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Evaluation of a pilot-scaled paddle dryer for the production of ethanol
from lignocellulose including inhibitor removal and high-solids
enzymatic hydrolysis
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A B S T R A C T

The advantage of using paddle dryers (PD) in the production of sugars and 2nd generation ethanol from
pretreated wheat straw was investigated. This machinery was employed in order to detoxify steam-
exploded substrates and to mix different slurries in the hydrolysis step. The obtained hydrolysate was
fermented by the yeast Saccharomyces cerevisiae. Acetic acid and furfural were reduced up to 11 and
26 fold respectively in the detoxified substrate. When fermentation was carried out at low solid
suspension, the use of PD was as effective as water extraction in detoxifying exploded biomass, giving
ethanol yields of 90% at 0.05 solid/liquid ratio (S/L) and 80% at 0.10 S/L. Moreover, by using PD the
cellulose conversion yield was significantly improved in the hydrolysis step: when operating at higher S/L
(0.4), the hydrolysis efficiency was twice the one achieved by using a bioreactor with a Rushton stirrer.
ã 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The production of bioethanol from lignocellulosic biomass is
widely reported and various near-commercial phase processes
have been proposed [10]. However, research and development
activities are still required to improve operations, efficiency and
economics [4]. The transformation of sugars in byproducts during
the pretreatment step is one of the most challenging issues.
Besides lowering the yields of the desired products, these
byproducts can completely inhibit the involved microorganisms.
Bellido et al. [5] showed that an increase in acetic acid
concentration led to a reduction in ethanol productivity, with
complete inhibition observed at 3.5 g/l. On the other hand, the
addition of furfural produced a delay on sugar consumption rates.

The water washing is a good method to remove inhibitors, but
with this procedure the soluble sugars are separated from the
solids [9]; these soluble carbohydrates, both free sugars and
oligomers, are diluted and still mixed with inhibitors in the
resulting aqueous stream, so their exploitation could be difficult
* Corresponding author. Fax: +39 835 974516.
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and not economic. Other detoxification procedures are based on
the use of calcium hydroxide, sodium sulfite, activated carbon,
laccase, or extraction with organic solvents; however, the use of
chemicals implies increase of economic costs and environmental
burdens [12,14,11,23].

Another important issue is the ethanol concentration in the
final fermentation broth, which has to be higher than 4–5% to
reduce the cost of energy required for ethanol distillation
[17,33]. In turn, this implies a load of 200–300 kg m�3 of
lignocellulosics in the bioreactor, i.e., working with slurry at
high solid/liquid ratio. Such slurries are difficult to mix because
of the swelling properties of cellulosic fibers, so negative effects
on the yields of saccharification and fermentation have been
highlighted [30].

Existing machineries (already used in agroindustry, pulping,
biotech industry, etc.) can be utilized to deal with lignocellulosic
biomass in the biorefinery field.

A paddle dryer (PD) is a low speed stirrer with fan-shaped
hollow paddles, in which a hot fluid is circulating. It is currently
used to dry sludge and granular materials. The performances of
this machinery are based on the high rate of heat transfer that
allows short drying time coupled with the homogeneous quality of
the product (www.andritzgouda.com).
der the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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In this work PD was tested to detoxify the exploded substrate
(removing the volatile inhibitors by evaporation), and to obtain an
efficient enzymatic hydrolysis of the substrate in high S/L
suspensions. The condensate stream of water and organic
molecules can be treated as liquid waste in an anaerobic digester.
Alternatively, a separation step can be considered to recover the
chemicals that could have an economic value as building blocks.

The achievement of positive results by using a modified PD
(commercially available in its base form) may provide significant
advantages in fulfilling economics and technical targets, i.e., by
simplifying the plant/process and by increasing yields.

2. Materials and methods

Steam Explosion (SE) pretreatment was chosen to improve
cellulose digestibility, because of its efficiency and low environ-
mental burden [13,7,2]. Wheat straw was used as feedstock
(representative lignocellulosic biomass), due to its abundance as
agricultural residue [28]. The pretreatment at 210 �C for 6 min was
previously assessed as optimal for the bioconversion goal [31]. The
schemes of the operations are reported in Fig. 1. In Path A the
exploded straw was extracted with water at 60 �C, the slurry was
then filtered to produce the detoxified substrate, used for
benchmark tests of bioconversion. In Path B the detoxification
was carried out in the PD system and the hydrolysis was done in
Fig. 1. Pretreatment, detoxification and bioconversion of wheat straw. Path A: typical ro
detoxifier and hydrolyser.
the same apparatus by introducing water, buffer and enzymes (see
below).

2.1. Materials

As raw material, locally harvested wheat straw was utilized.
Before the steam explosion treatment, the straw was grinded with
a common straw chopper, equipped with sieve having holes with a
diameter of 1 in.; the average particle size of the grinded straw was
1 cm length, 1 mm thick.

The commercial product Cellic1 Ctec2 was used as enzymes
(from Novozyme A/S, Denmark). The yeast (Saccharomyces
cerevisiae, YSC-2, dry solid form, stored at 4 �C) and other chemicals
were purchased from Sigma–Aldrich.

2.2. Steam explosion treatment and water extraction

The SE was carried out with a continuous reactor (Stake Tech II
CO-AX Feeder Digester) able to process 150–300 kg/h of freshly
harvested or dried biomass. The reactor is a tubular steel cylinder,
having inside a screw that, continuously, moves the cooked
biomass toward a blow valve. The treatment consisted in exposing
the biomass (previously humidified in order to have DM around
50%) to saturated steam at 210 �C for a residence time of 6 min, then
suddenly decompressing the slurry through the blow valve. A
ute to produce 2nd Generation ethanol; Path B: the new concept of using the PD as
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batch of 400 kg of exploded straw (brown pulp, pH 4.2, DM 55–60%,
produced in 2 h of plant exercise) was recovered. It was loaded in
the PD without any other treatment (path B), or it was detoxified by
water extraction (path A). In the latter case, 200 kg of exploded
straw was extracted with 2000 l of water at 60 �C in a 2 m3 tank; the
slurry was filtered on a counter current multistage belt filter
(Komline-Sanderson K-S ADPEC Horizontal Vacuum Filter) to
separate the soluble substances (mainly hemicellulose and
inhibitors) from the cellulose and lignin; then the insoluble
matter (IM) was recovered and stored at 4 �C.

2.3. Paddle dryer detoxification

A PD with internal working volume of 25 l was used (from MFG-
Dutch Gouda, Netherlands). About 6 kg of exploded biomass were
treated in each test; the rotation speed of the paddles was set at the
optimized value of 40 rpm (minimum value that guaranteed a good
mixing without loss of efficiency). The paddles and the external
jacket were heated by hot water, using a recirculation system. The
temperature inside the PD was regulated by a PID (proportional–
integral–derivative) controller and kept at 65 � 5 �C (Fig. 2). The
machinery was equipped with a removable top cover connected to
a vacuum line for conveying the volatiles in a condensation system,
thus avoiding the pollution of inhibitors in the air.

The PD was employed by using two configurations or methods:
the first was the conventional way for which the machinery was
built; the second was planned during this work to obtain a moist
substrate. More specifically the two methods can be described as
follows: method (1) complete biomass drying, producing a
detoxified dry material (DDM method); method (2) incomplete
drying, producing a detoxified moist material (DMM method); in
this method, the moisture that leaves the substrate as vapor was
partially balanced by spraying demineralized water (about
Fig. 2. Scheme of the paddle dryer machine used to detoxify and hydrolyze the explode
material.
50 ml/min) on the biomass during the treatment, in order to
maintain the DM at 40–50%.

2.4. Hydrolysis and fermentation (bioconversion)

In path A, for the pre-hydrolysis step, the bioconversion of the
detoxified substrate was carried out in a conventional bioreactor
(2 l glass vessel, equipped with: engine, Rushton stirrer, controller
of temperature and rpm; model Biostat B of B. Braun Biotech); the
sequential SSF was carried out in shaken flasks (200 ml, orbital
shaker at 150 rpm). The first step of hydrolysis was carried at 50 �C,
50 rpm, for 24 h, and then the process was continued at 35 �C for
72 h with the addition of the yeast. As overall, the procedure was a
separate pre-hydrolysis step (SH) followed by simultaneous
saccharification and fermentation (SSF). This sequence exploits
the higher activity of the enzymes at 50 �C to reach a high sugar
concentration level in the short term, and avoids enzyme
inhibition (by product) in the long term because the yeast
continuously metabolizes it during the SSF. The mix of enzymes
Ctec2, composed by cellulases (endo- and exo-) and cellobiases,
(6 g of commercial solution per 100 gDM of substrate; protein
content in solution: 73 mg/ml; activity: 151 FPU/ml; specific
gravity 1.2 g/ml) was used. The enzymatic hydrolysis was carried
out at different solid-to-liquid consistencies (S/L, where S is the
weight of dry solid phase, and L is the weight of the total liquid
phase): S/L 0.05; 0.10; 0.20; 0.40, in a medium containing 0.05 M
sodium acetate buffer (pH 5). After the pre-hydrolysis step, the
suspension was cooled at 35 �C for the SSF step, supplemented with
yeast (S. cerevisiae) and nutrients to obtain a medium containing
3 g/l of yeast, 2.5 g/l of yeast extract, 0.25 g/l of (NH4)2HPO4,
0.025 g/l of MgSO4�H2O.

In Path B, the SH was carried out in the PD system at 50 �C for
24 h (after the detoxification step), at the same conditions of
enzyme dosage and S/L ratio as in Path A. The SSF step was carried
d straw. Water sprayer was the modification assessed to obtain a detoxified moist
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out in flasks by using the obtained hydrolysate and introducing the
yeast and supplements as described above.

All experiments were performed in duplicate and the analytical
determinations in triplicate. The yields were reported as percent-
age ratios between the obtained products and the stoichiometric
values expected from the complete conversion of the glucan
(contained in the substrate submitted to the bioconversion) to
glucose and of the glucose to ethanol.

2.5. Samples preparation and analyses

The wheat straws and the dried exploded materials were
ground with a mill equipped with a 50 mesh sieve and dried
overnight at 60 �C. The extractives were determined by Soxhlet
extraction using a mixture of toluene and ethanol (2:1) for 6 hours
(CPPA G-13 method) [8]. The lignin and carbohydrate contents
were determined by the Klason procedure (TAPPI T13 m-54) [29].
The sugar analysis was carried out on the hydrolysates by HPIC
(High Performance Ionic Chromatography, DIONEX DX300) with
Carbopac PA1 column, using 2 mM NaOH as eluent (flow rate
1.0 ml/min, at 28 �C) and a PED (pulsed electrochemical detector).
Soluble lignin in the Klason filtrate was determined by UV
spectrophotometry (HITACHI Co. V2000) at 205 nm (TAPPI Useful
Methods 250). The ash content was determined by combustion at
600 �C (ASTM-1102, modified) [3].

Acetic acid, furfural and hydroxymethylfurfural were deter-
mined in the aqueous phase by HPLC (hp1100 series) equipped
with diode array UV detector, column Phenomenex Synergi
Fusion-RP 80, and using as eluent a mix of acetonitrile and water,
solvent gradient 3–50%.

The concentration of the ethanol in the broth was determined
by using a HPIC (Dionex LC30), equipped with an AS50 automatic
injector, column Nucleogel Ion 300 OA, refractive index ED50 as
detector, and using as eluent H2SO4 0.05 M (40 �C, 0.4 ml/min).

3. Results and discussion

3.1. Materials characterization

The composition of the straw is reported in Table 1. The
inorganic matter was used as a tracer to assess the mass balance
through the SE and drying steps. The ash content in the products
was compared to its value in the raw material to obtain the actual
mass; the recovery of each component was calculated from the
percentage composition obtained by the chemical analysis and the
actual mass:

Solid produced from100g of straw ¼ 100g � ðash in the strawÞ
ðash in the productÞ;
Table 1
Straw composition and mass recovery of the constituents after treatments.

Straw
(wt%)

Exploded straw Ins

Inorganica 6.9 6.9 2.9
Lignin (Klason) 20.0 27.5 20
soluble Klason lignin 2.0 2. 9 1.6
Extractives 8.0 – – 

Arabinan 2.3 0.2 0.0
Galactan 0.7 0.5 0.0
Glucan 38.0 34.2 32
Xylan 19.4 7.2 2.2
nd 2.6 5.5 1.4
Balance 100 84.9 60
Mass loss 15.1 

a Determined as ashes; extractives not determined in the treated material.
Recovery of the componentðiÞfrom100g of straw
¼ %ðiÞ � solid produced

This method was previously used to assess the loss of organic
mass after the steam explosion treatment [32].

Table 1 shows the recoveries after each step. On this basis, it was
also possible to evaluate the mass loss as volatile matter, both as
H2O from dehydration reactions and small organic molecules.
During the SE, 65% of the hemicellulose (xylan, arabinan, galactan)
and 10% of the glucan was degraded by hydrothermal reactions.
Using the ash tracer method it was calculated that 15.1% of the
starting mass was transformed in volatile matter, removed with
the steam during the explosion flash and the drying. After SE
treatment, 24.2% of the straw was solubilized by water extraction,
72% of the hemicellulose contained in the exploded product was
solubilized, while 95.4% of the glucan remained in the insoluble
material, constituting more than half of the residue. Most of the
inorganics (58%) were extracted by water after the SE. The
treatment of the exploded straw with PD has slightly affected the
composition: glucan and xylan contents were reduced, while mass
loss, acid insoluble residue (Klason lignin) and other undetermined
matter were increased.

3.2. Detoxification

The dry matter of exploded straw was 58%; the complement
42% contained the moisture and the organic molecules that
evaporated overnight at 65 �C. The concentration of catechol,
hydroxybenzaldehyde and formic acid in the exploded straw were
below 50 ppm, so these molecules were not considered in the
analysis. The drying in the PD was followed by determining the DM
of samples picked up during the trial (in the case of DDM method).
After 40 minutes the substrate had a 99% DM; in order to guarantee
efficient removal of inhibitors, the trials were prolonged up to one
hour. In Fig. 3 the concentrations of these molecules in the
substrate along the PD treatments are reported. By using the dry
material method or moist material method, the content of acetic
acid was reduced by 7 and 11 fold, the furfural content by 13 and
26 fold, respectively. With the water spraying (DMM method), the
biomass keeps moisture, but the volatile inhibitors were removed
more efficiently, thanks to the stripping effect of the vapor flow
continuously leaving the fibers.

The inhibitors reduction with the paddle dryer offers the
following advantages compared to the detoxification made by
water extraction: (1) no hemicellulose was removed, allowing the
fermentation of C5 sugars together with C6; (2) no filtration is
necessary; (3) the water consumption is reduced (1 l/kg with PD vs
10 l/kg with water extraction).
oluble matter Soluble matter Exploded straw after PD

 4.0 6.9
.0 7.5 29.3

 1.3 3.1
– –

 0.2 0.3
 0.5 0.5
.6 1.6 31.3

 5.0 4.8
 4.1 8.4
.7 24.2 84.6

15.4



Fig. 3. Removal of the volatile inhibitors during 1 h of PD treatment, using the detoxified dry material (DDM) method, and the detoxified moist material (DMM) method. In the
plots are reported the concentrations of the inhibitors as wt% of the exploded straw (DM).
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3.3. Enzymatic hydrolysis

The stirring methods currently used in bioreactors are not
efficient with high dry matter, so specifically designed reactors
have to be used [19,34]. In the case of the lignocellulosic slurries,
loads higher than 10% in mass involve bulk dragging at the
expenses of microcirculation and of hydrolysis yield. The first step
of the enzymatic action is the most difficult to deal with as these
concentrated biomass slurries are highly viscous with non-
Newtonian behaviors that pose several technical challenges to
the conversion process [27]. Conventional bioreactors can be used
Fig. 4. The hydrolysis yields (cellulose conversion) with path A and path B (using PD 

different solid to liquid ratio.
only when the slurry becomes more fluid and homogeneous.
Starting from a DM of 20% Roche et al. [24] found that the
saccharified corn stover liquefied to the point of being pourable at
biomass conversion of about 40%, after roughly 2 days. The fed
batch procedure has been used to reach high final concentration of
solid in SSF experiments from pretreated spruce [26], without
highlighting major differences in overall performance between
batch and fed-batch; however, the ethanol productivity during the
first 24 h was higher in the fed-batch SSF experiments. Zhang et al.
[34] have obtained ethanol concentrations of up to 84.7 g/l from a
DM content of 25% by adding pretreated corncobs every 4 h during
with detoxified dry and moist material methods, DDM and DMM, respectively) at



Fig. 5. Ethanol yields obtained through Path A and Path B (using PD with detoxified dry and moist material methods, DDM and DMM, respectively).
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the first 24 h of SSF. The invention of new machinery and processes
able to deal with concentrated slurries after the pretreatment,
eventually in conjunction with hydrolysis and fermentation, is
actively pursued and object of several patents [25,16]. In this work,
we tested the PD to liquefy and hydrolyze slurries of SE treated
straw, after the detoxification steps (DDM and DMM methods). In
Fig. 4 the results obtained with these methods compared with
those achieved with the water extracted substrate (Path A) are
reported. In the case of low S/L and moist material method,
cellulose hydrolysis was almost complete after the bioconversion
process, but the yield was slightly lower in PD than that obtained in
a conventional stirred reactor at 150 rpm. Significant lower yield
was obtained in the case of the dried substrate, according to the
hornification effect that caused an average loss of efficiency of 12%
Fig. 6. Residual sugars detected in the fermentation broth at the end of the processes sche
methods, DDM and DMM, respectively).
[20]. In general, the yields decreased with increasing S/L. The PD
with the moist material method has given similar results obtained
with stirred reactor at S/L 0.1. From that point ahead the PD showed
superior performances. The decreasing of conversion with
increasing solids concentrations was previously published [18].
Various factors could be suspected to play a role, such as
insufficient mixing, high lignin content, inhibitors derived from
hemicellulose, product inhibition (cellobiose or ethanol). [15] have
found that the adsorption of cellulases decreases with increasing
solids, thereby depressing its activity.

At S/L 0.4 the cellulose hydrolysis yield achieved with PD was
52% versus 28% in conventionally stirred reactors, clearly showing
the advantage of using this machinery to carry out a pre-hydrolysis
step (liquefaction) before the fermentation.
matized in Fig.1: Path A and Path B (using PD with detoxified dry and moist material
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3.4. Fermentation

Preliminary tests have shown that the exploded straw did not
produce ethanol without detoxification. In fact, even if the
enzymes efficiently hydrolyzed the cellulose, the subsequent
conversion of glucose into ethanol was completely inhibited. In
Figs. 5 and 6 the obtained results are shown. The concentrations
(reported on the bars of Fig. 5) and the yields do not directly
correlate, because the substrates have a different glucan/solid ratio
(see Table 1).

At S/L 0.05 the cellulose was converted into glucose and this
sugar was quantitatively metabolized into ethanol and other
byproduct, like glycerol, acetic acid and lactic acid. A lower ethanol
production was observed using PD and dry material method
(Fig. 5); this can be attributable to the hornification that occurs by
drying the substrate, which reduces the enzymatic hydrolysis
efficiency. The xylose was obtained from the hydrolysis of
hemicellulose and its amount is congruent with the complete
hydrolysis of the xylan. Low amounts (<1 g/l) of acetic acid, lactic
acid and glycerol were also detected, due to the residual bacterial
interference; their concentration did not seem to be linked to the
different methods, since their production appeared random, as
observed in the different S/L cases.

At S/L 0.10 the fermentation occurred both in Path A and Path B,
but in the latter case only by using the detoxified moist sample. In
fact, by using the dried substrate, the glucose was not fermented;
this could be due to the fact that the concentration of inhibitors in
the slurry had reached the threshold of toxicity, or, probably, new
toxic compounds were formed, as the material was drying, which
contributed to the inhibition. Through Path A and Path B (DDM
method), the ethanol yields were 82 � 3% and 79 � 3%, respectively.
By drying with PD, the biomass hornification increased, and, as
consequence, the hydrolysis efficiency decreased; it follows that
the DDM method is more suitable.

At S/L 0.2 the PD increased the enzymatic hydrolysis yield, but
ethanol was not produced; the inhibitor concentration overcomes
the toxicity threshold also in the moist material. Only in Path A the
fermentation occurred, but with low yield (51%).

At S/L 0.4 the fermentation did not start at all, but, as reported in
Fig. 4, the hydrolysis yield was significantly enhanced with the use
of PD. In this case the method could be coupled with the use of
tolerant strains, to obtain higher concentrate ethanol broths.

Overall, the PD resulted in an efficient system to enhance the
enzymatic hydrolysis at high S/L because the slurry at high density
can be efficiently mixed. A significant advantage of using PD
compared to the water extraction is the higher availability of xylose
in the hydrolysate; indeed, in Path A, the soluble xylan is taken
away together with the inhibitors. The availability of microbial
strains able to metabolize C5 sugars makes the use of PD highly
interesting [22].

4. Conclusions

Paddle dryer (PD) can be used in the process of ethanol
production from lignocellulosics with minor modifications. It
can be employed to remove the main volatile inhibitors
produced during the steam explosion treatment. By working
at 65 �C for 1 h, acetic acid in the substrate was reduced by
11 fold, while furfural by 26 fold. By using PD to produce a
detoxified moist material, the ethanol obtained at lower S/L was
comparable to that obtained with the detoxification by water
washing. These results can contribute to simplify the process,
reduce water consumption and save plant cost. By using PD to
produce a dry material, the ethanol production yield decreased,
but the advantage of water saving and the availability of more
xylose in the substrate should be reconsidered. The mixing
efficiency of PD can be exploited to carry out enzymatic
hydrolysis at high solid loading. At S/L 0.4, the saccharification
yield was twice that obtained by using a conventional stirred
reactor.
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