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Abstract: Traffic and transportation forecasting is a key issue in urban planning aimed to provide
a greener and more sustainable environment to residents. Their privacy is a second key issue that
requires synthetic travel data. A possible solution is offered by generative models. Here, a variational
autoencoder architecture has been trained on a floating car dataset in order to grasp the statistical
features of the traffic demand in the city of Rome. The architecture is based on multilayer dense neural
networks for encoding and decoding parts. A brief analysis of parameter influence is conducted. The
generated trajectories are compared with those in the dataset. The resulting reconstructed synthetic
data are employed to compute the traffic fluxes and geographic distribution of parked cars. Further
work directions are provided.
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1. Introduction

Transportation forecasting is the attempt to estimate the number of vehicles or people
that will use a specific transportation facility in the future. This can be considered a relevant
subject of urban computing: the process of tackling the major issues that cities face using
heterogeneous data collected by a diversity of sources in urban areas [1].

With the present fast rate of urbanization all around the world, the city populations
are increasing exponentially together with the number of vehicles, causing countless traffic
problems. This in turn provokes direct economic losses as well as indirect ones such as the
health problems deriving from air pollutants.

Thus, transportation forecasting becomes a key issue in urban planning, possibly
helping in the resolution of the conflict between traffic volume requests on one side and
traffic infrastructure supply on the other [2].

Among the different approaches to the problem of traffic modeling, activity-based
models are a group that try to predict for individuals where and when specific activities (e.g.,
work, leisure, and shopping) are carried out [3]. The idea behind activity-based models is
that travel demand is derived from activities that people need or wish to perform; travel is
then seen as a by-product of an agenda, as a component of an activity scheduling decision.

Traffic modeling can be primarily considered as a statistical approach and is heavily
grounded on the collection of large quantities of data. People can be of extreme help in
this, since they generate data during their daily activities and movements, for instance by
carrying and using a mobile phone. Data can be collected through many different means,
e.g., using CDRs (call detail records) from cellular phones, social network posting, vehicle
or smartphone navigation data, and floating car data (FCD).

There is substantial agreement in the literature that human mobility can be seen as a
highly structured domain composed of mostly regular daily/weekly schedules, showing
high predictability across diverse populations [4]. Further analysis also suggests that
human mobility shows temporal and spatial regularities [5,6].
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It is evident that an accurate modeling of urban traffic flow may help in reducing
traffic congestions, resulting in a healthier environment. On the other hand, how is it
possible to reach those goals and protect privacy at the same time? Trajectory data are
commercially very valuable (e.g., geographically targeted advertisements) and contain
rich information about people’s travel patterns and their interactions with the urban built
environment. However, users’ privacy is easily violated: it is possible to infer home/work
location and socioeconomic status of a user even from social media check-in data only [7].

Traveling information should be gathered anonymously in order to protect the people’s
right to privacy. In addition to this central fact, there are further concerns linked to the
actual availability of data. Often, these datasets represent a limited sample of the entire
population, and the data are often biased or have a low sampling rate, hence being of only
partial usefulness for analyses. Furthermore, the data may belong to private enterprises
(e.g., cellular phone records), adding further difficulties in availability or usability.

The main contribution of this paper is in presenting a machine learning approach
to model the traffic demand in an urban area and to produce synthetic mobility data in
place of real ones. A variational autoencoder (VAE) [8] based on a dense neural network
architecture is used. Such a generative model can retain the statistical properties of the real
data, but privacy risks can be alleviated, and data abundance issues mitigated, through the
production of artificial trajectories.

The data used for the training of the model is an FCD dataset of the trajectories of
a large group of private cars in the town of Rome. The data have been processed to
switch towards a representation in terms of the stops separating various car trips, creating
what can be called stop trajectories. To a certain extent, the use of this representation can
be considered an activity-based approach, since people drive their cars from one place
to another to pursue scheduled activities. An application of the presented processing
pipeline is provided, where the traffic fluxes and geographic distribution of parked cars
are computed.

In the second section of the paper, the related work is briefly presented. In the third
section, variational autoencoders are concisely presented, the employed dataset is described
with some associated statistical analyses, and the tuning of some of the model parameters
used during training is shown. In the fourth section, results are provided both in terms of
generated stop trajectories and in reconstructed trajectories. The model is used to compute
the traffic fluxes and geographic distribution of parked cars as an example. In Section 5, a
discussion and conclusions are provided.

2. Related Work

As described above, traffic modeling, in addition to the modeling itself, should also
tackle the related privacy issues and the question of data abundance. In the literature, there
are several different approaches to these questions. A possible solution to overcome these
concerns is to employ generative models, as it has recently been proposed in several fields
of application [8]. The basic idea is represented by a generative model that is trained over
the dataset of interest and then used to produce synthetic records.

A generative model can be briefly described as follows. Let us assume a dataset of
observations with a given unknown statistical distribution Pdata. A generative model Pmod
is designed to mimic Pdata; thus, in order to generate new observations distributed as Pdata,
it would be possible to sample Pmod instead [8]. The model is trained with the observation
data, and it can learn a compact feature space, the so-called latent space, the sampling of
which outputs new observation data with the same statistical properties of the original ones.
This clearly overcomes both the problem of user privacy, since it is essentially synthetic
data, and the risk of datasets that are too small, since it is possible to generate as many
data as needed.

In [9], travelers’ activity patterns are inferred from CDRs using IO-HMM with a
contextual condition to the transition probability, since the information on activities is part
of the dataset. In [10], this approach is pipelined to a long short term memory (LSTM)
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architecture to learn the traveler’s sequences, while in [11], a statistical approach is used
through a dynamic Bayesian network to estimate daily mobility patterns, refining it by
rejection sampling. In [12], a two-step model is devised: the first generates a mobility diary
through Markov models from the real mobility data, analyzing the temporal patterns of
human mobility. The second translates the diary into trajectories, i.e., a spatial analysis, on
the concept of preferential return and preferential exploration.

However, most of the more recently published literature makes use of a generative
model, either generative adversarial networks (GANs) [13] or autoencoders and variational
autoencoders (VAEs) [8], which are able to add a stochastic component that helps in
producing both good data modeling and generation.

In [14], the architecture employs a sequence-to-sequence LSTM network as arranged in
a VAE to learn trajectories with high granularity. The mean distance error (MDE) between
single real trajectories and reconstructed ones is used for evaluating the performance, but
the overall distributions are not taken into account as an evaluation metric. In [15], a
recurrent neural network is trained to learn the trajectories and is then used to produce
new sequences, with a careful analysis of the produced trajectories in terms of accuracy
and data privacy. The approach requires a preprocessing step to identify the home and
work locations of each individual. The performances are evaluated on metrics related to the
time spent per location, trip distances, and visited location per user. There is no stochastic
component in the model. In [16], an adversarial network approach is used based on LSTM
networks, using a trajectory encoding model, while in [17], the adversarial networks are
used to train a non-parametric model that generates location trajectories on a grid, using a
sparse location map, not targeted on the stops.

In the approach presented here, the used stop trajectories are a more compact data
representation, which consent the use of a simpler VAE architecture based on dense neu-
ral networks. Furthermore, the stop spatial locations are directly expressed in terms
of latitudes and longitudes, instead of using discretization of higher granularity, and
the spatial-temporal distributions of the dataset are reconstructed, producing synthetic
stop trajectories.

3. Materials and Methods
3.1. Variational Autoencoders as Generative Models

An autoencoder can be implemented with an artificial neural network that is used to
learn efficient data encodings in an unsupervised manner. The autoencoder is generally
composed of two subsections, an encoder and a decoder, which are linked by an internal
latent space. The trick is that the latent space dimension is significantly smaller than the
input one, which is the same as the output, so the model is forced to discover and efficiently
internalize the essence of the data. During the training, the system learns to reproduce in
output the same data given in input. Once it has been trained, it is possible to generate new
output data via the sampling of the latent space. A further refinement of these models is
represented by the variational autoencoders, which are able to add a stochastic component
in the latent space that helps in producing better data modeling and generation [8].

In previous work [18], a VAE composed of an LSTM model has been used, since it is a
recursive neural network proficient in modeling sequences [19]. Here, a dense multi-layer
perceptron has been employed for the encoder and the decoder parts of the VAE. The
encoder encodes a sequence of places visited by a driver during a temporal interval of a
day to its stochastic latent space, and a symmetrical dense model decodes it to the output
stop-trajectory sequence, which is made by matching it as much as possible to the input
sequence during the training phase.

Once trained, the latent space can be normally sampled in order to produce trajectory
sequences similar, in a statistical sense, to those of the training dataset. The migration
from the LSTM to the dense models stems from the much simpler configuration of stop-
trajectories as compared to full trajectory samples. It is common when modeling short
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sequences to use a multilayer perceptron or a convolutional neural network, as these are
more manageable [20].

3.2. The Dataset

The available OCTO Telematics [21] dataset is an FCD collection containing one month
of records from a set of about 150,000 cars in the geographical area of Rome, Italy. Each
record consists of time, position, speed, the distance from preceding record point, engine
status (running, turning off, or starting), and the numerical ID of the car. The records are
stored as soon as either a given time interval has passed or a given distance is traveled,
and the starting or switching off of the engine are recorded events. In short, the dataset
is composed of geographical points along car routes. At this stage, the user privacy is
represented by the anonymity of the car ID.

The first step was that of cleaning the dataset from unreliable data, e.g., geographical
positions in the sea or sequences without starting or ending points. The processed dataset
was analyzed to extract some global characteristics. As an example, Figure 1 shows an
interesting analysis in terms of stops, where a stop has been defined as a turning off of the
car engine for more than 5 min. The average number of stops per day on the whole dataset
is 4.99 and 4.04, respectively, on weekdays and weekends/holidays.

Figure 1. Bivariate histogram of the stops on a weekday. The x axis is the starting time of the stops,
and the y axis is the relative duration, both in hours. The red dotted lines delimit the day. The
intensity of color increases with the number of stops. On the right side and on the top of the graph
are the two monovariate distributions.

In Figure 1, the bivariate histogram of stops in terms of the stop starting time and the
stop duration is plotted.

In the figure, at least three areas can be identified: an approximately linear one on
the lower part, a blob on the central left part, and a second, slightly higher blob on the
right. The first group, by far the most numerous, is made up of all short-term stops, less
than or equal to 1 h, more or less evenly distributed throughout the day. A series of
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secondary activities, such as shopping and accompanying children to school, can fall into
this grouping. The blob on the right side is approximately centered on a duration of 12–13 h
and a start time of around 19:30. It is considerably less numerous than the previous one,
and it can be considered that of the residences, where the stops are made only once a day.
A residence refers to a place where a vehicle is parked overnight for a certain number of
hours: for example, the residence of a commercial vehicle may also be considered the place
where it is left for the night.

To help the interpretation of Figure 1, a straight line has been drawn that passes
through the center of the blob, which represents the geometric locus of all stops ending
at the same time. The data in the blob are elongated in the direction of the straight line,
supporting the hypothesis that the residences are being considered.

The third blob identified may be composed of stops relating to the work activities of
people employed 8 h a day (full time). In fact, it is centered approximately at 8:00 with a
duration of approximately 9 h, which leads to an end stop time at 17:00.

This kind of analysis may be of help to classify the activities performed at the stops,
e.g., to distinguish overnight stops from work or leisure ones, and compute residences.

This type of analysis was repeated on all of the days of the dataset, indicating two
macro classes of days, one for the working week (Monday–Friday), shown in Figure 1,
and one for holidays and weekends, where the third blob, the one relating to offices,
basically disappears.

It is interesting here to observe that Figure 1 is very similar to a figure shown in [9].
The positions and dimensions of the above three blobs are practically superimposable.
This is interesting, as the data used here relates to the GPS tracks of vehicles in the city of
Rome, while in [9], the CDRs of cell phones in the San Francisco Bay Area are analyzed,
and activities are considered. However, if a car stop is considered as a proxy for an activity
of some kind, the similarity can be explained. Another similarity is represented by the
average number of activities carried out in the two cities, i.e., the average number of stops.
In our dataset, there are 4.99 stops/day on weekdays and 4.04 stops/day on holidays and
weekends; in [9], these values are 4.4 and 4.0.

Because of this and further statistical analyses of the dataset, a stop-based dataset
composed of sequences containing a maximum of 8 stops per day was used. In the
following, we refer to these sequences as stop-trajectories. Each point in a stop-trajectory
is described by 6 quantities: latitude, longitude, duration, start time, day of week, and
trip distance covered to reach the current stop (see Table 1). Thus, a daily trajectory is
represented by 48 values; if the number of daily stops is smaller than 8, the data are
padded with zeroes; if a given driver performs more than 8 stops, it is discarded (all of
the trajectories of the driver are discarded to avoid data distortion). Under the above
assumptions, a fraction of 50% of all available drivers is retained.

Table 1. An example of a stop-trajectory: eight stops, possibly zero padded, described by six values.
A five-stop trajectory is shown here. Start time is in decimal hours. In this case, the first stop is in the
preceding day, with a duration of circa 12 h.

Latitude Longitude Duration (s) Start Time (h) Day of Week Trip Distance (m)

1 41.854031 12.497663 43,406.00 20.266 3 6035.0
2 41.844841 12.490471 16,362.00 8.433 4 1580.0
3 41.829877 12.510948 411.00 13.149 4 3606.0
4 41.853169 12.497894 4363.00 13.516 4 5553.0
5 41.852843 12.498169 57,320.99 14.933 4 4348.0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 0 0
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3.3. Training

The VAE dense model was trained on the subset of the dataset comprising the drivers with
the considered limit on the number of stops, which means more than 900,000 different trajectories.

An analysis of the influence of the various features of the architecture on training was
performed and is presented here.

The loss function of a VAE is usually composed of two terms: a reconstruction loss
describing how well the output matches the input and a regularization term helping in
achieving a multivariate normal distribution in the latent space. In this work, the influence
of the two terms is tuned through the following equation:

LTOT = βLKL + (1 − β)LMSE (1)

where LMSE is the reconstruction loss, typically measured by the mean squared error, and
LKL is the regularization loss, typically assessed with the Kullback–Leibler divergence.
Figure 2 shows the final loss behavior versus the β term. If a large value for β is chosen,
the influence of the MSE decreases, and the reconstruction error increases. If a value of
0.2 for the trade-off parameter β is chosen, a low value for the MSE can be reached while
maintaining a limited KL-divergence.

Figure 2. Final loss behavior as a function of the trade-off parameter β between the reconstruction
error (MSE) and the regularization term (KL). A value of β around 0.2 assures a low MSE with
good regularization.

Several latent space dimensions were tested. Figure 3 summarizes both the training
loss as a function of the training epochs and, in the inset, the final loss. It is evident that
the larger the number of latent space units, the smaller the loss. For further processing,
the latent space dimension was set to 20, since the gain in terms of loss using larger latent
space dimensions is limited, while the smaller the number of units is, the more manageable
the model and the related processing timings are.
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Figure 3. Training with different latent space dimensions. Larger graph: The total loss as a function
of training epochs for different latent space dimensions. Inset: The final loss behavior as a function of
latent space dimension (β = 0.2).

4. Results
4.1. Generation

Once trained, the system was used for its true purpose: the generation of new trajecto-
ries for synthetic cars and drivers.

In Figure 4, the same bivariate histogram of Figure 1 is presented, i.e., stop start time
versus stop duration.

Figure 4. Histograms of the stop start time vs. duration: (a) the training dataset; (b) the generated trajectories.

The original training dataset is on the left of the figure, and the generated trajectories
are on the right. The short-term stops are in the same time slots and with slightly longer
durations. The nightly stops in the generated trajectories are present, but they are somewhat
longer in duration and are later in their beginning. Nevertheless, there is an evident
similarity between the two graphs, and the overall quality of the generated trajectories is
similar to the original dataset behavior.
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The resulting generated trajectories were evaluated in terms of the extent to which the
synthetic generated data retain the features of the real data. Specifically, the consistency of
the number of stops, the trip distance distribution, and the time spent per location (stop
duration) was checked. It is important to mention that it is difficult to compare output from
other studies because different algorithms have different aims and different datasets.

In Figure 5, the distribution of the number of daily stops, in both the training dataset
and the generated trajectories, is presented. The solid line represents the dataset, while the
histogram shows the generated data. The comparison shows that the statistical distribution
of this quantity was grasped by the generative model.

Figure 5. The distribution of the number of stops in the trajectories: comparison between that from
the training dataset (line) and that from the generated trajectories (histogram).

The distribution of stop durations is shown in Figure 6a. The solid line is the dataset,
while the histogram describes the generated data. In this case, the overall distribution
pattern is grasped by the modeling VAE, but with a lower accuracy. In Figure 6b, the
distribution of the trip distances is shown. Here, the generative model resembles the
dataset distribution with a higher degree of accuracy.

25,000 

20,000 

15,000 

10,000 

5000 

Distribution of stops duration 

dataset distribution -
generated distribution c:::J 

50,000 100,000 150,000 200,000 250,000 300,000 

(a) 

20,000 

15,000 

10,000 

5000 

Distribution of trip distances 

dataset distribution -
generated distribution c::::::J 

10,000 20,000 30,000 40,000 50,000 

(b)

Figure 6. (a) The distribution of stop duration: training dataset (line) and generated trajec-
tories (histogram); (b) the distribution of trip distances: training dataset (line) and generated
trajectories (histogram).
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4.2. Reconstruction

Although the generated data possess general descriptors similar to the training data as
described above, the actual geographic distribution of the generated stops is not adequate
for the purpose of an accurate model of the traffic request.

In order to overcome this limitation, it can be observed that, in addition to the genera-
tive mode, it is also possible to use the autoencoder to reconstruct the training dataset. If
the training dataset is fed as input, the reconstructed trajectories in the output will be statis-
tically similar but not equal to those of the dataset itself, yielding a different possibility for
traffic modeling. The trained VAE was made thus to reconstruct the input data. The results
were compared in terms of Kullback–Leibler divergence with the input data distribution.
The reconstruction performs better than the generation (see Table 2).

Table 2. Kullback–Leibler divergence between the input data and the generated or reconstructed
output (a null divergence means that the two distributions are equal).

Variable Generated Data Reconstructed Data

Latitude 4.44 × 10−4 2.03 × 10−4

Longitude 1.56 × 10−4 9.21 × 10−5

Duration 8.30 × 10−5 7.79 × 10−5

Trip Distance 3.46 × 10−3 2.68 × 10−3

In Figures 7 and 8, the reconstructed data for latitude and stop starting time are
shown. The upper plot represents the dataset distribution, and the lower plot represents
the reconstructed distribution. Similar plots were obtained for the other relevant quantities
of the model. As can be seen from the juxtaposed plots, the obtained distributions are
similar to the original ones; however, they still possess an intrinsic stochastic variability
due to the use of the VAE architecture. This allows for the production of more data than
those in the training set if needed, though with the same overall distribution.

Figure 7. Latitude data comparison. Above: dataset distribution; below: reconstructed distribution.
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Figure 8. Stop starting hour comparison. Above: dataset distribution; below: reconstructed distribution.

In Figure 9, the geographic locations of the first 30,000 stops are plotted to avoid clutter.
The distribution of the dataset is in orange, and the reconstructed data are in blue.

Figure 9. Spatial distribution (latitude; longitude) of the first 30,000 stops. Orange: the dataset; blue:
the reconstructed data.

Once the model was used to generate the traffic demand in the city, the origin-
destination matrices were computed, and examples of the results in terms of traffic fluxes
are visualized in Figures 10 and 11 for the time slot between 9 and 10 a.m. on a weekday.
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Figure 10. Hexagon aggregated fluxes: (a) Inbound cars and (b) outbound ones between 8 and 9 a.m.
on a weekday.

Figure 11. Parked cars between 8 and 9 a.m. on a weekday.

Figure 10 shows the inbound and outbound car flows, as discretized using about
17,000 hexagons with a diagonal of 700 m. Figure 11 plots the resulting parked cars under
the assumption of an initial number of parked cars distributed in the city as computed
residences, i.e., the overnight stops of at least 8 h.

In the figures, the beltway around Rome and the districts where the working places
are more densely located can be seen, i.e., in the lower part of the city and in the upper part
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of the center. In addition, an industrial area is visible outside the beltway on the upper
right part.

5. Discussion and Conclusions

The generation of urban traffic patterns is needed to secure a greener and more sus-
tainable environment to the citizens. This task involves the processing of large quantities of
data, typically collected from mobile phones or car navigational tools, which has implica-
tions in terms of residents’ privacy and, in a data availability issue, often these datasets are
a limited or biased sample of the population.

Aiming to generate traffic patterns and avoid violations of privacy, a variational
autoencoder generative model, based on dense neural networks, is presented. The dataset
employed to train the system is an FCD, which was translated into stop-trajectories, i.e.,
sequences of stops with associated locations and time information. This approach can
be approximately considered activity-based [3], even if this is not entirely accurate as
compared to the use of mobile phones data. At the same time, it differs from the full
trajectory approach, where the full collection of locations along the trajectory are considered
as in [9,14].

The stop trajectories are here limited to eight stops out of statistical considerations on
the actual dataset. Thus, the use of a dense VAE model considering daily stop trajectories,
instead of a recurrent network reconstructing trajectory points sequences, as done in [14,15],
is viable.

The locations considered here are expressed in terms of latitude–longitude pairs,
differently from other works, e.g., [15], where census tract areas are used. In [16], devia-
tions of the latitudes and longitudes from the centroid of all latitudes and longitudes are
used instead.

An interesting issue is that of the comparison of distribution features between synthetic
and real data. In the case of pure generation, the model is able to grasp and reproduce fea-
ture distributions in acceptable accordance, but the spatial distribution somehow becomes
insufficiently accurate for the needed application.

The reconstructed stop-trajectories can more accurately describe the real data. This
method is in some sense similar to the approach in [15], where home and work locations
are used as seeds to reconstruct a complete daily trajectory.

The use of a generative model automatically ensures the the data abundance issue is
overcome. Under the perspective of privacy, it is possible to affirm that the stop trajectory
data produced by the model is synthetic and loosely linked to the original dataset, but it is
obvious that the training of the model is performed using real data. Future work will be
focused on an evaluation of the privacy issues using distance metrics to compare synthetic
trajectories and real ones from the original dataset, as in [15].

Further work will also be aimed at checking the approach with a tiling technique for
geographic localization, as in Figures 10 and 11, since the goal of this work is to model traffic
needs in terms of origin–destination matrices. Validation of these future implementations
will be performed against different, larger, and more recent traffic datasets.
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