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Abstract: Anion exchange membranes (AEM) have gained attention recently as a promising candidate
for low-cost water electrolysis systems to produce hydrogen, linked with renewable energy resources
as a sustainable alternative to fossil fuels. The development of potential materials for producing and
analyzing AEM is an imperative step towards commercialization and plays a competitive role in the
hydrogen production industry. In this article, we developed a composite anion exchange membrane
prepared by activating a commercial support structure (Celgard® 3401) with a commercially available
functional group (Fumion® FAA-3) through a phase-inversion process. Fourier-transform infrared
spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) analysis demonstrated the phase-
inversion procedure as an effective methodology. Furthermore, the cell performance test result (with
Celgard/Fumion) was very promising and even better in comparison with a commercial membrane
commonly applied in alkaline electrolysis (Fumasep). We also developed a testing procedure for
membrane performance evaluation during electrolysis which is very critical considering the effect of
CO2 absorption on membrane conductivity.

Keywords: anion exchange membrane; alkaline water electrolysis; membrane characterization

1. Introduction

As we face a major challenge in the energy and environment sectors, considering the
anthropogenic climate change hypothesis, searching for alternative energy strategies has
become critical for future world energy demands. Among the numerous alternative energy
approaches, green hydrogen serves as a low-cost, easily available, and abundant energy
source with zero emissions of carbonaceous species and can play a key role in the energy
transition strategy toward a stable and green future as it has a significant role in several
applications and industries [1,2]. At the same time, it should be taken into consideration that
the footprint of hydrogen technologies depends on their production processes and energy
sources [3]. From this point of view, water electrolysis is a very promising and desired
approach because of its compatibility with different types of electricity generation [4,5].
The search for investigation of efficient and cost-effective anion exchange membrane
electrolyzers have been given much attention due to their ability to offer the advantages of
conventional alkaline electrolysis technology [6,7] while also addressing the issue of cost
associated with proton exchange membranes (PEMs) by using non-platinum group metals
as electrocatalysts [8].

The anion exchange membrane water electrolyzer (AEMWE) is a technology built
in a stack with solid polymer membranes to provide high volumetric energy density
and it is compatible with non-precious metal catalyst electrodes which results in cost
reduction of hydrogen production. The main difference between alkaline water electrolysis
(AWE), which is a well-developed and mature technology [9–11], and AEMWE is that the

Membranes 2023, 13, 109. https://doi.org/10.3390/membranes13010109 https://www.mdpi.com/journal/membranes



Membranes 2023, 13, 109 2 of 15

diaphragm that separates two half-cells in the former technology, despite being permeable
to ions between two sides of the system, is not conductive. The conductivity is provided by
alkaline hydroxide filling a porous diaphragm, while in AEMWE, the polymeric membrane
is non-porous and has intrinsic anionic conductivity [1,12–15]. It is worth mentioning that
in contrast to PEM electrolyzers which use only polymer electrolytes, many AEMWEs use
liquid electrolytes (e.g., KOH or K2CO3 solutions) in addition to polymer electrolytes to
improve reaction kinetics [16]. The liquid electrolyte increases the local pH at the catalyst–
electrolyte interface, generating an additional electrochemical interface. Having addressed
the major challenges associated with AWEs, AEMWEs have attracted increasing interest
from industrial and academic researchers in recent years.

Numerous studies and several papers and reviews have been published on the devel-
opment of alkaline membranes for different applications (electrodialysis, electrodialysis
reversal, desalination, or electro-deionization [17,18]) and from different aspects (separate
components, material, technology, and operational conditions [2,16,19–21]). Most of the
membranes produced were optimized for chemically less-aggressive environments con-
cerning the pH and the operating temperature. The literature concerning the synthesis
of anion exchange membranes (AEM) regarding those that use a hydroxide exchange
membrane specifically designed for the electrolysis of water is scarce. The main function
of the anionic membrane in alkaline electrolyzers is to transport hydroxide ions from the
cathode to the anode and to avoid the movement of electrons and crossover of the gases
produced by the electrochemical reactions in the two compartments. These membranes
should ideally have high OH− conductivity, high chemical stability (alkaline, oxidative,
and thermal stability), excellent mechanical properties under wet conditions and high
differential pressures, and low gas permeability. Generally, such membranes consist of a
polymeric backbone that is responsible for mechanical and thermal stability and that is
modified by positively charged functional groups on their backbone or pendant side chains.
These modifiers facilitate anion movement and are responsible for ion-exchange capacity,
ion conductivity, and transport number, enabling a zero-gap configuration and differential
pressure operation.

A variety of AEM backbones have been studied and developed so far, such as
polystyrene [22,23], poly-phenylene oxide (PPO) [24,25], polysulfone [26] or fluorinated
polymers [27–29], poly-ethylene-co-tetrafluoroethylene (ETFE) [30], polyetherimide (PEI) [31],
polyvinyl alcohol (PVA) [32], poly-ether-ether ketone [33], poly(arylene ether ketone) [34],
and poly-carbazole [35]. As well, the most extensively investigated functional groups are:
–NH3

+, –RNH2
+, –R2NH+, =R2N2+, –R3P+, –R2S+, quaternary ammonium salts (QA) [36,37],

and tertiary amines (e.g., BTMA) [31,32]. The cycloaliphatic QAs show remarkable alkaline
stability [38].

As investigated and reported [6,39,40], the major challenge of anion exchange mem-
branes is their low chemical and thermal stability, since the backbone and the functional
group both suffer from hydroxide-induced degradation under alkaline conditions [41].
The degradation of polymer backbones leads detrimentally to chain rift, decreases the
molecular weight, and results in increased brittleness of the membrane, and this effect
is prominent in the presence of aromatic ether groups. Therefore, aromatic ether groups,
which are present in many cheap and easily accessible polymers such as PEEK, PESU, and
polyphenylene oxide (PPO), should be avoided. Furthermore, anion exchange membranes
suffer from lower ionic conductivity in comparison to PEMs (such as Nafion) due to the
lower mobility of OH− than that of H+.

Currently, a few alkaline solid polymeric membranes have been commercialized, such
as Fumasep®, Sustainion®, AemionTM, and OrionTM, and their main characteristics are
summarized in Table 1 [2,39]. Membranes with different backbone materials show different
conductivity, as shown in Table 1. The last three have a very high value with respect to
Fumasep®, but it should be kept in mind that Fumasep is activated in Cl− form, which
has inferior mobility to that of OH− [42], with a significantly higher thickness. There are
very sporadic literature data on the usage of these membranes, and many were obtained
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with unequal activation procedures or ionomer material, cell components, operational
conditions, and even time periods of the cell performance tests, which makes a comparative
study very difficult. The most-used membrane that has shown stable performance in
AEMWE [1,43] is Fumasep, which we used as reference material in this article.

Table 1. Commercial AEM characteristics.

Brand Name Company Country Product Code Material Thickness IEC
(meq/g)

Conductivity
(mS cm−1) Refs.

Fumasep® Fumatech FAA-3-PK-130 PK reinforced 130 1.1–1.4 4.0–8.0 (Cl−) Data sheet
(Germany)

Sustainion® Dioxide Material 37–50 Styrene based 50 - 70, 80 (OH−) [14,44]
(USA)

AemionTM Ionomer Innovation Co.
(Canada)

AF1-HNN8- HMT-PMBI * [45] 50 2.1–2.5 80 (OH−) Data sheet
AF1-HNN5- 50 1.4–1.7 15–25 (OH−) Data sheet

OrionTM Orion Polymer Orion TM1™ Polyphenylene [46] 30 2.1 60 (OH−) Data sheet
(USA)

* HMT-PMBI: hexamethyl-p-terphenyl poly (bibenzimidazolium).

The activation of porous support with desirable mechanical characteristics is a very
simple approach to synthesizing anionic membranes. The performance of the membrane is
then profoundly influenced by the supporting structure and the ionomer coupled together,
so investigating the material and techniques to fabricate the backbone and activate it with
different ionomers is a very interesting approach to developing AEMs. A supporting
structure that can be used for this purpose is Celgard®, a typical polypropylene (PP)
microporous membrane separator that is recognized for use in batteries [47,48]. PP is a low-
cost polymer that is widely used for microporous membrane fabrication globally because
of significant properties such as good thermal and mechanical stability and high resistance
to extreme pH conditions [43,44]. Due to its numerous manufacturing applications and the
huge amount of PP used globally, much research has been conducted on the sustainable
assessment of PP production and recycling recently [49]. In the past, Stano et al. [50] used
Celgard 2400 membranes modified with graft polymerization of acrylic acid after plasma
activation in the conventional liquid alkaline electrolyzer. Tsehaye et al. [51] used Celgard
3501 impregnated with a commercial anion exchange ionomer (Fumion) to modify the
support membrane to use as a separator in a Zn–air battery.

In this work, a composite anion exchange membrane was prepared by activating a
porous support of commercial Celgard 3401 with an ionomer solution in a phase-inversion
process. Phase inversion is an established technique commonly used for preparing mem-
brane nano/microstructures. It is referred to as a chemical process in which a polymer is
transformed from a liquid state to a solid state [48,52]. We used the commercially available
ionomer solution Fumion (Fumatech Co., Bietigheim-Bissingen, Germany) with a QA
functional group. The chemical structure of the Fumion polymer has not been disclosed;
however it is reported [53] to contain a polyaromatic polymer with quaternary ammonium
functional groups. The composite membrane was synthesized, characterized, and succes-
sively tested in a small lab electrolyzer to evaluate its performance. With the promising
results revealed, we approach the challenge of fabricating porous substrates with controlled
properties and a desired structure using low-cost polymeric materials with a highly efficient
method to provide a robust, reproducible backbone for AEM in the future.

2. Experimental Procedures
2.1. Preparation of the Composite Anion Exchange Membranes

The composite anionic membrane reported here was prepared using a microporous
monolayer membrane made of polypropylene with 41% porosity and 25 µm thickness,
with surfactant-coated Celgard 3401 (Celgard®, Charlotte, CA, USA) to improve its hy-
drophilicity as the backbone, and was activated with Fumion FAA-3 solution in NMP
10% (Fumatech, Bietigheim-Bissingen, Germany). Activation was undertaken to ensure
ion-exchange capacity and hydroxide conductivity for AEM applications. We carried out
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the activation on small pieces of porous Celgard (4 cm × 4 cm). Our application relies
on phase inversion, which involves the polymer transforming from the liquid phase of
the solution into the solid phase. The concept of the phase-inversion process has been
explained elsewhere [52]. Phase inversion can be induced with different techniques, such
as immersion precipitation, precipitation by controlled evaporation, thermal precipitation,
or vapor-phase precipitation. The choice of method of phase inversion is highly dependent
on the type of polymer and the solvent used to dissolve the polymer. As the first approach,
we decided to use immersion precipitation by customizing it into a manual batch mode,
applying a certain amount of ionomer solution and inversion solution. For each piece of
the sample, we dropped 0.5 mL of Fumion FAA-3 solution on the membrane surface until it
became transparent, and then we did the same on the other side of the membrane. After 10
min, we dropped 0.5 mL of toluene—as a non-solvent to induce inversion—on the Celgard
surface. After 10 min, we repeated the operation on the other side of the membrane. Then
we let it dry at room temperature overnight under the hood (Figure 1).
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Figure 1. Schematic of membrane activation procedure in the phase-inversion method.

2.2. Characterization
2.2.1. Physical Chemical Analysis

Fourier Transform Infrared (FTIR) spectra of dried samples were collected in the
wave number range 400–3500 cm−1 using a Nicolet iS5 FT-IR spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) equipped with an attenuated total reflectance (ATR) ac-
cessory. The measurements were recorded using a diamond crystal cell ATR, typically
using 32 scans at a resolution of 4 cm−1. The samples were all measured under the same
mechanical force pushing the samples into contact with the diamond crystal. No ATR
correction has been applied to the data. SEM morphological characterization was acquired
with a field-emission gun scanning electron microscope (ZEISS, Jena, Germany). The air
permeability measurement of the membrane after activation with Fumion was performed
with a Gurley 4320 densitometer (Rycobel, Deerlijk, Belgium) as described elsewhere [54].

2.2.2. Ionic Exchange Capacity (IEC)

The IEC of an ion-exchange membrane (IEM) is an analytical parameter that represents
the ability of ionic transfer within an alkaline solid polymeric membrane and is significantly
influenced by the ion conductivity of the membrane [3]. It is measured when the counter-
ions are OH− using a titration method and it is expressed as milliequivalent per gram of the
dry membrane (meq g−1 dry IEM). The method is well-described elsewhere [55]. Briefly,
the membrane was converted into OH− form by immersing it in 100 mL 1M KOH and
2 days. Then the membrane was washed and immersed in 100 mL of a 0.01 HCl solution for
24 h and finally we measured IEC using back titration. The OH− content in the membrane
was calculated using the following equation:

IEC =
nHCL,i − nHCL, f

m
(1)
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where nHCL,i is the amount of HCl in the initial solution (0.01 M, 100 mL), nHCL, f is the
amount of HCl in the final solution after neutralization of the membrane, and m is the dry
membrane mass. Attention must be placed in this characterization that could be affected in
some step by the accumulation of carbonate and bicarbonate ions with an underestimation
of the final value of IEC.

2.2.3. Ionic Conductivity

The membrane conductivity can be obtained from the measurement of the resistivity
of the membrane against the flow of current using a four-point probe electrochemical
cell (Figure 2). The method is explained elsewhere [55]. Briefly, the cell is composed of
two compartments that can house membranes with a diameter of 3.5 cm with an area
exposed to the solution equal to 7.07 cm2. The ionic conductivity of the membrane was
determined with at least three successive measurements of the potential difference between
the reference electrodes. A linear voltage sweep was applied in short time intervals (5 s),
voltage vs. current was plotted, and the slope gives us the resistance (Ω) without the
membrane and with the membrane between the two compartments. For this experiment,
the NaCl solution in the cell was maintained at 0.5 M. Without the membrane, the measured
resistance of the aqueous NaCl solution between the two reference electrodes is Rcell; with
a membrane, the total resistance is the sum of the resistance of the cell and that of the
membrane: Rmeasure = Rmembrane + RCell . Knowing the cell resistance (Rcell), the value
of the membrane resistance is defined as the difference between these two resistances:
Rmembrane = Rmeasure − RCell . The ionic conductivity, σ (S cm−1), of the membrane can be
determined using the following relationship:

σ =
1

Rmembrane

l
S

(2)

where l is the thickness of the membrane (cm), S is the surface area of the membrane
exposed to the electric field (cm2), and Rmembrane is the membrane resistance (Ω). The
product Rmembrana × S represents the area-specific resistance (ASR).
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2.2.4. Electrochemical Performance

The electrochemical performance test of the membrane was carried out in a lab-scale
2 cm2 electrolyzer (two-electrode) at room temperature with stainless steel gas diffusion
electrodes (GDE). The cell (Figure 3) was made of steel on both the cathode and anode
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sides. The GDE (Ø 16 mm) that ensured the electrical contact of the anionic membrane and
the diffusion of the water and gases produced was supplied by Bekaert Fiber Technologies
(Belgium). It is a commercial matrix in sintered metal fiber in AISI 316-L steel with a
thickness of 0.51 mm and with a porosity of 82% and compressibility of approx. 5.4%. The
anodic side can be fed with distilled water or a KOH solution 0.5 M (in our case study the
latter was the choice), contained in a 500 mL polyethylene tank using a metering pump
(KMS), in PTFE with a flow of 100 mL min−1. The cathode side output can be connected to
a volumetric system for measuring the hydrogen produced.
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Figure 3. Experimental cell for electrochemical measurement.

The cell was connected to a Solartron Mod. 1287 potentiostat/galvanostat and a
Solartron Mod. 1260 frequency response analyzer, both interfaced with a GPIB card
to a personal computer. Electrochemical impedance spectroscopy (EIS) measurements
were performed in the 1 MHz-1 Hz frequency range at open circuit potential (OCP); the
amplitude of the AC signal was always 10 mVpp. Both static and dynamic galvanic
polarization were performed in the same cell configuration as the EIS measurements. The
characteristic E vs. I curves were also recorded on the cell at room temperature (298 ◦K) in
the current range of 0–1000 mA cm−2. Graphs of cell voltage versus time were recorded
continuously and impedance spectra were periodically acquired at the OCP.

EIS is a quantity that measures the opposition of a system to the passage of current and
in DC conditions, coincides with the resistance value. It is also a “transient” technique, in
the sense that, when one of the quantities that determine the state of the system is perturbed,
relaxation to a new steady state occurs with a speed dependent on the parameters (kinetics,
transport, etc.) of the system.

The impedance spectra can be represented with Nyquist diagrams, in which the
high-frequency intercept (RHF) represents the ohmic resistance of the system, while the
diameter of the semicircle is basically related to the polarization resistance sum of various
contributions (diffusion, charge transfer).

The measurements were conducted on the electrolysis cell shown in Figure 3 in a flow
of 0.5 M KOH at a temperature of 25 ◦C. The measured resistance value RHF is that relating
to the high-frequency resistance, i.e., the intercept with the ZRe axis by ZImm = 0 in the
Nyquist diagram. Once the value is known, it is possible to calculate the specific resistance
RΩ (Ω cm2) for the cell:

RΩ = RHF × S (3)



Membranes 2023, 13, 109 7 of 15

where S is the surface area of the membrane (2.0 cm2) in the electrolyzer. This measurement
also allows estimation of the intrinsic conductivity of the membrane (i.e., the conductivity
induced by counter ions associated with positive ionic sites of the ionomer and favoured
by water molecules).

3. Results and Discussion
3.1. FTIR and SEM Membrane Analysis

The FTIR analysis confirms the success of the Celgard activation with the ionomer
solution by applying the proposed procedure. FTIR spectra of the Celgard samples before
and after the Fumion activation are reported in Figure 4. Fumion (ionomer solution in
NMP solvent) and NMP are also reported for clarity. Fumasep PK-130, in the Br− and
OH− form, is used as a reference. Chemically, the Fumion ionomer is a polyaromatic
polymer with ether bonds in the main chain and quaternary ammonium groups attached
to the main chain (Figure 4b). The spectrum of the membrane after the ionomer activation
(Celgard/Fumion) shows the presence of some peaks due to the ionomer. In particular, it is
possible to observe the infrared absorption at 1671 cm−1, due to the =CH2 bending vibration
from the aromatic rings, and at 1602 cm−1, attributable to the stretching vibration of the
N-C groups from the quaternary ammonium groups. In addition, the peak at 1187 cm−1

is detected in both the Celgard/Fumion (intense peak) and Fumion spectra (weak peak).
This infrared absorption is not present in the NMP spectrum. This evidence suggests that
the peak is probably due to the polymer dissolved in the ionomer solution. It is worth
noting that the FTIR spectrum of Celgard activated with Fumion is comparable to that of
the commercial membrane Fumasep, selected as the reference.
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Figure 4. (a) FTIR spectrum of the Celgard before and after activation, Fumion, Fumasep PK-130 (in
Br− and OH− form), and NMP solvent, (b) chemical structure of Fumion.

The Celgard support consists of intertwined fibers with a porosity of about 41% and a
variable pore size on the order of microns or smaller (Figure 5a). As visible in Figure 5b,
after activation, the Fumion ionomer filled the pores, and we can see they are aligned
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along the pores’ locations which confirms the presence of the functional QA group in our
composite membrane.
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Figure 5. SEM image of Celgard 3401, (a) before activation (b) after activation with Fumion.

The permeability measurements on the activated Celgard support, which had a Gurly
number of 620 s initially, were infinite time after activation with Fumion. This means
the pores had been filled with Fumion. Furthermore, it was subsequently put in the
conductivity measurement cell in which one side of the activated membrane was filled
with the solution and left overnight. No solution passed through the membrane to the
other side, indicating that there were no pores left inside the membrane. Further analysis is
necessary to better evaluate how the pore volume and porosity of the substrate affect the
membrane’s properties, and their correlation with phase inversion results.

3.2. Ion-Exchange Capacity and Ionic Conductivity Measurement

Figure 6 shows the voltage–current measurement on Fumasep-PK-130 and Celgard/
Fumion membranes. The slope is greater for Fumasep, indicating a higher resistance due
to its thickness. Table 2 shows the calculated conductivity for both membranes using
Equation (2), obtained by measuring Kcell and Rcell in a NaCl 0.5 M solution at 25 ◦C
(respectively, Kcell = 369.39 cm−1, Rcell = 0.038 Ω). The conductivity of the commercial
Fumasep is within the ranges provided by the producer in the datasheet for the Cl− form
(4–8 mS cm−1). Table 2 also reports IEC defined using titration for the samples. Despite
the composite membrane having lower conductivity and IEC than the commercial one, the
ASR is lower due to its minor thickness. This result represents a good compromise where
poor ion conductivity could be compensated for with a low area-specific resistance (ASR).
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membrane in NaCl 0.5 M at 25 ◦C.
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Table 2. IEC and conductivity of sample membranes.

Membrane Thickness
(µ)

IEC
(meq g−1)

Rmeasure
(Ω)

Rmembrane
(Ω)

ASR
(Ω cm2)

σmembrane
(mS cm−1)

Celgard/Fumion 25 0.44 0.22 0.19 1.3 3.0 ± 0.1
Fumasep PK-130 130 1.29 0.36 0.32 2.3 5.7 ± 0.2

3.3. Electrochemical Characterization of Membranes

To evaluate membrane functionality, long-term electrolysis tests were carried out on
both membranes to allow comparison.

Figure 7 shows the electrolysis voltage of the two cells at a current density of 50 mA cm−2

during the first 163 h of operation. Both membranes exhibit a voltage between 2 and 2.1 V
and over time reach a value of about 2.05 V. However, a substantial difference is observed
during the initial phase (the first 20 h) while the membranes were pre-treated the same
way (approximately 24 h in KOH 0.5 M). As illustrated in the inside figure of Figure 7 the
commercial Fumasep membrane cannot immediately maintain the electrolysis current set
at 50 mA cm−2 and so it is necessary to reduce the initial current value to 12.5 mA cm−2

and then progressively increase it to 25 and finally to 50 mA cm−2. The behavior appears
to be closely related to the conductivity of the membrane, which at first does not provide
adequate transport of OH− ions inside, more likely due to the formation of larger, less
mobile ions (CO3

2− and HCO3
−) due to the carbonation of the membrane.
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This is explained by the fact that AEM is very reactive to CO2 in the environment.
In an AEMWE, hydroxide anions (OH−) are responsible for creating current as they are
transported through the anion exchange membrane (AEM) from the cathode to the anode
side of the cell. However, upon exposure to the ambient air which contained CO2, the
carbonation process takes place very fast following the chemical reactions (4) and (5) so
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that the accumulation of bicarbonate ions on the membrane interface confines the mass
transport of OH− ions at the cathode. Thus, hydroxide concentration in the membrane
decreases and negatively affects cell performance [56–58].

OH− + CO2 ↔ HCO−3 (4)

OH− + HCO−3 ↔ CO2−
3 + H2O (5)

This effect appears to be detrimental for several reasons: (1) The membrane is normally
produced in chloride or bromide form and changed to OH− form before insertion into
the cell by immersion in an alkaline solution. (2) The carbonation process depends on the
air-exposure time of the membrane after treatment with hydroxide and heavily influences
its conductivity and electrolysis performance. (3) Over time the level of CO2 contamination
of the circulating solution can vary, especially if the cell remains inactive for a long time. In
the literature, methods have been reported for the de-carbonation of membranes before
ex situ conductivity measurement. As an example, Kimura et al. [56] tested an activation
procedure in a closed system with a CO2-free atmosphere using nitrogen-treated water. Ziv
et al. [57] electrochemically purged the carbonate ions in the membrane by applying an
electrolysis current in a humidified and CO2-free atmosphere for one week. In this way, the
oxygen generated at the anode (6) replaces the CO2 and the hydroxide generated at the
cathode replaces the carbonate ions by shifting reaction (4) to the left over time.

2OH− → 1/2O2 + H2O + 2e− (6)

2H2O + 2e− → H2 + 2OH− (7)

These studies show that to verify the performance of an anionic membrane, it is
necessary to achieve a prolonged pre-treatment phase of electrolysis with a gradual increase
in current to eliminate CO2. In our study, both membranes showed the same carbonation
effect in electrolysis (Figure 7). Figures 8 and 9 show the voltage vs. current density after
the different electrolysis times shown in Figure 7. The electrolysis at constant current
density was stopped after various time intervals and a Galvano-dynamic experiment was
performed at 1 mAs−1. Initially, the electrolyzer’s current density is constrained by the
conductivity drop due to the accumulation of carbonate and bicarbonate ions, which inhibit
the transport of OH− ions. Following Figures 8 and 9, both systems reached a higher
maximum current density as electrolysis proceeded but with different values. A minimum
amount of current and gas evolution (reactions 6 and 7) allows the elimination of carbonate
ions and the recovery of the OH− conductivity resulting in an increase in the electrolysis
current. However, the maximum current density achievable by the system progressively
increases with the working hours of the electrolysis test. The same behavior of current
limitation due to the CO2 effect was studied in detail by Ziv et al. in anion exchange
membrane fuel cells (AEMFCs) and is well illustrated in references [57,58].

As follows from the voltage–current density plot, at zero time the cell with the Cel-
gard/Fumion membrane reaches a maximum current density of 569 mA cm−2 while after
163 h of electrolysis the maximum current reaches 933 mAcm−2. The cell with Fumasep
membrane also shows similar behavior, with 57 mAcm−2 at zero time and 740 mAcm−2

after 163 h. For both cells, the presence of a limiting effect due to hydroxide transport
appears in the first working hours. However, the time expansion is more noticeable for the
commercial membrane, whose recovery time is longer, likely due to its higher thickness.
The results also indicate that thinner membranes are preferred since they react more rapidly
to the de-carbonation process during electrolysis.

The results revealed that measuring membrane performance in a small electrolysis
cell is very challenging, and to make a reliable comparison between different membranes
requires long-term electrolysis. Furthermore, preparation using phase inversion is a fast and
easily applicable method for synthesizing composite membranes with different backbone
structures and ionomer solutions.
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Figure 8. Cell voltage vs. current density profile for Celgard/Fumion membrane after different
electrolysis times at 25 ◦C.
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Figure 9. Cell voltage vs. current density profile for Fumasep-PK-130 membrane after different
electrolysis times at 25 ◦C.

Continuing the measurements, the commercial Fumasep membrane did not reach the
same performance as the Celgard/Fumion, even after the electrolysis test was prolonged
up to 310 h (Figures 10 and 11).
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Figure 11. Nyquist plot for cell with Fumasep and Celgard/Fumion membranes at 25 ◦C and OCP
(in electrochemical impedance spectroscopy—EIS).

Further insight into the membranes is provided by the impedance analysis of the
two cells in hydroxide form during the electrolysis test. The conductivity value calcu-
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lated from cell impedance spectroscopy has an average value of 5 ± 1 mScm−1 for Cel-
gard/Fumion while it is 9 ± 1 mScm−1 for Fumasep. The in situ measurements confirm
that despite the lower conductivity of our composite membrane, from an electrochemi-
cal standpoint it is more efficient thanks to the lower specific resistance due to its lower
thickness. It also seems that the thickness of the membrane influences the time needed for
activation of the membrane. The thinner the membrane is, the shorter the time needed for
releasing carbonate ions, as observed for the composite membrane (Celgard/Fumion).

4. Conclusions

A composite anion exchange membrane was synthesized by applying commercial
material—support structure Celgard 3401 and commercially available functional group
Fumion FAA-3—through a phase-inversion process and successfully tested in an electro-
chemical cell. The success of phase inversion as a method of activation was demonstrated
with FTIR and SEM analysis. This study showed that the composite membrane has a higher
maximum current density than the Fumasep membrane. This implies better performance
and supports the validity of this practice as a potential approach for fast production and
characterization of AEMs which needs further optimization. In this regard, the idea of pro-
ducing porous substrates with controlled rheological properties and desired structure out
of low-cost polymeric material with an efficient technique to provide a robust, reproducible
backbone for AEM stands out.

Moreover, we evaluated and developed a testing protocol for membrane performance
during electrolysis, which is very relevant, considering the effect of CO2 absorption on
conductivity, to create a reliable inter-laboratory comparison. The absence of a well-
established international cell performance test protocol, however, seems to be a profound
hurdle to enable researchers to make a solid comparison with literature results.
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