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Abstract
The impedance of a coaxial probe, feeding an Electromagnetic Bandgap (EBG) structure
conceived for radiation shaping, is studied from the theoretical and numerical viewpoints.
The EBG medium is a square arrangement of dielectric cylinders placed in a parallel-plate
waveguide, where a suitable lattice mode is excited. A semi-analytical model is developed
and used to derive an approximate, closed-form expression of the probe resistance. The
model is based on a modal expansion in Floquet harmonics, on which a current distri-
bution is projected according to the Lorentz reciprocity theorem to derive the amplitude
of lattice modes propagating right above the bandgap along lattice axes. The dependence
of probe impedance on lattice parameters is then investigated with the numerical simu-
lations of a finite-element method, which is also used to validate the developed model. A
broad set of parametric analyses is presented, showing that the reactive part weakly de-
pends on probe position, cylinder radius and permittivity, while the heights of probe and
parallel-plate waveguide play a major role in determining the resonance condition. As to
the probe resistance, it decreases with cylinder radius and permittivity and decreases with
probe and waveguide heights. The derived analytical formula correctly reproduces such
functional dependences and its calculation is immediate, revealing its usefulness in an-
tenna design. Matching issues are heuristically and experimentally approached by exam-
ples, demonstrating that the proposed work can be effectively employed to improve the
electrical performance of EBG antennas with an embedded source.

1 | INTRODUCTION

Electromagnetic Bandgap materials (EBGs) are periodic
structures where wave propagation is not allowed within some
frequency bands. Such feature has been profitably exploited in
the last decades to improve the performance of microwave
antennas and components, such as waveguides, oscillators,
shields and filters [1, 2]. Recent developments in additive
manufacturing techniques have further boosted the research in
EBG materials, allowing fast prototyping and cheap fabrication
of complex geometries [3–5]. Moreover, all-dielectric com-
posite structures are very attractive for higher frequency (i.e.
millimetre–wave and THz) applications [6, 7].

In the field of EBG antennas, Enoch et al. proposed a
radiation mechanism working with the electromagnetic

configurations allowed by the periodic structure, usually called
Bloch waves or Floquet modes or lattice modes [8]. Further
works followed, assessing different periodic arrangements [9],
comparing this approach to the more widely known Fabry–
Perot antennas [10], exploiting degenerate dielectric modes
[11], synthesising a Dirac cone dispersion to attain zero-
refractive-index metamaterials [12] and designing dual-feed
antennas [13]. In particular, a deeper physical insight was
achieved by adopting a modal perspective through the
powerful tools typical of photonic crystals instead of inter-
preting the lattice behaviour as a homogeneous epsilon-near-
zero metamaterial [14]. In the latter paper, a compact an-
tenna was presented, where the EBG was placed in a parallel-
plate waveguide fed by a coaxial probe and an external circuit
was used to achieve acceptable matching.
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Rather than exploiting the evanescent waves of the lattice
bandgap [15], Enoch's radiation mechanism relies on the
propagating waves of the lattice bands, especially on the modes
right above the bandgap. It follows that the radiation of elec-
tromagnetic energy is the result of a twofold process as
sketched in Figure 1: (i) the conversion of a feeding wave into
some lattice mode and (ii) the conversion of the latter into
directive free-space radiation. The former is a coupling prob-
lem between the set of modes of a coaxial cable and those of a
square lattice. In practical applications, the coaxial feeder only
supports the propagation of the fundamental TEM mode that
has to be matched to the Floquet mode of interest in the lattice
to maximise the power transfer. The second step of the pro-
cess consists in the propagation of the Floquet mode inside the
finite-size lattice and its leakage outside in the form of directive
radiation. So far most efforts have been devoted to the second
step, whereas this paper addresses the first part of the process,
focussing on a probe-fed parallel-plate waveguide loaded with
an EBG structure made of dielectric cylinders.

The lattice mode in charge of directive radiation propagates
in the plane perpendicular to the axis of the cylinders, with the
electric field parallel to and constant along such axis, that is,
translational invariance is assumed along cylinders. These are
the working conditions that have been assumed since the
pioneering works on the topic [16]. To reproduce a similar
situation in realistic antennas, either very long cylinders
compared to the wavelength [17] or electrically short cylinders
sandwiched between two parallel metal plates [14] have been
adopted. In both cases, the lattice mode travels over the
periodicity plane of the lattice up to its truncation, which
constitutes the open boundary where the electromagnetic en-
ergy leaks out of the array of cylinders, assuming little or no
reflection.

The excitation by finite sources of microwave antennas and
devices based on infinite periodic structures and the study of
the relevant input impedance is a challenging topic, which has
been reported in a few papers in the scientific literature. Semi-
analytical approaches based on asymptotic boundary condi-
tions in the large wavelength regime have been used to derive
the input impedance of a probe protruding from a coaxial line
into an infinite corrugated rectangular metaguides in ref. [18].
An indirect approach, which uses both custom Method of
Moments (MoM) procedures and commercial electromagnetic
software, has been applied in ref. [19] for determining the
equivalent admittance of a slot in a periodic waveguide.

Rigorous full-wave analysis of the input impedance calculated
by means of the Array Scanning Method in conjunction with
different types of electric field integral equations to solve the
MoM has been developed in refs. [20, 21] for 1-D periodic
shielded microstrip and 2-D periodic leaky-wave structures
respectively.

In this paper, a semi-analytical parallel-plate waveguide
approach, which allows for the approximate closed-form
expression of the probe resistance in EBG antennas, is
adopted. As far as the impedance of a coaxial probe in the
parallel-plate waveguide is concerned, Harrington provided a
simple formula [22] in 1961. Microstrip antennas boosted
significant advancements in this field: accurate closed-form
expressions were derived for rectangular patches in ref. [23],
numerical techniques for patches of arbitrary shape were
developed in ref. [24] and Harrington's formula was general-
ised to complex impedances of rectangular and circular patches
in ref. [25]. An effective approach is the modal-expansion
cavity model [26] that analytically solved the coupling prob-
lem between the probe of a coaxial feeder and the set of modes
of a microstrip antenna modelled as a cavity. A similar
approach can be pursued in the geometry dealt in this paper,
where, in place of a homogeneous medium, a square lattice of
dielectric cylinders is present between the ground plane and the
top metal plate so that lattice modes take the place of cavity
modes. Parallel-plate waveguides loaded with cylindrical
structures were deeply studied with reference to multilayer
PCBs and packages [27, 28], where nevertheless modelling
efforts focussed on vias, that is, non-periodic, metal cylinders.
As to the case of dielectric cylinders, it has been mostly studied
with reference to scattering problems [29] that do not deal with
impedance issues and coaxial probes.

To the best of authors' knowledge, this paper approaches a
probe-fed parallel-plate waveguide, loaded with a lattice of
dielectric cylinders with period comparable to the wavelength,
for the first time under a theoretical and parametric perspec-
tive. Previous documented attempts to address the problem
[14] were heuristic and did not explore the parameter space of
the probe impedance, but employed an external matching
network to achieve a low enough reflection coefficient. Here,
an original, modal, semi-analytical model is developed to derive
a closed-form expression of the probe resistance that, though
unable to predict the exact value of the input resistance of real
antennas due to the use of some physical approximations,
correctly unveils its functional dependences on the main probe

F I GURE 1 Schematic view of the radiation mechanism: the coaxial feeder excites a lattice mode of the electromagnetic bandgap (EBG) structure that
achieves directive radiation. The EBG acts as a spatial filter: it takes the electromagnetic energy of the guided mode and radiates it in the free space within narrow
angular cones
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and lattice parameters. Such dependences along with those of
the probe reactance are then parametrically investigated with a
finite-element method. The presented study provides funda-
mental guidelines and directions for the improvement of an-
tenna matching in such class of EBG radiators.

The paper is organised as follows: in Section 2 a theoretical
model of the probe impedance is built and a simple, approx-
imate formula of the input resistance is derived. In Section 3,
the dependence of the probe impedance with respect to lattice
parameters is numerically studied and both semi-analytical and
analytical predictions of the input resistance are validated. In
Section 4, the problem of matching is briefly addressed by
examples. Conclusions are drawn in Section 5.

2 | ANALYTICAL FRAMEWORK

2.1 | Lattice modes

Consider a square lattice of dielectric cylinders in a parallel-plate
waveguide, as the one shown in Figure 2. The lattice period is a
and the cylinders have height h along z, radius r and relative
permittivity ɛr. If h does not exceed a few tenths of wavelength,
the electromagnetic field is constant along z and the homoge-
neous wave equation is the same eigenvalue problem as in a two-
dimensional lattice when the in-plane propagation of TMzwaves
is considered. The electromagnetic field thus consists in a set of
latticemodes with componentsEz,Hx andHy, as typical of EBG
antennas with embedded sources [14]. A time dependence ejωt is
assumed.

In the above-mentioned conditions, the electric field of any
lattice mode can be expressed as [30]:

E�z ðx; yÞ ¼
X

m

X

n
fmnej

2πm
a x þ 2πn

a yð Þ

" #

e∓j kxxþkyyð Þ ð1Þ

where the summations extend from−∞ to ∞ and the � signs
in Ez denote progressive and regressive waves respectively. The
Fourier series in square brackets represent the expansion in
Floquet harmonics of a periodic function with period a. The
Fourier coefficients fmn are the eigenvectors of the wave
equation for a given combination of in-plane propagation
vector k¼ kxx̂þ kyŷ and frequency band. The latter is the

eigenvalue of such equation and it is usually plotted in the form
of a band diagram along the edge of the irreducible Brillouin
zone. An example of such plot is depicted in Figure 3a for a
square lattice with a = 10 mm, r = 0.35a and ɛr = 11.7.

The magnetic field components is readily derived from
Maxwell equations as

H�ðx; yÞ ¼ −
1

jωμ0
∂E�z
∂y
x̂ −

∂E�z
∂x
ŷ

� �

ð2Þ

where ω is the angular frequency and μ0 is the vacuum mag-
netic permeability.

We focus on the modes at the bottom of the air band, which
are allowed at 8 GHz in the lattice of Figure 3a. More precisely
we restrict the analysis to the mode with kx = 0 and ky = π/a,
which is used to achieve directive broadside antennas and will be
referred to as radiation mode in the following. It is identified
more clearly in Figure 3b, where the three-dimensional disper-
sion diagram of the lattice of Figure 3a is plotted. A mode with
kx = π/a and ky = 0 can also propagate at the same frequency,
but it has been shown that singlemodes can be selectively excited
in a square lattice [31]. Any lattice mode different from the ra-
diation one will be referred to as spurious or unwanted mode.

2.2 | Input impedance

When a current distribution J, like the one due to the coaxial
probe of Figure 2 is impressed in the parallel-plate waveguide,
the lattice modes that are allowed at source frequency may be
excited. If the mode with kx = 0 and ky = π/a at the bottom of
the air band is only considered, its amplitude can be derived
using the Lorentz reciprocity theorem [22]

∯S E1 �H2 − E2 �H1ð Þ ⋅ n̂dS ¼∭VE2 ⋅ JdV ð3Þ

with

E1 ¼ AþEþz ẑþ A−E−
z ẑ

H1 ¼ AþHþ þ A−H−

E2 ¼ E−
z ẑ

H2 ¼H−:

ð4Þ

F I GURE 2 Side (a) and top (b) cut views of a
probe-fed parallel-plate waveguide, loaded with an
electromagnetic bandgap (EBG) structure. The
dashed grey square denotes the contour of the unit
cell

CECCUZZI ET AL. - 849

 17518733, 2022, 14, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/m

ia2.12292 by E
.N

.E
.A

., W
iley O

nline L
ibrary on [30/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The subscript 1 denotes the fields produced by the source
J1 = J, while the subscript 2 denotes the fields produced by the
source J2 = 0, that is, a test source-free solution that is chosen
equal to the radiation mode propagating towards y = −∞.
With reference to Figure 2, for a thin coaxial probe, the current
density can be approximated as

J¼ IðzÞδ x − xcð Þδ y − ycð Þẑ ð5Þ

where δ stands for the Dirac delta function and

IðzÞ ¼ I0 cos k0 hc=2 − zð Þ½ �; if hc ¼ h
I0 sin k0 hc − h=2 − zð Þ½ �; if hc < h

�

ð6Þ

with k0 = ω/c, being c the speed of light in vacuum [32]. By
using previous expressions into (3) and taking V as the volume
of a unit cell (S is the surface enclosing V), the following
expression can be derived for A+:

Aþ ¼
E−
z xc; ycð Þ

R h=2
−h=2 IðzÞ dz

R h=2
−h=2

R a=2
−a=2 Eþz H

−
x − E−

z H
þ
x

� ��
�
y¼a=2 dx dz

ð7Þ

The denominator of Equation (7) with the use of Equations (1)
and (2) becomes

−
2πh
ωμ0

X

m

X

n

X

p

X

q
fmn fpq ejπðnþqÞsinc½πðmþ pÞ�

where sinc(x) = sin(x)/x. The wave amplitude A− can be
similarly derived choosing the test fields E2 and H2 equal to
the radiation mode propagating towards y = +∞. Due to
symmetry, A− = A+ as in rectangular waveguides [33].

From the electromagnetic field excited by the probe, the
input impedance of the feeder at the reference plane z = −h/2
is defined as [34].

Zin ¼ Rin þ jXin ¼
Pr þ 2jω Wm − Weð Þ

1
2jIðz¼ −h=2Þj2

ð8Þ

where Pr represents the power radiated into the EBG-loaded
parallel-plate waveguide, while Wm − We is the reactive en-
ergy stored in the vicinity of the probe. The latter is due to the
excitation of evanescent modes and cannot be expressed in a
simple analytical form of practical use, hence it will not be
derived in this paper. The dependence on physical parameters
would be indeed not so clear and, nowadays, the calculation of
Xin would be easier with general-purpose software. On the
contrary, attention will be paid to Rin because a compact
approximate expression can be derived, conveying a clear
picture of the analytical dependences of the input resistance on
lattice parameters.

The radiated power can be calculated as the flux of
Poynting vector across the unit-cell volume:

Pr ¼
1
2
∯
S
E�H∗ ⋅ n̂dS

¼
jAþj2

2

Z h=2

−h=2

Z a=2

−a=2
Eþz H

þ∗
x

�
�
y¼a=2 dx dzþ

−
jA−j

2

2

Z h=2

−h=2

Z a=2

−a=2
E−
z H

−∗
x

�
�
y¼−a=2 dx dz

ð9Þ

By using Equations (1) and (2), the radiated power becomes

Pr¼ jAþj2
πh

ωμ0

X

m

X

n

X

p

X

q
fmnf

∗
pq⋅

⋅ cos½πðn − qÞ� sinc½πðm − pÞ�

ð10Þ

2.3 | Closed-form expression of Rin

A simple approximate formula of the input resistance is now
derived to analytically exemplify the functional dependences of
Rin on lattice parameters. By truncating the summations in
Equation (1) to very few terms, the electric field can be written as

(a)

(b)

F I GURE 3 Band diagram along the edge of the irreducible Brillouin
zone (a) and three-dimensional plot of the air band (b) for a square lattice
of Silicon cylinders with a = 10 mm, r = 0.35a and ɛr = 11.7
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Eþz ¼ 1þ b sin2
πx
a

� �h i
sin

πy
a

� �
e−j 2πya

E−
z ¼ 1þ b sin2

πx
a

� �h i
sin

πy
a

� � ð11Þ

with

b¼
4κ1

5κ0 − 2κ1 þ 5κ2 − k0a=πð Þ
2 ð12Þ

where

κℓ ¼
1
εr

− 1
� �

r
ℓa

J1
2πℓr
a

� �

þ δℓ0 ð13Þ

The derivation of Equation (11) is reported in the Ap-
pendix 1; multiplication factors have been removed because
they play no role with reference to the input resistance.

In assembling the real part of Equation (8) by using
Equations (10) and (7), a term depending on the current dis-
tribution over the probe can be identified. It is

CI ¼

R h=2
−h=2 IðzÞ dz
Iðz¼ −h=2Þ

�
�
�
�
�
�

�
�
�
�
�
�

2

¼
1
k20

⋅
tan2 k0hcð Þ; if hc ¼ h
tan2 k0hc=2ð Þ; if hc < h

(
ð14Þ

which can be recast into a single formula as

CI ¼
1
k20

tan2
k0hc

2 − δh;hc

� �

; ð15Þ

where δm,n denotes the Kronecker delta function, equal to 1
for m = n and 0 for m ≠ n. With previous definition, the
approximate expressions (11) for the electric field, applied to
the real part of Equation (8), give

Rin ¼ CI
ωμ0 sin2

πyc
a

� �
2þ b − b cos 2πxc

a

� �� �2

πh 8þ 8bþ 3b2
� � ð16Þ

The same expression holds true for the degenerate lattice
mode with kx = π/a and ky = 0, provided that xc is replaced
with yc and vice versa. It must be kept in mind that, in Equa-
tion (16), the axis origin is taken at the centre of a cylinder.

3 | NUMERICAL RESULTS

3.1 | FEM model and simulation settings

The input impedance of a probe-fed parallel-plate waveguide
loaded with the lattice of Figure 3 has been numerically
computed with a commercial code based on the finite-element

method (FEM). The real part of Zin has been compared with
the results from the semi-analytical model of Section 2.

The geometry of the FEM code is depicted in Figure 4.
Metal vias along cylinder rows have been added in the lattice to
hamper the unwanted mode with kx = π/a and ky = 0 from
propagating at the same frequency of the radiation mode. Such
expedient allows the lattice to become monomodal at the
bottom of the air band and achieve better radiation perfor-
mance, without affecting the radiation mode [14]. The material
of metal vias has been simulated as perfect electric conductor
(PEC). A standard 50-Ω coaxial probe with inner and outer
diameters of 1.3 and 4.1 mm, respectively, has been adopted as
feeder.

The geometry of a FEM simulation must be finite in
extent, hence, in the xy plane, the simulation domain has been
cut in the shape of an ellipse, surrounded by PEC. The axes of
the ellipse are aligned to the x and y axes, along which there are
(2Nx + 1) and (2Ny + 1) cylinders respectively (see Figure 4).
To prevent outgoing waves from being reflected at the ellipse
metallic border, that is, to emulate an infinite lattice along the x
and y directions, an inhomogeneous electrical conductivity of
the form

σ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x
Nxa

� �2
þ

y
Nya

� �2
� �5

s − 1 ð17Þ

has been assigned to the vacuum background, except for the
dielectric insulator of the coaxial feeding line. The expedient
given by Equation (17) is alternative to perfectly matched
layers, whose built-in implementation in the FEM code was
not effective for the present geometry. A similar approach is
widespread in the simulation of plasma waves in nuclear fusion
[35] and profitably applied to EBG structures [36]. For most of
next simulations, the values Nx = 34 and Ny = 37 are enough
to achieve a matched dissipative medium that fully absorbs
outgoing waves. In a few cases, where lower frequencies are
involved, slightly higher values have been used.

The geometries were drawn by creating a rectangular grid
of metal and dielectric cylinders in a vacuum background with

F I GURE 4 Geometry of the finite-element method (FEM) code with
Nx = 4 and Ny = 5. An exemplifying curve of the electrical conductivity is
shown too
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the electrical conductivity Equation (17), and intersecting all
elements with an elliptic cylinder of the aforementioned size,
which constitutes the simulation domain. Symmetry planes
have been set wherever possible to reduce the computational
load by simulating only a sector of the elliptic cylinder in place
of the full shape. Without the EBG, a cylindrical wave would
be excited in the parallel-plate waveguide, that is, an electro-
magnetic field that, on the xy plane, presents circular wave-
fronts with constant amplitude along the azimuthal coordinate.
In such a case, a simulation domain with circular cross-section
is the best choice. With the EBG, the radiation is focussed
along the y axis, which is the propagation direction of the
radiation mode. In this case a longer simulation domain along
the axis where more energy is focussed is useful because it
allows the σ profile to vary more slowly along such direction
and to achieve lower reflection and larger absorption of out-
going waves. An elliptic simulation domain, with major axis
along y, has been thus adopted to optimise computational
efforts: as a term of reference, a typical geometry among the
smallest ones has more than 500,000 tetrahedrons.

As far as the modal approach of Section 2 is concerned, the
plane-wave expansion method is known to have a low
convergence rate in the presence of an abrupt, that is, step-
type, periodic variation of the dielectric constant. Figure 5a
shows the frequency of the radiation mode as predicted by
solving the eigenvalue problem given in the Appendix 1 for an
increasing number of harmonics, while in Figure 5b the vari-
ation amplitude of such frequency (Δf) between two consec-
utive computations with different number of harmonics is
plotted. The condition Δf < 1 MHz, which requires at least 104

harmonics, was heuristically identified as a satisfactory crite-
rion. Since we are dealing with a two-dimensional Fourier se-
ries, this value corresponds to

ffiffiffiffiffiffiffi
104
p

¼ 100 terms for each
summation of Equation (1). To have symmetric summations
with an equal number of positive and negative harmonics, in
next calculations (101)2 spatial harmonics have been used.

The computation time of a FEM simulation on a work-
station with Intel Xeon E5-2643 at 3.4 GHz and 384 GB of
RAM is of the order of 20 min for a model with two symmetry
planes, that is, for a quarter of the geometry in Figure 4. With

reference to the semi-analytical calculation of Rin according to
Equation (8), a run with an in-house code on the same
workstation takes around 17 min when (101)2 spatial har-
monics are taken into account. Less accurate, but still mean-
ingful results can be obtained in a few seconds with a smaller
truncation index for the summations in Equations (7) and (10).
The computation of Equation (16) is instead immediate given
the frequency of the radiation mode.

3.2 | Parametric analyses

This section aims at providing useful guidelines for the design
and matching of antennas that exploit the radiation mode. A
comprehensive set of analyses is presented to study the
dependence of probe impedance on the geometrical and
electromagnetic parameters of the lattice as well as to check the
reliability of the model of Section 2. The latter relies on two
major approximations:

� The current density over the probe has been impressed
according to Equation (5). An in-plane variation in the form
of Dirac delta function has been assumed, neglecting any
effect due to the non-zero diameter of the probe. The
variation along z is not self-consistently solved, but enforced
as given by Equation (6).

� The radiation mode is only considered, implying that the
model is reliable if the lattice is monomodal and the real part
of Zin is only concerned.

The second approximation is well verified also in FEM
simulations if metal vias are used. At the end of this Section,
the case without vias is also considered to show how the
monomodal restriction can be worked around for the spurious
mode with kx = π/a and ky = 0. Besides the aforementioned
approximations, the modal approach presents further differ-
ences from a real antenna, some of which have been also
neglected in the FEM simulations. The lattice is truncated and,
beyond its boundaries, modes encounter free space or metal
plates, which cause partial or full reflection respectively. Real

F I GURE 5 Frequency f of the radiation mode
(a) in linear scale and Δf (b) in semilog scale versus
the number of spatial harmonics used in the
computation with the modal approach
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materials have losses and in coaxial probes, the dielectric
insulator may protrude to some extent out of the cable. As far
as probe deviations from a real coaxial connector are con-
cerned, their effect has been assessed with the FEM code. The
inner and outer diameters of the feeder have been varied within
meaningful ranges of values around the nominal ones, and the
filling medium of the coaxial cable has been extended inside
the parallel plate waveguide. As a test case, a waveguide height
of 1 mm with hc = h, xc = −a/2, yc = −a/2 has been simulated
at 7.864 GHz. The point-like approximation of the probe
diameter was found to play a negligible role, whereas the
change of input resistance due to the variation of probe outer
diameter and insulator protrusion was within �20%.

The aforementioned non-idealities prevent the formulation
of Section 2 from exactly predicting the value of input
impedance for the feeder of a real antenna, but the de-
pendences explored in this section hold true and represent a
useful guide in the optimisation of the antenna electrical per-
formance. In next plot legends, the results from the FEM code,
the semi-analytical calculation of Rin through Equation (8), and
the approximate formula (16) will be identified as FEM, nu-
merical, and analytical, respectively.

The variation of probe impedance with respect to the
normalised waveguide height h/λ0, being λ0 the vacuum
wavelength is plotted in Figure 6. As the height becomes large,
the results of the modal approach begin to diverge significantly
from the FEM results. This behaviour is due to the first one of
the abovementioned approximations, in particular to the cur-
rent distribution that has been enforced to follow Equation (6).
The same behaviour has been already documented with
reference to the input impedance of probe-fed microstrip
patches [32]. The variation of Zin versus the normalised probe
height hc/h is shown in Figure 7 for a fixed waveguide height
of 4.5 mm. It results in an offset between the curves obtained
with the FEM and modal approaches; such offset has been also
ascribed to the approximation on probe current. The appli-
cation of either gap feed or magnetic frill models is expected to

reduce this offset. It is worth noticing that, before crossing the
condition Xin = 0, the probe reactances of Figures 6 and 7 are
inductive and capacitive respectively. In the former case the
coaxial probe is indeed short-circuited on the upper waveguide
plate (hc = h); in the latter case it terminates with an open
circuit (hc < h).

In next analyses, a waveguide height of 1 mm has been
considered. For the reference lattice of Figure 3, this value
approximately corresponds to λd/10 and λ0/40, being λd the
dielectric wavelength. Figure 8 reports the dependence of input
impedance versus the cylinder radius. The plot covers a much
larger range of radii than the interval effectively used in an-
tenna design. For r > 0.4a, the bandgap vanishes as is clear
from Figure 9, explaining a larger disagreement between the
FEM code and the modal approach for r = 0.45a. The same
phenomenon stands out in Figure 10, where the variation of

F I GURE 6 Input impedance versus normalised height of parallel-plate
waveguide; a = 10 mm, r = 0.35a, ɛr = 11.7, hc = h, xc = −a/2, yc = −a/2,
f = 7.864 GHz

F I GURE 7 Input impedance versus normalised probe height;
a = 10 mm, r = 0.35a, ɛr = 11.7, h = 4.5 mm, xc = −a/2, yc = −a/2,
f = 7.864 GHz

F I GURE 8 Input impedance versus cylinder radius; a = 10 mm,
ɛr = 11.7, h = hc = 1 mm, xc = −a/2, yc = −a/2, f = bottom frequency of
the air band, as given by the black line of Fig. 9
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input impedance versus the cylinder dielectric constant is re-
ported. In this case, the bandgap vanishes for ɛr < 4.

Figure 11 shows the variation of input impedance with
respect to the probe position along x. Such dependence reflects
that of the radiation mode eigenfunction, which is depicted in
Figure 18 in the Appendix 1. The variation of Zin versus yc is
not shown because it similarly reflects the eigenfunction value
at the same coordinates. In particular, for xc = −a/2 and
yc = 0, a nodal line of the eigenfunction is intersected and the
radiation mode is not excited, resulting in Rin = 0 as predicted
by Equation (16) too. Similarly, if the degenerate radiation
mode were considered, a purely reactive input impedance
would be found for xc = 0 and yc = �a/2. Namely, with the
coaxial probe in such position, there is no need of vias because
the radiation mode with kx = 0 and ky = π/a is only excited.

It is now worth considering the situation where both modes
are allowed to propagate. Without metal vias, the mode with

kx = π/a and ky = 0 is also excited as xc becomes larger or
smaller than zero, changing the input impedance. A crude
approximation ofRin in the absence of vias consists in summing
up the input resistances of the two modes. The net effect, which
is shown in Figure 12 together with the FEM results is an
increasing value of Rin as the probe position approaches the
corners of the unit cell. The full-wave prediction at xc = 0 is a
trifle different from that of Figure 11. This small deviation has
been ascribed to the numerical accuracy of the FEM code that in
both presence and absence of vias is asked to solve several
millions of unknowns.

As far as the probe reactance is concerned, a smooth
variation versus lattice parameters can be generally observed in
the explored space of parameters. Cylinder radius, cylinder
permittivity and probe position determine a relatively weak

F I GURE 9 Frequency boundaries of the bandgap versus cylinder
radius

F I GURE 1 0 Input impedance versus cylinder relative permittivity;
a = 10 mm, r = 0.35a, h = hc = 1 mm, xc = −a/2, yc = −a/2, f = bottom
frequency of the air band for the given values of ɛr

F I GURE 1 1 Input impedance versus probe position along x;
a = 10 mm, r = 0.35a, ɛr = 11.7, h = hc = 1 mm, yc = −a/2, f = 7.864 GHz

F I GURE 1 2 Input resistance versus probe position along x in a lattice
without vias; a = 10 mm, r = 0.35a, ɛr = 11.7, h = hc = 1 mm, yc = −a/2,
f = 7.864 GHz. The subscript 1 denotes the mode with kx = 0 and ky = π/
a; the subscript 2 denotes the mode with kx = π/a and ky = 0
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dependence of Xin, while the probe height exhibits a stronger
impact on its value. The probe can be indeed thought as the
short- or open-circuited stub of a lossy transmission line. The
dependence of the input reactance on the line length is in the
form of a hyperbolic tangent or cotangent, while the other
lattice parameters mostly affect the primary line constants. This
point is further addressed in the next Section.

4 | MATCHING EXAMPLES

4.1 | Infinite lattice

With both open- (hc < h) and short- (hc = h) circuited
termination of the coaxial probe, a value of the probe height
can be found that satisfies the condition Xin = 0. By thinking
of the probe as a transmission line (TL), it can be intuitively
grasped that such condition corresponds to either a resonance
or an anti-resonance that alternately recur every half a turn on
the Smith Chart. We will refer to such occurrences of Xin = 0
as TL (anti)resonances and denote the associated probe height
with hTLc; res. For the unswept lattice parameters of Section 3.2,
the value of hTLc; res falls in the neighbourhood of 7 mm, as can
be deduced from Figure 6.

Only with the open-circuited probe, the condition Xin = 0
can be also met with probe heights shorter than 7 mm, as
demonstrated by Figure 7. In thin parallel-plate waveguides, the
input reactance changes sign as hc approaches h owing to the
capacitive effects resulting from the gap formed by the probe tip
and the top plate of the waveguide. Within this regime of

reactance cancellation via gap capacitance h ≲ hTLc; res
� �

, the

resonant probe height increases with the height of the parallel-
plate waveguide. Beyond the TL (anti)resonance, the resonant
probe height becomes quantised, that is, their values are inde-
pendent from the height of the parallel-plate waveguide, and
their multiplicity is ruled by the turns on the Smith Chart.

The input resistance at resonance, as a function of the
parallel-plate waveguide height, reflects the aforementioned
behaviour. As illustrated in Figure 13, it increases when the
resonant hc increases, consistently with Figure 7, and slightly
decreases while entering the TL resonance regime, because the
resonant hc is becoming constant. The maximum value of the
input resistance at the resonance is around 26 Ω, leading to an
acceptable matching at the frequency of the radiation mode.
According to Figure 11, the input resistance can be increased by
moving the coaxial probe from xc = −a/2 to xc = 0. The
matching undergoes the enhancement depicted in Figure 14,
where the S11 at the input of the coaxial feeder is plotted versus
frequency.

4.2 | Finite-size lattice

The outcomes of the present work have been applied experi-
mentally to seek enhancements for the high reflection coeffi-
cient of an existing antenna [14] without relying on external

matching circuits. The antenna, designed to work at 10 GHz
exploiting the radiation mode is described in Figure 15, where
the geometrical details of the coaxial feeder are given too.
Commercial off-the-shelf coaxial probes are available with fixed
values of A and B and those procured from chosen vendor,
which are A = 8 mm and B = 15 mm, are not optimal for this
antenna. Full-wave calculations return an input impedance
approximately equal to 27 − j120 Ω, which entails a high voltage
standing wave ratio. The simulations were carried out sur-
rounding the structure with perfectly matched layers and
applying de-embedding port operations to express the input
impedance in the same reference place of previous Sections. The
time-domain electromagnetic solver of a commercial software
was used, modifying the standard convergence threshold with a
more severe one because the unmatched conditions may pro-
duce inaccurate results with the general-purpose solver settings.

F I GURE 1 3 Finite-element method (FEM) results of the input
resistance and resonant probe height versus waveguide height; a = 10 mm,
r = 0.35a, ɛr = 11.7, xc = −a/2, yc = −a/2, f = 7.864 GHz

F I GURE 1 4 Reflection coefficient at the input of the coaxial probe
predicted by the finite-element method (FEM) code for a = 10 mm,
r = 0.35a, ɛr = 11.7, h = 5 mm, yc = −a/2
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By varying the height hc of the probe, the condition Xin = 0
is readily satisfied with A = 0 mm and B = 8.2 mm, but the
input resistance at the resonance is as low as 13 Ω, corre-
sponding to a S11 of only −4.8 dB. In this case, a shift of the
probe position would make the antenna asymmetric and it
would require to manufacture a new bottom plate. Similarly,
the other approaches that allow for an increase of the input
resistance according to Section 3.2, like changing cylinder
radius or permittivity, also affect the radiation performance of

the antenna [37]. All of them require to re-design the lattice
and, consequently, to realise a new antenna, except for one
approach that can be easily implemented in the current pro-
totype, that is, removing the vias. With this modification, the
enhancement of S11 is negligible if the original non-optimised
coaxial probe of Figure 15 is used, but a good matching is now
achieved when probe height is optimised, that is, with
A = B = 8 mm. A photograph of the antenna and the opti-
mised coaxial feeder is shown in Figure 16. Figure 17,

(a)

(c) (d)

(b) F I GURE 1 5 Cylinder arrangement (a), coaxial
probe (b), front (c), and side (d) views of an antenna
exploiting the radiation mode. The antenna is based
on a 6 � 6 lattice of peek (ɛr = 3.1, tan δ = 0.01)
cylinders with a = 13.4 mm, r = 4.29 mm,
h = 15 mm, interleaved along the rows by stainless
steel vias with a radius of 0.4 mm. Aluminium is
used for the parallel plates of Fig. 2 and the
backplate at the bottom of the lattice. The feeder is a
panel-mounted 50-Ω coaxial probe with
polytetrafluoroethylene (PTFE) insulator.
Dimensions are in mm

(a)

(b)

F I GURE 1 6 Antenna prototype (a) and optimised coaxial feeder (b)
F I GURE 1 7 S11 of antenna configurations with or without vias, fed by
original or optimised probes
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reporting the simulated and measured S11 with the original and
modified probes, attests the improvement. The simulations
have been carried out with a time-domain full-wave commer-
cial software. The matching has been achieved at the expenses
of the radiation performance because the degenerate lattice
mode is also excited without vias, entailing a reduction in the
directivity and side lobe level of around 2 and 6 dB respectively.
This example suggests that an antenna can be probably
matched ex post without relying on an external network, but a
joint optimisation of its electrical and radiation performances
should be preferably pursued during the design phase because
the lattice parameters affect both the matching and the radia-
tion pattern.

5 | CONCLUSION

The paper has addressed a square lattice of dielectric cylinders,
placed in a parallel-plate waveguide and fed with a coaxial probe.
This geometry is employed in EBG antennas with an embedded
source that excites a lattice mode right above the bandgap. The
input resistance of the feeding probe has been studied both
numerically and analytically. In particular, an approximate,
closed-form expression of the probe resistance has been derived
and its validity checked. A thorough analysis of such resistance
with respect to the lattice parameters has been performed which
unveils the main functional dependences and shows a good
agreement between the different approaches when the wave-
guide height is electrically short. The same parametric study has
been numerically carried out for the probe reactance, showing
both inductive and capacitive behaviours as a function of the
ratio between the probe and the waveguide height.

Numerical results demonstrate that antenna resonances can
be achieved by adjusting the probe height and compact (i.e.,
shorter) resonant antennas can be designed when the probe
termination is an open circuit. Input resistances at resonances are
usually lower than the standard impedances of coaxial feeders.
To attain good matching, they can be increased by using
dielectric cylinders with smaller radius, smaller permittivity,
longer height or by moving the probe position. The guidelines
coming from parametric analyses have been applied to a couple

of examples. Good matching has been achieved in the case of
both an infinite lattice and a realistic antenna, suggesting, in the
latter case, the need of a combined optimisation of both electrical
and radiation parameters during its design. To the best of au-
thors' knowledge, the results of this paper represent the first step
of a systematic study for the electrical input parameters of EBG
antennas based on lattice modes.
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APPENDIX

Compact expression of the electr ic field
An approximate, compact form of Equation (1) can be derived
by retaining very few harmonics of the summation. To this
aim, the field is now written as a product of three terms

E�z ðx; yÞ ¼ XðxÞY ðyÞe∓j kxxþkyyð Þ ðA1Þ

that is, factorised in a phase term and two periodic functions,
which only depend on either x or y coordinate. The wave
equation can be solved twice considering in turn only har-
monics along either x (n = 0) or y (m = 0) to find simple
closed-form expressions of X(x) and Y(y) respectively. In both
cases, the wave equation has to be solved for the TMz modes
of the second Brillouin band (air band) with kx = 0 and
ky = π/a. This equation has the form of the following
eigenvalue problem [30]:
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X

m

X

n
jGpq − kj κ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp−mÞ2þðq−nÞ2
p jGmn − kj ~f mn ¼

ω2

c2
~f pq

where

Gmn ¼
2πm
a
x̂þ

2πn
a
ŷ

~f mn ¼ jGmn − kj fmn ðA2Þ

and κℓ are the Fourier coefficients of 1/κ(x, y), being κ(x, y) the
periodic function that expresses the spatial variation of the
relative permittivity. For a lattice of dielectric cylinder in a
vacuum background, κ(x, y) is 1 outside them and ɛr inside
them. The expression of κℓ is given in Equation (13) [30].

As far as X(x) is concerned, a good approximation of the
spatial variation of Ez can be achieved with three harmonics
(m, n) (0, −1) (0, 0) and (0, +1). The eigenvalue problem can
be recast in matrix form

π2

a2

5κ0
ffiffiffi
5
p

κ1 5κ2
ffiffiffi
5
p

κ1 κ0
ffiffiffi
5
p

κ1
5κ2

ffiffiffi
5
p

κ1 5κ0

2

6
4

3

7
5 ⋅

~f 0;−1
~f 0;0

~f 0;þ1

2

6
6
4

3

7
7
5¼

ω2

c2

~f 0;−1
~f 0;0
~f 0;þ1

2

6
6
4

3

7
7
5

ðA3Þ

leading to the following eigenvectors

~f 0;−1 ¼ ~f 0;þ1 ¼ 1

~f 0;0 ¼ −
4κ0 þ 5κ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

40κ21 þ 4κ0 þ 5κ2ð Þ
2

q

2
ffiffiffi
5
p

κ1
:

ðA4Þ

By using Equations (A4) and (A3) in Equation (1) and doing
some mathematical manipulations, we get

XðxÞ ¼
2a
ffiffiffi
5
p

π
cos

2πx
a

� �

−
5κ0 þ 5κ2 − k0a=πð Þ

2

2κ1

" #

ðA5Þ

With reference to Y(y), the same procedure is followed, but
two harmonics, that is, (0, −1) and (0, 0), are only used, giving

Y ðyÞ ¼
2ja
π

sin
πy
a

� �
e−jπy

a ðA6Þ

that represents a good enough approximation for the scopes of
this paper.

In Figure 18 the magnitude of the electric field inside a unit
cell, normalised to its maximum is shown as obtained by two
different calculations. The former uses Equations (A1) with
(A5) and (A6), whereas the other relies on Equation (1) with
summation indices ranging from −8 to + 8.
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