic loop, obtained with the two numerical
schemes, for different values of χmax and mesh resolutions, in scenario 2.

I+z A)

Mesh resolution

41 × 41 × 101 81 × 81 × 201 121 × 121 × 301

FV, χmax = 35 0.664 0.671 0.676

FV, χmax = 50 0.839 0.850 0.852

FV, χmax = 100 1.13 1.17 1.18

FD, χmax = 35 0.453 0.544 0.583

FD, χmax = 50 0.660 0.700 0.739

FD, χmax = 100 1.59 1.04 1.06

FIGURE 6
Global continuity error in FD simulations for scenario 2, as a
function of the square of the normalized number of nodes along one
direction, for different maximum Hall parameters.

FIGURE 7
Integrated current flowing through the positive current tube
(jz >0) at z = 10 m as a function of the maximum Hall parameter (non-
dimensional). Simulations results are obtained with the FV approach
and the finest mesh resolution.
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scheme and the highest mesh resolution. It should be noted that the
previous studies with the FD scheme had been carried out only for
χmax ≤100. Indeed, the FD formulation failed to converge to a
solution in the extended range of χmax values, even with the
highest mesh resolution. A higher resolution was needed for the
FD scheme to converge (to a smooth solution not affected by
oscillations and a low continuity error) and would require
excessive computational times. The integrated positive electric
current at the z = 10 m cross section, normalized with the total
ion-injected current Iinj,i, is computed and plotted as a function of
χmax in Figure 7.

As partially predicted in [4], the integrated current tends to clearly
saturate with the maximum Hall parameter and tends to a value that is
slightly lower than the injected ion current. Figure 8 shows the local
effects of the increasing χmax value on the electric current density, and
the shape and magnitude of the diamagnetic loop. Higher
magnetization levels, χ, generate a larger electric current flowing in
the tubes and, hence, a bigger deformation of the latter in the xy plane.
In particular, the asymmetry between the positive and negative current
tubes becomes more evident, with the positive current tube getting
wider and the negative current tube shrinking. Nevertheless, the general
trend of a saturation of such effects, anticipated in [4], is confirmed here
for a much larger variation range for χ.

The aforementioned study constitutes a further validation and
successful application of the advantages and capabilities of the FV
scheme. Due to the conservativeness of the FV scheme, no artificial
source of current is present, and the integrated current in the
positive current tube (jz >0) is exactly equal and opposite to the
one flowing through the negative current tube (jz <0) for continuity.

6 Conclusions and future work

This work has presented the upgrade of the numerical scheme for
solving an electron magnetized fluid model within the 3D hybrid
simulation code EP2PLUS. The new finite volumes scheme has been
compared with the original finite differences scheme of the code for two

physical scenarios: the plasma environment around a spacecraft created
by the plasma plume of an ion thruster [11] and the expansion of a
current-free plasma plume affected by the geomagnetic field [4]. The
two physically and computationally different scenarios were specifically
considered to test many critical points, such as boundary conditions
with 3D objects, magnetization effects, non-neutrality effects, or
different shapes of the structured meshes (rectangular uniform but
also non-uniform and non-rectangular ones). The discretized form of
the equations, the final form of the involved matrices, and the
considered BCs have been described for the two schemes. They have
been benchmarked for varyingmesh resolutions and, in themagnetized
scenario, for different maximum Hall parameters. Although at a very
large mesh resolution, both schemes tend to give the same physical
solution, the weaknesses of the FD approach and the practical
advantages of the new FV scheme have been highlighted. First, the
FV scheme presents a conservative andmore natural implementation of
the first-order electron fluid equations and their boundary conditions,
allowing us to precisely characterize variables as fluxes at their natural
physical location, i.e., at the surface boundaries of the domain and
internal objects. Second, the use of a staggered mesh is shown to
mitigate the chequerboard issue, evident in some FD solutions. Third, it
presents less spurious errors (the FD solution is corrupted by a global
continuity error that is absent in FV). Fourth, the FV scheme attains a
similar quality of the solutionwith a coarsermesh, thus allowing either a
larger saving in the computational time or amore accurate solutionwith
similar computational efforts. Fifth, in the case of amagnetized plume, it
can deal with much larger values of the Hall parameter (i.e., higher
magnetization), where the FD scheme does not converge. This has
permitted the extension to higher Hall parameters of the study in [4],
confirming the saturation trend in the electric current circulating inside
diamagnetic loops. Nonetheless, the FV approach is still sensitive to the
ill-conditioned nature of a 3D magnetized problem. Convergence
continues to be problematic at very high electron transport
anisotropy, meaning Hall parameters of the order of 100–1000,
depending on the particular scenario. Further improvements would
be beneficial at domain boundary edges and corners, in order to have
more homogeneous schemes and to mitigate any artificial boundary

FIGURE 8
Comparison of FV solutions at χmax = 50 (solid black line), χmax = 100 (dotted blue line), and χmax = 250 (dashed red line), in terms of (A) electric
current density jyz isolines (0.4, 1.0, 2.0, and 5.0 A/m2 from the periphery to the plume core and injection region) at x = 0 m and (B) electric current density
absolute value |jz| isolines (0.1, 0.2, and 0.7 A/m2 from the periphery to the inner region of the two current tubes) at z = 12.5 m. In subplot (B), a plus and
minus sign give the direction of jz in the current tubes.
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effect. Still on the numerical side, future workmust check the absence of
numerical diffusion when applying oblique and non-uniform magnetic
topologies. This can be carried out by comparing the plasma responses
obtained with the Cartesian-typemeshes of EP2PLUS and themagnetic
field aligned meshes of similar hybrid codes, such as HYPHEN [30].
The use of a Cartesian-type mesh seems mandatory if the induced
magnetic field effects are considered relevant, since the total magnetic
field is not known a-priori. Once validated, for the new FV scheme, the
physical capabilities of EP2PLUS can be improved. First, the extension
of the stationary plume model presented here to plumes with low- or
mid-frequency dynamics is almost immediate since the PIC
formulation of heavy species is already time-dependent, and the
electron response is quasi-stationary below megahertz frequencies.
Second, and of high practical interest, is the ongoing validation of a
new version of EP2PLUS, solving the electron-full energy equation
(instead of applying an empirical polytropic closure) [18]. In this new
version, the new FV scheme is applied to both the pair of electron
continuity and momentum (i.e., Ohm’s) equations, and the pair of
energy and heat-flux Fourier equations. All these numerical and
physical advances are, for instance, needed to apply EP2PLUS to the
study of Hall thruster plumes, with their complex magnetic topologies,
current neutralization, and active collisionality [15]. Lastly, the new FV
scheme has already been successfully applied to a scenario featuring the
expansion of an electrodeless thruster plume within a magnetic nozzle
[31] and contributed to gaining physical insight into the governing
mechanisms.
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