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Abstract
Shear Alfvén wave (SAW)/drift Alfvén wave (DAW) fluctuations can be destabilized by
energetic particles (EPs) as well as thermal plasma components, which play a key role in the EP
energy and momentum transport processes in burning fusion plasmas. The drift Alfvén
energetic particle stability (DAEPS) code, which is an eigenvalue code using the finite element
method, was developed to analyze Alfvén instabilities excited by EPs. The model equations,
consisting of the quasineutrality condition and the Schrödinger-like form of the vorticity
equation, are derived within the general fishbone-like dispersion relation theoretical framework,
which is widely used to analyze SAW/DAW physics. The mode structure decomposition
approach and asymptotic matching between the inertial/singular layer and ideal regions are
adopted. Therefore, the DAEPS code can provide not only frequency and growth/damping rate
but also the parallel mode structure as well as the asymptotic behavior corresponding to the
singular-layer contribution. Thus, it fully describes fluid and kinetic continuous spectra as well
as unstable and damped modes. The model equations have been extended to include general
axisymmetric geometry and to solve for the response of circulating and trapped particles by
means of the action-angle approach. In this work, we discuss linear dispersion relation and
parallel mode structure of drift Alfvén instabilities excited by EPs, computed with the DAEPS
code with realistic experimental plasma profile and magnetic configuration. We compare DAEPS
results with FALCON/LIGKA to provide a verification of the code. We then adopt the
Dyson–Schrödinger model (DSM) to further analyze the EP energy and momentum flux. We
will briefly discuss how the parallel mode structure of the drift Alfvén instabilities can be used
in the DSM to calculate the nonlinear radial envelope evolution and the EP transport.
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1. Introduction

In strongly magnetized reactor-relevant fusion plasmas, the
input power density is dominated by fusion alpha particles,
which are characterized by a nearly isotropic distribution
function in velocity space and a decreasing in energy due
to Coulomb collisions predominantly with thermal electrons.
Thereby, collective instabilities in the range of the cyclo-
tron frequency will not be excited, and the fluctuation spec-
trum, driven by configuration space gradients as free energy
source, will be characterized by the dynamic frequencies of
the particle guiding center motions [1]. In particular, fusion
alpha particles and, more generally, suprathermal or ener-
getic particles (EPs) can excite shear Alfvén waves (SAWs),
whose group velocity is parallel to the ambient magnetic field
and thus have a very efficient wave–particle power transfer.
Due to the underlying universal instability drive [2] connected
with spatial gradients, fluctuation growth rates are increasing
with the mode number up to a maximum, when the perpen-
dicular wavelength becomes comparable with the character-
istic particle orbit width, and orbit averaging makes the wave–
particle power transfer ineffective. Equilibrium magnetic field
configurations and plasma nonuniformities play very import-
ant roles in determining the plasma stability properties via
particle drifts and must be properly accounted for to make
reliable predictions in realistic plasma conditions [1]. When
thermal plasma particle drifts importantly affect plasma sta-
bility and fluctuation dynamics, fluctuation spectra are gen-
erally referred to as drift waves (DWs) or drift Alfvén waves
(DAWs), depending on their predominant acoustic or Alfvénic
polarization. In this work, we focus on finite-β (β being the
ratio of kinetic to magnetic energy density) fusion plasmas and
the interaction of EPs with SAW and (DAW) fluctuations.

The SAW/DAW fluctuation spectrum can be destabilized
by EPs as well as thermal plasma components in fusion toka-
mak devices via wave–particle resonances. These fluctuations
are characterized by a broad spectrum of wavelengths, fre-
quencies, and growth rates, which can significantly influ-
ence the saturation level of the instabilities and thus play an
important role in the EP transport processes in burning fusion
plasmas [3–5]. In fact, SAW/DAW spatial scales cover the
range from the thermal ion Larmor radius microscale to the
system macroscales, including the various intermediate meso-
scales, consisting of the EP Larmor radius7 and the charac-
teristic radial correlation length of structures that are formed
within burning plasmas as complex self-organized system
[6–8]. Meanwhile, the corresponding frequency spectra cover

7 The EP Larmor radius plays an interesting double role of microscale for
EP-driven instabilities and mesoscale for DAW and electrostatic drift wave
turbulence [5].

the whole range from low magnetohydrodynamic (MHD)
frequencies up to the typical SAW frequency∼ vA/L, with vA
the Alfvén speed and L the characteristic system size that, in a
tokamak, is L∼ qR0, with q the safety factor value on the mag-
netic axis and R0 the magnetic axis major radius. A particu-
larly important role in the SAW/DAW physics is played by the
continuous spectrum [9], which generally exists in magnetized
nonuniform plasmas and, within the ideal MHD description, is
connected with the spontaneous formation of radial singular
structures due to phase mixing [10, 11]. This property natur-
ally links the macroscales that are involved in the SAW res-
onant excitation by EPs with the microscales typical of DAW.
Thus, the necessity of a gyrokinetic analysis becomes evident.
Further, for a proper assessment of the nonlinear behavior of
SAW/DAWand the corresponding EP transport, it is important
to accurately describe both the stable and unstable components
of the fluctuation spectrum [10, 12, 13].

TheAlfvén eigenmode (AE)-induced EP transport has been
widely observed in tokamak experiments [14–19], which may
lead to the degradation of plasma confinement and damage
to the first wall in fusion devices. Therefore, it is crucial to
fully understand the AE physics and, on this basis, identify
the various modes with different characteristics and estim-
ate their contributions to EP transport. The resonant character
of EP transport induced by SAW/DAW fluctuations calls for
the analysis of EP fluxes in the phase space [1, 4, 5]. These
transport processes can be fully accounted for by the nonlin-
ear evolution of phase-space zonal structures (PSZSs) [4, 20],
which are the component of the toroidally symmetric (n= 0)
particle response that is constant along equilibrium orbits and
thus is undamped by collisionless processes. These PSZSs
are the phase-space counterpart of the zonal field structures
(ZFSs) [21], viz., the well-known zonal flows and currents
[22–25], which play crucial roles in the regulation of fluc-
tuation level and fluctuation-induced transport because they
scatter primary instabilities into a shorter-wavelength stable
domain [26]. Together with the finite ambient fluctuation level,
PSZS and ZFS constitute the zonal state, whose evolution
can be understood as a succession of neighboring nonlinear
equilibria [27], which is described by a general transport the-
ory written in conservative form [20, 21].

The drift Alfvén energetic particle stability (DAEPS) code,
which is a non-perturbative eigenvalue code using the finite
element method (FEM), was developed to analyze Alfvén
instabilities excited by EPs [28]. The model equations were
derived within the general fishbone-like dispersion relation
(GFLDR) theoretical framework [29, 30], which is widely
used to analyze SAW/DAW physics. The mode structure
decomposition (MSD) method [31] and asymptotic match-
ing between the inertial/singular layer and ideal regions were
adopted. Therefore, the DAEPS code can provide frequency
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and growth/damping rates as well as the asymptotic beha-
vior of the parallel mode structure corresponding to the
singular-layer contribution. Thus, it fully describes fluid and
kinetic continuous spectra as well as unstable and damped
modes. Recently, the DAEPS model equations have been
extended to include general axisymmetric geometry and to
solve for the response of circulating and trapped particles by
means of the action-angle approach [32]. In this paper, recent
updates to the DAEPS code will be reported, including theoret-
ical model and application studies to the interaction between
EPs and toroidal Alfvén eigenmode (TAE) instability [33] in
realistic geometry. In particular, section 2 will introduce the
DAEPS governing equations. Section 3 introduces the realistic
plasma equilibria adopted as reference cases in DAEPS applic-
ations in the present work. These are the divertor tokamak test
(DTT) facility reference scenario [34] and the 15 MA ITER
scenario [35]. Meanwhile, section 4.1 presents an in-depth
verification of the DAEPS gyrokinetic calculation of continu-
ous spectra in DTT and ITER. Verifications against well-tested
results of the Floquet Alfvén Continuum (FALCON) code
[36] in the ideal MHD fluid limit are given first for both
DTT and ITER. Then, a discussion is provided on the veri-
fication of the gyrokinetic results for the ITER continuous
spectrum against the Linear Gyrokinetic Shear Alfvén
Physics (LIGKA) code [37]. After a complete verification of
the capability of DAEPS to address the relevant gyrokinetic
description on microscales, section 4.2 is devoted to a linear
stability analysis of the high toroidal mode number (n= 20)
TAE instability in the DTT reference case. Based on these res-
ults, the TAE-induced EP phase-space fluxes are computed in
section 5 after a brief summary of the foundations of the PSZS
transport theory, including the three-level hierarchy of differ-
ent approximations that allow constructing reduced EP trans-
port models within the same theoretical framework, i.e. the
Dyson–Schrödinger model (DSM) [4, 20, 21]. As illustrat-
ive examples, fluxes are explicitly computed in the quasilinear
limit, showing the capability of DAEPS to evaluate the evolu-
tion of the equilibrium distribution function as well as the cor-
responding EP transport. Finally, a summary and discussion
are given in section 6, with a description on how the DAEPS
results on parallel mode structures and gyrokinetic particle
responses will be adopted in the future to self-consistently cal-
culate the nonlinear radial envelope evolution and the EP trans-
port in the DSM. Various technical details on the definition of
the continuous spectrum (appendix A), the numerical imple-
mentation of action-angle variables (appendix B), and phase-
space particle fluxes and transport equations (appendix C) are
given in three additional appendices.

2. Governing equations

The model equations for the DAEPS code [28] originate from
the GFLDR framework [29, 30], which has been intens-
ively used to analyze SAW and DAW physics by adopting
the MSD method [31] and asymptotic matching between
the inertial region/singular layer and the ideal region. The
GFLDR, for a single n toroidal mode, takes the form of

i|̂s|Λn = δŴnf+ δŴnk, where the generalized inertial term
Λn is the normalized singular-layer contribution, including
kinetic response; ŝ is the magnetic shear; and δŴnf and δŴnk

are the fluid and kinetic contributions of the potential energy,
respectively. The global dispersion relation can be formu-
lated in a quadratic form due to the variational nature of the
GFLDR. A trial function is needed to calculate the frequency,
growth rate, fluid and kinetic potential energies, and their
asymptotic behaviors, which need to be accurate enough for a
precise calculation of the linear eigenvalues. For high toroidal
mode number n, when the radial envelope width is broader
than the characteristic perpendicular wavelength, the GFLDR
can be cast as a local dispersion relation iΛn = δW̄nf+ δW̄nk,
where δW̄n = δŴn/|̂s| for localized modes with radial width
smaller than the characteristic scale length of equilibrium
profiles.

To deal with the general tokamak geometry for arbitrary
toroidal mode number n, we make use of the MSD method
in Boozer coordinates (ψp,θ,ζ) [38], where ψp is the poloidal
magnetic flux function, θ is the poloidal angle, ζ is the general-
ized toroidal angle, and the covariant and contravariant forms
of magnetic field are given by

B= q∇ψp ×∇θ+∇ζ ×∇ψp,

B= g∇ζ + I∇θ+ δ∇ψp. (1)

Here, q(ψp) is the safety factor; g(ψp), I(ψp), and δ(ψp,θ) are
the contravariant components of themagnetic field. For a given
toroidal mode number n, any fluctuation f(r,θ,ζ) can be writ-
ten as [31]

f(r,θ,ζ) =
∑
m∈Z

ei(nζ−mθ)
ˆ

dϑei(m−nq)ϑ f̂n(r,ϑ)

= 2π
∑
ℓ∈Z

einζ−inq(θ−2πℓ)̂fn(r,θ− 2πℓ) , (2)

where r(ψp) is a radial-like flux coordinate; ϑ is the extended
poloidal angle in ballooning space, corresponding to the nor-
malized parallel length along the magnetic field line; and any
residual time dependence is left implicit. Furthermore, in the
second line of equation (2), we made use of the Poisson sum-
mation formula, i.e.

∑
m∈Z exp[im(ϑ− θ)] = 2π

∑
ℓ∈Z δ(ϑ−

θ+ 2πℓ), and δ(. . .) is the Kronecker delta function. For
high-n mode with finite magnetic shear, the most unstable
modes are localized around the rational surface, and the
slow variation of the envelope can be separated from the fast
radial variation of the mode structure related to the∼(nq−m)
dependence on the parallel wave vector. In this case, the MSD
method can be reduced to the ballooning representation,

f(r,θ,ζ) =
∑
m∈Z

An(r)e
i(nζ−mθ)

ˆ
dϑei(m−nq)ϑ f̂n(ϑ)

= 2πAn(r)
∑
ℓ∈Z

einζ−inq(θ−2πℓ)̂fn(θ− 2πℓ) . (3)

Note that, here, f̂n(ϑ) generally contains residual radial
dependence on the plasma equilibrium scale, while the remain-
ing implicit time dependence can all be included in the radial
envelope An(r)→ An(r, t).
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Using the DAEPS code, considering the low-β plasma of
interest here, we describe the plasma oscillations in terms of
the electrostatic potential δϕ and the magnetic scalar poten-
tial δψ, which is related to the parallel to B component
of the vector potential δA∥ by δA∥ =−icω−1b ·∇δψ. The
parallel electric field can then be expressed by δE∥ =−b ·
∇(δϕ− δψ). Meanwhile, the compressional component of
the magnetic field fluctuation, δB∥, is being solved expli-
citly by means of the perpendicular (to B) pressure balance
BδB∥ + 4πδP⊥ = 0, with δP⊥ the overall perpendicular pres-
sure response. The model equations are derived within the
GFLDR theoretical framework, consisting of the ballooning
space vorticity equation in general geometry,(

∂2ϑ+
ω
(
ω−ωT∗pi

)
ω2
A0

r4 − ∂2ϑκ⊥

κ⊥
+
∑
s

R0βs
Lps

(gq+ I)2 r2

q2R2
0 (ψ

′
p)

2

r2g

κ2⊥

)
Ψ

=
∑
s

βs
2
(gq+ I)2 r2

q2R2
0 (ψ

′
p)

2

⟨
ω

ωTds
x2
(
2− λ

r

)
r2g

κ⊥

Ts
esns

J0sδKs

⟩
, (4)

and the quasineutrality condition(
1+

Ti
Te

)
Φ∥ =

∑
s

Ti
e2i ni

⟨esJ0sδKs⟩ , (5)

where we have dropped the subscript n and the ‘hat’ on
field variables in the ballooning space to simplify notations,
Ψ = κ⊥δψ corresponds to the magnetic scalar potential with
κ2⊥ = k2⊥/k

2
θ and kθ = nq/r, Φ∥ = δϕ− δψ is related to the par-

allel electric field, and
∑

s denotes summation on particle spe-
cies s. The gyrocenter distribution function δKs of species s,
accounting for kinetic particle compression response, is solved
through the linear gyrokinetic equation,(

v∥
JbB

∂ϑ− iω+ iωds

)
δKs = i

es
ms
QFs

(
Φ∥ +

ωds

ωκ⊥
Ψ

)
. (6)

In equation (4), the lhs accounts for the fluid contributions,
consisting of field line bending, inertia, and ballooning inter-
change terms, and the rhs represents the kinetic particle com-
pression response. Furthermore, ωA0 = VA0B0/(JbB

2) is the
Alfvén frequency, with VA0 = B0/

√
4πρm the Alfvén speed

on the magnetic axis, B0 is the on-axis magnetic field, ρm
is the equilibrium plasma mass density, and r= B0/B(r,ϑ).
Meanwhile, ωT∗ps = (kθcTs)/(esB̄Lps) and ωTds = (kθcTs)/(esB̄R0)

correspond to the diamagnetic frequency and magnetic drift
frequency, respectively, with B̄(r) = qψ ′

p/r, prime denot-
ing derivation with respect to r, Lps =−∂r lnPs, and R0 is
the magnetic axis major radius. We have also introduced
the notation g= κn+ ŝϑκg, with κn =−R0∂r lnB and κg =
gq
gq+I

R0
r ∂ϑ lnB denoting the normal and geodesic curvature,

respectively. Finally, βs = 8πPs/B2
0 is the ratio of plasma

pressure to magnetic pressure, and x= v/vts is the particle
velocity normalized by the thermal speed, vts = (2Ts/ms)

1/2.
In equation (6), Jb = (∇ψp ×∇ϑ ·∇ζ)−1 = (gq+ I)/B2 is the
Jacobian of Boozer coordinates, and ∂∥ = (JbB)

−1 ∂ϑ rep-
resents the parallel derivative along the magnetic field.
Furthermore, ωds = ωTds

msE
Ts

(
2− λ

r

)
g is the magnetic drift

frequency, with E= v2/2= x2Ts/ms the particle kinetic energy

per unit mass and λ= rv2⊥/v
2 the pitch angle. Finally, QFs =

(ω∂E+ ω̂∗s)Fs accounts for the free energy provided by the
phase-space gradient of the equilibrium distribution function
Fs, and ω̂∗sFs =Ω−1

cs k× b ·∇Fs with Ωcs the cyclotron fre-
quency. We note that equation (4) is an extension to general
geometry of the vorticity equation used in our previous model
[28]. It can be reduced to equation (3) of [28] by adopting ŝ–α
equilibrium model and the ballooning representation [39].

3. Reference scenarios

In this section, we briefly introduce the reference scenarios that
will be used for DAEPS verification and for its application to the
calculation of EP fluxes in phase space. Because DAEPS [28]
was originally developed to deal with (̂s,α) model equilibria
[39], its governing equations and code structure were modified
to account for a realistic magnetic equilibrium, as discussed in
section 2. The DTT reference scenario is briefly introduced in
the following, while we only refer to the ASTRA-simulated
ITER 15 MA scenario (131018; run50 in the public ITER
IMAS scenario database) [35]. We will use these two scen-
arios in the upcoming sections devoted to DAEPS applications.

The DTT facility is a D-shaped superconducting device,
which is being built at the ENEA Research Center in
Frascati, Italy, which mainly aims at investigating viable
and/or advanced power exhaust solutions for the demon-
stration power plant (DEMO), thereby filling gaps between
present-day devices, ITER [40], and DEMO [41]. Although
the DTT is designed as a relatively compact machine focused
on divertor and power exhaust issues, it is capable of reprodu-
cing edge as well as core plasma conditions that are relevant
for burning plasma studies.

We consider a single null setting, whose basic profiles are
depicted in figures 1–3 as a function of the normalized tor-
oidal radius ρtor = r/a, where a is the tokamak minor radius,
and ρtor is the square root of the normalized toroidal flux. We
note that, for the analyzed case, the kinetic pressure on axis
is 948 kPa, the flux function F on axis is 13.7 V s, while the
density is 2.3× 1020 m−3, the electron and ion temperatures
are, respectively, 15.3 and 9.4 keV. All the equilibrium quant-
ities have been calculated by means of self-consistent trans-
port studies, i.e. see [34]. For simplicity, we consider a pure
deuterium plasma, i.e. ne = ni = n. Consistent with the above,
for stability studies, the EP population will be assumed as deu-
teriumwith aMaxwellian distribution function (for details, see
section 4.2).

4. DAEPS applications

Here, we illustrate applications of the DAEPS code to the
analysis of DAW in realistic plasmas of fusion interest. In
particular, we consider the reference scenario [34] for the
DTT facility [42, 43], which has been described in detail
in section 3. This DTT reference scenario is adopted in
section 4.1 to describe the properties of the SAWand ion sound
wave (ISW) continuous spectra when fully gyrokinetic particle
compression responses are accounted for [3, 30, 44–47], as

4
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Figure 1. DTT magnetic surfaces and isolines of the Boozer coordinate θ.

Figure 2. Plots of the normalized toroidal flux function F̂ and the safety factor q.

well as in the fluid limit [48–51]. Section 4.1 is based on
comparisons of the DAEPS results with those by FALCON [36]
and LIGKA [37] codes. Having demonstrated the ability of
DAEPS to properly treat various DAW dynamics at small radial
scales, where they are typically most challenging to describe
for a numerical approach, section 4.2 is devoted to the high-
n stability analysis of TAEs in the DTT reference scenario
presented in section 3. The results confirm the earlier findings
by Wang et al [52], showing that plasma core region can be
thought as being divided into two subregions: the inner core,
where DAW excitation by EPs is strongly influenced by the
weak magnetic shear and is dominated by frequencies lower
than the TAE gap, and the outer core, with typically finite

magnetic shear and characterized by fluctuations in the TAE
frequency range. The results of section 4.2 also confirm that
the EP-driven DAW spectrum in DTT is expected to have tor-
oidal mode numbers n≳O(10) [52], similar to ITER and typ-
ical of burning plasmas [1].

4.1. Kinetic continuous spectra

In the following section, we will compare the continuous
spectra computed with DAEPS with those computed with
the FALCON code [51], which are obtained by solving
equations (A.4) and (A.5). Details about the FALCON code can

5
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Figure 3. Plots of the main profiles for the DTT scenario. Every quantity is normalized to its value on the magnetic axis. In particular, the
kinetic pressure p̂, density ρ̂m, electron temperature T̂e, and ion temperature T̂i are represented.

Figure 4. Comparison of the fluid and kinetic low-frequency electromagnetic continuous spectrum with n = 5 calculated, respectively, with
FALCON (black) and DAEPS (colors).

be found in [51, 53] and will be omitted here. Similarly, we
will compare the kinetic continuous spectra computed with
DAEPS with those obtained by the LIGKA code [37]. In this
way, we will provide a verification of the DAEPS model and
the governing equations concerning the capability of DAEPS
to handle the various physics processes in the kinetic layer
region.

The comparison of the MHD low-frequency electromag-
netic continuous spectrum computed with DAEPS and FALCON
for n= 5 using the DTT reference equilibrium discussed in
section 3 is indistinguishable. For this reason, figure 4 illus-
trates the comparison of the fluid (FALCON) and kinetic (DAEPS)
continuous spectra for the same DTT equilibrium. Because the
diamagnetic frequency and β are small, the overall effect of ion
sound branches is correspondingly small in the kinetic calcu-
lation. In particular, figure 4 shows the kinetic continua, where

TAEs can be located, or beta-induced Alfvén eigenmodes
(BAEs), as well as beta-induced Alfvén acoustic eigenmodes
(BAAEs), kinetic ballooning modes (KBMs), and ISWs. The
comparison of the fluid and kinetic continuous spectra sug-
gests that the kinetic structures of low-frequency spectra are
consistent with the fluid results, especially for the strong
Alfvénic polarization branches, which correspond to the slow
sound approximation due to decoupling of SAWs and ISWs
[53]. This is also consistent with the electron temperature
being larger than the ion temperature across the whole plasma
in DTT, and with the fact that the kinetic continuous spectrum
in the fluid limit is expected to recover the MHD result for
Γ = (7/4+ Te/Ti)/(1+ Te/Ti) [54]. The frequency and radial
location of the n= 20 TAE in the DTT reference equilibrium
are also shown, which are the modes that will be taken as ref-
erence in the discussions of sections 4.2 and 5.

6
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To further investigate these issues connected with the fluid
and kinetic structures in the continuous spectra, we have com-
pared the DAEPS and FALCON results with those of the LIGKA
code [37] using the 15MA ITER reference case as equilibrium
[32]. Similar to the DTT case discussed earlier, the MHD
continua computed with DAEPS and FALCON are indistinguish-
able. Thus, the comparison of the fluid low-frequency electro-
magnetic continuous spectrumwith n= 5 of DAEPS and FALCON
is shown in figure 5 (left panel), where FALCON uses the ori-
ginal equilibrium metric tensor, while DAEPS uses the analytic
ŝ−α model, reconstructed by the EQUIPE post-processing
code [36], i.e. a circular geometry approximation of the actual
ITER equilibrium, which suggests that the low-frequency con-
tinuous spectrum is sensitive to realistic magnetic geometry.
The continuous spectrum using the actual numerical equilib-
rium for the ITER reference case is shown in figure 5 (right
panel) and suggests that the frequency of the kinetic struc-
ture of the low-frequency spectra is qualitatively consistent
with the fluid result due to the small diamagnetic frequency
in the n= 5 case. Figure 6 (left panel) shows the comparison
of the frequency of the kinetic continuous spectrum calculated
by DAEPS (colored lines) and LIGKA (black markers) for the
ITER 15 MA equilibrium. It is suggested that the frequen-
cies of the TAE, BAE, and KBM branches are highly consist-
ent, while the frequency of the BAAE branch is qualitatively
consistent near the accumulation point. The growth/damping
rates, shown in figure 6 (right panel), are qualitatively consist-
ent and illuminate the existence of multiple strongly damped
modes identified by LIGKA. In fact, it is known that the kinetic
expression of the low-frequency continuous spectrum is rep-
resented by a transcendental function with infinitely many and
heavily damped roots [55]. These branches have practically no
relevance in applications due to their strongly damped nature.
Nonetheless, their features can be a useful benchmark test in
numerical calculations, and thus, they are being further ana-
lyzed in the benchmarking efforts of the DAEPS and LIGKA
codes. Of more important implications can be the marginal
unstable features of the low-frequency (yellow) modes iden-
tified by DAEPS near mode rational surfaces. These are clearly
connected with the low-frequency modes discussed recently
concerning experimental observations in DIII-D [47, 56–58]
and will be analyzed in a separate work.

4.2. TAE excitation by EPs

After the analysis of the SAW/ISW continuous spectra in DTT,
presented in section 4.1, we consider the excitation of high-n
AEs in DTT by a finite population of EPs. DTT stability ana-
lyses using the DAEPS code confirm earlier findings [52] that
properties of the Alfvénic fluctuation spectrum in DTT are
characterized by an inner core region, where magnetic shear
is small and dominant modes are typically located in the low-
frequency region below the TAE gap, and an outer core region
with finite magnetic shear and typical AEs in the TAE fre-
quency range.

For the sake of conciseness, we focus on high-n TAEmodes
in the outer core region, and as a paradigmatic example,

we analyze an n= 20 TAE excited by transit resonance
with EPs. Because the details of additional heating in DTT
are still being discussed [59], the focus here is not on
the actual use of a realistic EP distribution function, but
rather on the demonstration that n≳O(10) are effectively
excited in DTT [52]. As a reasonable guess, we assume
that EPs are Maxwellian, with a local density of 1% w.r.t.
that of the thermal plasma and the same temperature profile
as the thermal ions, resulting in a constant EP-to-thermal-
ion-energy-density ratio βEP/βi = 0.435 (cf section 3 for
details).

We first analyze the TAE mode structure and stability
in the absence of EP drive in the DTT reference scenario,
where the plasma is assumed to be of pure deuterium. The
n= 20 TAE mode localized near the q= 1.1 surface has a
two-dimensional mode structure that is shown in figure 7
(left panel) and mode frequency ω/ωTi = 6.5714− 0.0080 668i.
Thus, as expected, it is marginally stable due to weak Landau
damping. The corresponding parallel mode structure in the
ballooning space is shown in figure 8, suggesting that the
parallel electric field is negligibly small compared to the
magnetic scalar potential, which indicates the predominant
Alfvénic polarization of the instability. This case corresponds
to the rhs of equation (10) being subdominant. If needed,
finite compression effects on the continuous spectrum can be
included by solving equation (11) algebraically (by dropping
the∼ ∂2ϑ term), that is, adopting the slow sound approximation
[51]. The radial envelope in figure 7 (left panel), A(r)∼
exp
[
−(r− r0)

2/∆r2
]
, is obtained for the ground state of the lin-

ear TAE spectrum, where r0 is the radius of the q= 1.1 surface,
and [60, 61]

∆r2 =
2

|nq ′|

[
∂2D/∂θ2k
∂2D/∂r2

]1/2
r=r0

, (7)

D(ω,r,θk) denotes the local TAE dispersion function, and
θk ≡ kr/(nq ′), with kr the radial envelope wave number. Note
that ∆r∼ r1/20 |nq ′|−1/2, and thus, the frequency shift of the
global mode with respect to the solution of the local disper-
sion relation at r= r0 is ∆ω/ω ∼ |nr0q ′|−1 or, more precisely
[60, 61]

∆ω =
1

|nq ′|2∆r2

[
∂2D/∂θ2k
∂D/∂ω

]
r=r0

. (8)

This well-known result [39] shows that the local solution of
the dispersion relation well reflects the global mode frequency
for this kind of radially localized modes, although this simple
result does not hold in the most general case [60, 61].

Next, we repeat the stability analysis for the same n= 20
TAE mode localized near the q= 1.1 surface but in the
presence of 1% of deuterium particles that represent the
Maxwellian EP population with βEP/βi = 0.435. The two-
dimensional mode structure is qualitatively similar to the case
with no EPs, shown in figure 7 (left panel), with a mode fre-
quency of ω/ωTi = 6.86+ 0.0779i, confirming the result in [52]
that n≳O(10) are effectively excited in DTT. The parallel
mode structure in the ballooning space is shown in figure 9,

7
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Figure 5. (Left panel) Comparison of n= 5 MHD continuous spectra computed for the ITER 15 MA scenario. The DAEPS results (black
lines) are obtained for an (̂s,α) model, i.e. a circular magnetic geometry approximation of the actual ITER equilibrium, computed with
EQUIPE. Discrepancies are due to differences in the considered magnetic geometry. The FALCON results (red lines) are instead obtained
using the actual ITER equilibrium. As a reference, the center of TAE (ωA0/2) and EAE (ωA0) gaps calculated by DAEPS are also indicated
along with the thermal ion transit frequency (ωTi). (Right panel) Comparison of the fluid and kinetic low-frequency electromagnetic
continuous spectrum with n = 5 calculated by DAEPS and FALCON. The actual ITER equilibrium is used in both cases. Labels and legends
are consistent with figure 4, i.e. the DAEPS fluid calculations are shown in blue, while the kinetic calculations are represented by different
colors. LFSAW refers to low frequency shear Alfvén wave. In this particular case, the agreement between fluid and kinetic calculations
exhibits a remarkable level of agreement.

Figure 6. (Left panel) Comparison of the frequency of the n= 5 kinetic low-frequency electromagnetic continuous spectrum in ITER
calculated by DAEPS and LIGKA, respectively, in colors and black. The frequencies are normalized to the on-axis value of the Alfvén
frequency. (Right panel) Comparison of the damping rate of n= 5 kinetic low-frequency electromagnetic continuous spectrum in ITER
calculated by DAEPS and LIGKA, respectively, in colors and black. Note that ρpol rather than ρtor is used in abscissa to conform with the
LIGKA representation of the radial-like flux coordinate.

showing the predominant Alfvénic polarization of the instabil-
ity also in this case. The frequency shift with respect to the
previous case with no excitation by EPs is of the order of
the mode frequency separation from the upper accumulation
point, as shown in figure 4, and the comparison of parallel
mode structures in figures 8 and 9 suggests that n= 20 TAE
excitation by EP is in the transition region from perturbative
to non-perturbative EP behavior. We refer interested readers to
the discussions in [52, 62] for more details on this interesting
point, which is one of the characteristic features of DTT that
makes it relevant for burning plasma studies.

5. Phase-space fluxes

In the previous sections, we have introduced the DAEPS code,
and we have shown some applications to the continuous
spectrum and AE stability studies. In this section, the numer-
ical results computed with DAEPS, consisting of the parallel lin-
ear mode structure, frequency, and growth rate, are exploited
to calculate the EP phase-space fluxes induced by the pres-
ence of electromagnetic fluctuations. A detailed derivation of
the phase-space flux expressions is given in appendix C for the
reader’s convenience.

8
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Figure 7. Two-dimensional mode structure of a damped TAE mode in DTT in the absence of EP drive (left panel). The n= 20 TAE is
radially localized around the flux surface labeled in blue (right panel).

Figure 8. Eigenmode structure of δϕ− δψ and Ψ in the ballooning angle ϑ-space in the absence of EP drive. Black lines denote the real
part, while red ones represent the imaginary part.

Figure 9. Eigenmode structure of δϕ− δψ and Ψ in the ballooning angle ϑ-space. Blue lines denote the real part, while red ones represent
the imaginary part.

9



Plasma Phys. Control. Fusion 65 (2023) 084001 Y Li et al

Figure 10. Non-resonant (left) and resonant (right) particle fluxes in the phase space due to the n= 20 EP-driven TAE in DTT, calculated at
the radial position highlighted in blue in figure 7.

The PSZS dynamics (see [20, 21]) is described by a con-
tinuity equation in the phase space

∂teiQzF0 +
1
τb, t

∂ψp

[
τb, teiQzδψ̇pδF

]
+

1
τb, t

∂E
[
τb, teiQzδĖδF

]
= 0

(9)

where eiQz(. . .) describes the average of a scalar function in the
phase space over a particle orbit in the equilibrium magnetic
field, that is, a bounce/transit average with period τb,t com-
bined with a shift operator, i.e. eiQz , accounting for particle
drifts with Qz = F(ψp)

(
v∥/Ω

)
kz/(dψp/dr) [4, 20]. Using the

MSD approach for the fluctuating fields [31], i.e. equation (3)
in section 2, and the convolution expression, as discussed in [1,
30], we obtain, after integration along the equilibrium orbits,
the expressions for the fluxes appearing in the PSZS equation
and, in particular, the radial particle flux appearing in the
second term of equation (9)

eiQzδψ̇pδF=
π

2

∑
n ̸=0,ℓ,j

˛
dη
[
eiQz |An(r, t)|2 e2π i nqℓ

× δ
˙̂
ψ∗
pn(r,θ− 2π j)δ̂fn(r,θ− 2π(ℓ+ j))+ c.c.

]
(10)

that can be immediately rewritten changing integration vari-
able from η to ϑ

eiQzδψ̇pδF=
π

τb,t
Re
∑
n ̸=0,ℓ

ˆ ∞

−∞
dϑ

J B0

|v∥|
eiQz

× |A(r, t)|2e2π i nq(r)ℓδ ˙̂
ψ∗
pn(r,ϑ)δ̂fn(r,ϑ− 2πℓ). (11)

Note that, for the sake of completeness and clarity, we have
provided expressions in terms of quadratures over the canon-
ical angle η as well as in ballooning angle ϑ. Corresponding
expressions can be written for the phase-space energy flux.
By direct inspection, we note that the wave intensity depend-
ence is isolated, and it bears the mesoscale information of the
phase-space fluxes. We also note that the scaling of the fluxes
with |A(r, t)|2 is universal and has been noted in the numerical
simulation of DW-induced turbulent fluxes [63] as well as in
the corresponding theoretical studies [26, 64, 65]. Meanwhile,
the parallel mode structure is left implicit and is integrated

over, and it reflects the equilibrium macroscale structures of
phase-space fluxes. Furthermore, the fine-scale corrugations
produced by fluctuation-induced fluxes are accounted for by
the convolution sum and by the∼exp(2π inq(r)ℓ) phase factors.
Therefore, the present expression for the phase-space fluxes
illuminates the characteristic spatiotemporal scales of turbu-
lent fluxes produced by the fluctuating fields. We can obtain
an even more detailed analysis and insight into the under-
lying physics processes that are responsible for the phase-
space transport by separating the resonant from the nonres-
onant particle responses, as shown in appendix B.

The flux expression appearing in equation (11) can be
immediately rewritten using the own notation of DAEPS.
After normalizing to the bounce time and restoring the sub-
script n and the ‘hat’ on field variables in the ballooning space,
which were dropped after equation (5) to simplify notations,
we obtain

τtδ ˙̄rδFs =
π|A|2

ωTsx
Re
∑
ℓ

ˆ
dϑ

r3/2√
r−λ

e2π i nqℓ
(
−iωTds

)
× J0s(ϑ)δL̄

∗
n (ϑ)(ϑ)δ̂fsn(ϑ− 2πℓ) (12)

τtδ
˙̄EδFs =

π|A|2

ωTsx
Re
∑
ℓ

ˆ
dϑ

r3/2√
r−λ

e2π i nqℓ (iω∗)

× J0s(ϑ)δL̄
∗
n (ϑ)δ̂fsn(ϑ− 2πℓ) (13)

where, for simplicity, we have assumed a single particle spe-
cies s, we have specialized the phase-space flux expression to
a single toroidal mode number n and noted δL̄n = (esδL̂n/Ts) =
es(δϕ̂n−

v∥
c δÂ∥n) = ϕ̄− v∥

c Ā∥, δr̄= δr/R0, δĒ = 2δE/v2ts.
As a particular application, we now evaluate the radial flux

of fast particles induced by the resonantly excited TAE in the
DTT reference case and described in the previous section. For
the sake of simplicity, we focus our analysis on the numer-
ical calculation of the quasilinear limit of the phase-space
particle flux [66]. In fact, a more detailed analysis of this case
requires separate work and will be presented elsewhere. We
show that the kinetic compression term dominates the resonant
particle contribution, as shown in figure 10. The nonresonant
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particle contribution, meanwhile, appears to be almost negli-
gible. These two terms are plotted for the radial position high-
lighted in blue in figure 7, while we refer interested readers to
appendix B for the separation and classification of the differ-
ent contributions to the general expression of the phase-space
particle flux (equation (11)). The dominant contribution from
the resonant particle response in the kinetic compression term
is qualitatively consistent with theoretical predictions [1, 4]
and numerical simulation results [62]. Meanwhile, the peak of
the particle flux at E≃ (5/2)T/m can be understood as a max-
imization of the wave particle power transfer for a Maxwellian
distribution and is consistent with the discussions of [67, 68]
on the construction of an equivalent EP Maxwellian mimick-
ing a slowing-down EP distribution function. These results
demonstrate the robustness of the DAEPS analysis of paral-
lel mode structures and give confidence in its applicability to
the truly nonlinear calculation of phase-space fluxes within the
DSM approach [4, 21].

6. Summary and discussion

In this work, the local linear gyrokinetic description of
finite-β nonuniform magnetized plasmas [69, 70] has been
implemented in the DAEPS code [28] in general geometry using
straight magnetic field line toroidal flux coordinates [71, 72].
More precisely, we have implemented the low-β limit of these
equations, where the dynamics can be described in terms of
two independent scalar fields, viz. the scalar and parallel vector
potentials, because the parallel magnetic field perturbation can
be explicitly solved for by means of the perpendicular pres-
sure balance. We have also adopted a formulation based on the
quasineutrality condition and gyrokinetic vorticity equation
[22, 70, 73], which are equivalent to Poisson’s and parallel
Ampère’s laws but are more convenient and transparent in
their physical content, as they readily recover the MHD and
extended kinetic MHD descriptions in the proper limit [1].

For our intended applications, it is crucial that DAEPS is an
eigenvalue code, which allows us to investigate unstable as
well as stable parts of the low-frequency electromagnetic fluc-
tuation spectra that are both essential players in the nonlin-
ear plasma evolution. Meanwhile, solving the aforementioned
local gyrokinetic equations in ballooning space and general
geometry gives an accurate description of the plasma kinetic
response at micro- and mesoscales, which is mandatory. In
fact, short-wavelength DAWs are naturally excited in nonuni-
form magnetized fusion plasmas due to the ubiquitous nature
of continuous spectra. At the same time, EP excitations of n≳
O(10) Alfvénic oscillations generally involve linear as well as
nonlinear structure formations on mesoscales [1, 4, 5].

Here, we have verified plasma kinetic descriptions on the
microscales in DAEPS by detailed comparisons against kin-
etic continuous spectra computed with the LIGKA code [37]
for the 15 MA ITER scenario. Good agreement is found
for the least damped continuous spectra, while some remain-
ing discrepancy for strongly damped modes may be due
to the transcendental nature of the local radially singular
plasma kinetic response. These issues will be investigated

further in the future, although their impact on practical
applications is negligible, as fluctuations of this kind are sup-
pressed. Further verifications of DAEPS against continuous
spectra computed with the FALCON code [51] for both 15 MA
ITER and DTT reference scenarios are also discussed with
emphasis on realistic geometry and plasma compressional
responses.

Alfvénic mode stability is investigated with DAEPS for the
DTT reference scenario, showing that n≳O(10) Alfvénic
oscillations are effectively excited by EPs, consistent with
earlier analyses [52, 62]. We focus on the n= 20 TAE mode
excited by circulating EPs in the DTT outer core region, char-
acterized by finite magnetic shear. A significant finding for this
instability is that, for the present parameters, the mode is in the
transition region between perturbative and non-perturbative
EP effects, as described in [52, 62] and the general theoretical
framework [1], where non-perturbaviness is referred to the fact
that the EP effects, measured as complex frequency shift, are
comparable to the distance of the mode frequency from the
continuous spectrum accumulation point. This is consistent
with the core of DTT plasmas being in a significant regime
for burning plasma application experiments, where core–edge
coupling allows addressing particle and power exhaust issues
in reactor-relevant conditions [43, 74].

Finally, the n= 20 TAE parallel mode structures have
been used to compute the EP fluxes in the phase space in
the quasilinear limit [66]. This is the second-level approx-
imation in the DSM theoretical framework for computing
phase-space transport. Consistent with the general theoret-
ical framework [4, 21], at the zeroth level where mode struc-
tures and particle responses are obtained from any nonlinear
gyrokinetic code, the EP fluxes are fully consistent with the
corresponding turbulent transport [75, 76]; at the first level,
only parallel mode structures are approximated by their lin-
ear limit, but radial envelope and evolving reference equi-
librium are fully nonlinear [4], while the second level of
approximation recovers the quasilinear description [77, 78].
More in-depth applications to illustrate in detail this multi-
level approximation will be reported in future works. The
advantage of the present approach consists in making expli-
cit the microscale structures of EP phase-space fluxes, as well
as their mesoscale behaviors due to radial envelope/intens-
ity dependence. Thus, an accurate calculation of phase-space
transport requires a coarser radial grid than if these explicit
dependences were left implicit, allowing for a more accurate
resolution of wave–particle resonances in action space, which
is of crucial importance for the reliable description of non-
linear behaviors [1]. The high-n spectrum of unstable AEs
and DAWs in DTT recalls the suggestive description of the
Alfvénic fluctuation spectrum in reactor-relevant plasmas as
a ‘dense population of eigenmodes (lighthouses) with unique
(equilibrium-dependent) frequencies and locations’, causing
‘significant multiple-TAE nonlinear interactions, yielding a
diffusive redistribution’ of EPs [3]. This process is expec-
ted to be well described by a quasilinear diffusive relaxation
[79, 80], and this is the main reason why we have chosen to
focus our initial investigation of TAE-induced EP phase-space
fluxes in DTT by means of the DSM in the quasilinear limit.

11



Plasma Phys. Control. Fusion 65 (2023) 084001 Y Li et al

Nonetheless, it is also known that EP transport may occur
in avalanches [67, 81]. For self-consistent description of EP
avalanches, the PSZS evolution occurs on the same timescale
as the nonlinear radial envelope evolution, which, thus, must
be computed self-consistently. However, the parallel mode
structure remains essentially unaltered in this process [4, 5],
and thus, the first level of approximation in the DSM for
the description of phase-space transport can be used to fully
account for this dynamics. A detailed analysis of this import-
ant point requires a dedicated study that will be reported in a
separate work.
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Appendix A. Continuous spectrum

The asymptotic behavior of magnetic scalar potential as ϑ→
±∞, which is critical for calculating the eigenfrequency
and growth rate and identifying whether a mode is physical
or spurious, is determined by the outgoing wave boundary
condition with causality constraints [29, 30, 50]. By taking
the limit ϑ→∞, one can show that equation (4) reduces to a
second-order differential equation with periodic coefficients.
Thus, consistent with the Floquet theory, the asymptotic beha-
vior of Ψ can be formally expressed as

lim
ϑ→∞

Ψ= P(ϑ)exp(iνϑ) (A.1)

where P(ϑ) is a 2π periodic function corresponding to the
variation of equilibrium in the poloidal direction, and ν is
the Floquet ‘characteristic exponent’, which is connected with
asymptotic behavior of the potential as well as with the inertial
layer contribution in the GFLDR, i.e. Λ. In particular, ν = Λ

for |ω| ≪ |ωA0|, corresponding to the kinetic low-frequency
electromagnetic continuous spectrum. Considering only the
circulating particles for simplicity, our model equations for the

calculation of kinetic continuous spectrum consist of gyrokin-
etic equation(

σ̂x

√
1− λ

r

ωTs
r
∂ϑ− iω

)
δKs,circ

= i
es
ms
QFs

[
Φ∥ +

ωTds
ω
x2
(
2− λ

r

)
Ψs

]
, (A.2)

where σ̂ is the sign of v∥, and ωTs = vtsB0/(JbB
2); the vorticity

equation in the inertial layer

∂2ϑΨ−RΨ+
ω
(
ω−ωT∗pi

)
ω2
A0

r4Ψ

=
∑
s

βs
2
r2 (gq+ I)2

q2R2
0 (ψ

′
p)

2 r
2
⟨
ω

ωTds
x2
(
2− λ

r

)
s
Ts
esns

δKs

⟩
, (A.3)

and the quasineutrality condition. Here, R=
∂2
ϑ|∇r|
|∇r| and

s=
κg

|∇r| are periodic functions of ϑ with geometric effect.
Meanwhile, the model equations for the fluid continuous spec-
trum are based on the ideal MHD equations with perturbed
plasma displacement ξ⊥ expressed by the stream function Φs:
ξ⊥ = cb×∇Φs/B0. The vorticity equation and the perturbed
parallel force balance equation in the inertial region take the
form of [50](

∂2ϑ−ℜ+
ω2

ω2
A

r4
)
ϕ s = q2β

JbB
2 (r/R0)

q2dψ/dr
ŝϑ
|̂sϑ| sr

2δP, (A.4)

(
∂2ϑ+

ω2

ω2
S

r2
)
δP= 2Γ

ω2

ω2
S

JbB
2 (r/R0)

q2dψ/dr
ŝϑ
|̂sϑ| sr

2ϕ s, (A.5)

where ϕs = κ̂⊥Φs, δP=−i(JbB
2)δPcomp/(qkθcP) denotes the

normalized compressional perturbed pressure response, with
δPcomp =−ΓP∇· ξ, Γ being the ratio of specific heats,
and ω2

S = ΓPr2/
(
nmIJ 2

b B
2) corresponds to the frequency

of the sound wave8. Thus, the clear correspondence of
equations (A.3) and (A.4) suggests the one on one connection
of kinetic compression and MHD compression terms in the
gyrokinetic and MHD descriptions, respectively. We will fur-
ther comment on this important point in the following, when
comparing MHD and kinetic continuous spectra.

As mentioned earlier, the DAEPS code uses the FEM to solve
model equations in the ballooning space. For eigenmode ana-
lysis, the cubic B-spline FEM is used to discretize parallel
electric potential and magnetic scalar potential, while for con-
tinuous spectrum studies, the spectral FEM is used to express
the different harmonic components of the wave. The asymp-
totic behavior of the magnetic scalar potential at ϑ± can be
properly handled via Neumann boundary condition

∂ϑΨ|ϑ± =
(
P ′/P± iν

)
Ψ|ϑ± . (A.6)

By discretizing the mode structure by means of a linear com-
bination of the finite elements, the vorticity equation can then

8 Note that, here, we are using slightly different normalizations with respect
to references [50, 51, 53] for consistency with DAEPS own notations.
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be cast into a matrix form, which is solved by an iterative
algorithm in the DAEPS code. The frequency of the mode is
calculated from the eigenvalue of the matrix, while the value
of Λ is fitted from the asymptotic behavior of the eigenvector
of the matrix. By means of this approach, the DAEPS code
can solve the fully kinetic continuous spectrum, by solving
equations (8) and (9) closed by the quasineutrality condition,
as well as the fluid continuous spectrum, by solving the cor-
responding ideal MHD equations (10) and (11). The same
holds for the numerical solution of the boundary-value prob-
lem yielding eigenmode structure and frequency, as shown in
section 4.2.

Appendix B. Action-angle approach

In the DAEPS code, action-angle variables are often used to sim-
plify computations of integrals in velocity space. For mag-
netically trapped and passing particles, which are identified
by whether the parallel velocity v∥ = σ̂

√
2E(1−λ/r) van-

ishes or not along the magnetic field line, we can define
the bounce/transit frequency, ωb,t = 2π

(¸
JbB/v∥dϑ

)−1, as well
as the invariant of motion (action) J=

¸
v∥dl and the corres-

ponding angle η = ωb,t
´ θ
0 dθ ′/θ̇ ′ [4]. Here,

¸
denotes integra-

tion along the closed particle orbit. The DAEPS code is inter-
faced with the EQUIPE routine of the FALCON code [51, 53]
that allows constructing η(ϑ;Pϕ,λ,E) and J(Pϕ,λ,E) for given
constants of motion, with Pϕ the toroidal canonical angu-
lar momentum. In the small orbit limit, the action-angle-
variable expressions simplify, and, for example, the action
angle and transit frequency of circulating particles can be
written as

η (ϑ,λ) =
1

N(λ)

ˆ ϑ

0

r ′3/2√
r ′ −λ

dϑ ′ (B.1)

N(λ) =
1
2π

ˆ π

−π

r3/2√
r−λ

dϑ (B.2)

ωts =
x

N(λ)
ωTs. (B.3)

To deal with the singularity in the bounce/transit time arising
at the critical boundary between trapped and passing particles,
a new pitch-angle variable is introduced as follows,

λ= rmin − (1− rmin)e
−∆ (B.4)

where rmin denotes the minimal value of r(θ), where the mag-
netic field is maximum and the parallel velocity is min-
imum. Note that ∆min = log(1− rmin)− log(rmin) corresponds
to well-circulating particles, whereas ∆→∞ to the barely
passing particles. In the numerical model, the functions
N(∆), η (ϑ,∆) are calculated with cubic spline interpola-
tion. Figure B1 shows the relation between the new pitch
angle ∆ and N(∆) for different model flux surface shapes,
taken as examples, where R/R0 = 1+ 0.1cosθ corresponds to
a circular flux surface, while R/R0 = 1+ 0.1cos(θ+ 0.3sinθ)
and R/R0 = 1+ 0.1cos(θ+ 0.3sinθ+ 0.1sin2θ) correspond to

Figure B1. Function N(∆) in redefined pitch-angle variable∆ for
circular, triangular, and rectangular cross sections.

flux surfaces with triangularity and rectangularity, respect-
ively. This figure suggests that the function N, reflect-
ing the particle bounce/transit time, behaves linearly with
respect to the pitch-angle variable introduced earlier in
the range corresponding to circulating particles. Using the
new pitch-angle variable, the pitch-angle integration is
transformed as

ˆ rmin

0
dλ(. . .) =

ˆ ∞

∆min

(1− rmin)(. . .)e
−∆d∆, (B.5)

which converges as ∆→∞ and can be truncated at a
proper ∆.

Appendix C. Phase-space transport equation

In [4, 20], it has been shown that plasma transport can be
described in terms of the collisionless undamped component
of the distribution function, i.e. the PSZSs. The PSZSs are lin-
early stable and depend only on the particle (slowly evolving,
nonlinear) equilibrium invariants of motion. Thus, they natur-
ally extend the concept of zonal structures to the phase space
and, together with the ZFSs [20, 21], they fully characterize the
nonlinear plasma equilibrium in the presence of a finite level of
fluctuations, that is, the zonal state [20, 21]. The PSZS theory
allows to describe gyrokinetic transport over long timescales
and EP dynamics in burning plasmas. The theoretical frame-
work of the PSZS transport has been verified by hybrid kin-
etic MHD codes, such as HMGC [82] and HYMAGYC [83].
More recently, different gyrokinetic codes, e.g. [75, 76], have
also calculated the PSZS dynamics. Being able to compare
these results with phase-space fluxes computed by means of
the DAEPS code is a fundamental step to verify the theoretical
framework of the PSZS transport [1, 4, 20] and to construct
a hierarchy of reduced transport models, connecting various
levels of approximations within the same unified theoretical
framework [20, 21]. Briefly recalling what these different
approximations are, all consistently described by the PSZS

13



Plasma Phys. Control. Fusion 65 (2023) 084001 Y Li et al

transport theory, we have the following three-level hierarchy.
The highest-fidelity approach, consisting in the assumptions
involved in the nonlinear gyrokinetic description [84–86], is
based on the construction of PSZS fluxes from the results
provided by any global electromagnetic gyrokinetic code. A
first level of further approximation, meanwhile, consists in
assuming that nonlinear fluctuations are still well represen-
ted by linear parallel mode structures, while radial envel-
ope structures are nonlinear and determined self-consistently
with particle responses and the evolution of the correspond-
ing PSZS [1, 5]. It should be noted that the parallel mode
structure, denoted by f̂n in equation (3), is formed on a times-
cale of approximately 1/ω, making it nearly insensitive to
the nonlinear interaction that occurs on a much longer times-
cale of τNL ∼ 1/γL ≫ 1/ω. This allows the parallel mode struc-
ture to be computed from linear theory, while the nonlinear
radial envelope must be treated fully nonlinearly. This reduced
description, called the DSM [4, 21], accounts for renormal-
ized particle response, ZFSs, resonance broadening, and ava-
lanches in magnetized plasmas, as it was shown recently [77,
78]. The final level of approximation consists in assuming a
linearized particle response, yielding expressions for phase-
space fluxes that are fully consistent with the well-known
quasilinear description.

In the following, we will derive the phase-space fluxes
introduced with equation (9). It is worth noting that the deriva-
tion can be divided into two parts. In the first one, the gyrokin-
etic fluxes are written without introducing any simplifying
assumptions, corresponding to the highest-fidelity description
of fluctuation-induced transport introduced in section 5 as well
as to the first level of approximation. In the second part of the
derivation, we substitute the solution of the linear gyrokinetic
equation in the PSZS flux expressions, thus obtaining the usual
quasilinear limiting expressions of phase-space fluxes; see e.g.
[66]. As we will see, the semi-analytic nature of this approach
allows to discriminate between different contributions of
the fluxes based on the underlying dynamics, e.g. related
to resonant particles, kinetic compressibility, advective
terms, etc.

The governing equation for the equilibrium orbit averaged
distribution function is equation (13) given in the main text.
The equilibrium orbit averaging can bewritten in the following
way:

(· · ·) = 1
2π

˛
dη (· · ·) = 1

τb,t

ˆ
dl
v∥

(· · ·) , (C.1)

where dl represents the arc length element along the particle
orbit, and v∥ is the parallel component of the particle velocity.
The circle symbol in the first integration represents the peri-
odic nature of particle orbits in the equilibrium magnetic field,
with the canonical poloidal angle η ranging from 0 to 2π. Using
the MSD approach [31], reducing to the well-known balloon-
ing representation in the high toroidal mode number limit, the
perturbed radial velocity and particle energy variations, after
some algebra, can be written as

δẊ⊥ ·∇r= 1
2

{
A(r)einζ

∑
m

e−imθ

×
ˆ

dϑei(m−nq)ϑ ikϑcms

esB̄(r)
es
ms
J0s(ϑ)δL̂n(ϑ)+ c.c.

}
,

δĖ =
1
2

{
A(r)einζ

∑
m

e−imθ

×
ˆ

dϑei(m−nq)ϑ (−iω) es
ms
J0s(ϑ)δL̂n(ϑ)+ c.c.

}
,

where δL̂n = δϕ̂n− (v∥/c)δÂ∥n and δψ̇p = δẊ⊥ ·∇ψp.
Substituting these expressions into equations (10) and (11),
we immediately obtain

τt
˙̄δrδF=

π |A|2

ωTsx
Re
∑
ℓ

ˆ
dϑ

r3/2√
r−λ

einq2πℓ
(
−iωTds

)
× J0s (ϑ)δL̄

∗
n (ϑ)δ̂fsn(ϑ− 2πℓ) (C.2)

τt
˙̄δEδF=

π |A|2

ωTsx
Re
∑
ℓ

ˆ
dϑ

r3/2√
r−λ

einq2πℓ (iω∗)

× J0s (ϑ)δL̄
∗
n (ϑ) δ̂fsn (ϑ− 2πℓ) (C.3)

where, δr̄= δr/R0 and δĒ = 2δE/v2ts. Furthermore, ignoring
tearing parity and adopting the magnetic scalar potential δψ
instead of the parallel vector potential,

δL̄∗n =
es
Ts

(
δϕ̂∗

n −
v∥
c
δÂ∗

∥n

)
= ϕ̄∗ − i

σ̂ωTs
ω∗

√
r−λ

r3/2
∂ϑψ̄

∗. (C.4)

Assuming an equilibriumMaxwellian distribution, Fs, for sim-
plicity but without loss of generality, we can introduce the fol-
lowing decomposition for the distribution function

δ̂fsn =−Fsϕ̄−
(
−1+

ωT∗ns
ω

+(x2 − 3/2)
ωT∗Ts
ω

)
Fsψ̄+ δK̂sn,

(C.5)

where the first term represents the adiabatic particle response,
the second one is the advective part, while δK̂sn is the kinetic
compression response that can be obtained by solving the fol-
lowing linear gyrokinetic equation(

v∥
JbB

∂ϑ− iω+ iωds

)
δK̂sn = i

es
ms
QFs

(
δϕ̂n− δψ̂n+

ωds

ω
δψ̂n
)
.

(C.6)

Substituting this expression, e.g. in the expression for the
radial component of the flux, we obtain

τt
˙̄δrδF=

π |A|2

ωTsx
FsRe

∑
ℓ

(
iωTds
)

×
ˆ

dϑ
r3/2√
r−λ

einq2πℓJ0s (ϑ) ϕ̄
∗ (ϑ) ϕ̄(ϑ− 2πℓ)

(C.7)
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+π |A|2FsRe
∑
ℓ

σ̂ωTds
ω∗

ˆ
dϑeinq2πℓJ0s (ϑ)∂ϑψ̄

∗ (ϑ) ϕ̄(ϑ− 2πℓ)

(C.8)

+
π |A|2

ωTsx
FsRe

∑
ℓ

(
iωTds
)(

−1+
ωT∗ns
ω

− 3
2
ωT∗Ts
ω

+
ωT∗Ts
ω

x2
)
(C.9)

×
ˆ

dϑ
r3/2√
r−λ

einq2πℓJ0s (ϑ) ϕ̄
∗ (ϑ) ψ̄ (ϑ− 2πℓ) (C.10)

+π |A|2FsRe
∑
ℓ

σ̂ωTds
ω∗

(
−1+

ωT∗ns
ω

− 3
2
ωT∗Ts
ω

+
ωT∗Ts
ω

x2
)

(C.11)

×
ˆ

dϑeinq2πℓJ0s (ϑ)∂ϑψ̄
∗ (ϑ) ψ̄ (ϑ− 2πℓ) (C.12)

− π |A|2

ωTsx
Re
∑
ℓ

(
iωTds
)ˆ

dϑ
r3/2√
r−λ

einq2πℓJ0s (ϑ) ϕ̄
∗ (ϑ)

× δK̂sn (ϑ− 2πℓ) (C.13)

−π |A|2Re
∑
ℓ

σ̂ωTds
ω∗

ˆ
dϑeinq2πℓJ0s (ϑ)∂ϑψ̄

∗ (ϑ)δK̂sn (ϑ− 2πℓ) ..

(C.14)

As stated previously, this approach allows for discussion
of the physics underlying each contribution as well as their
relative importance once the parallel mode structure and fre-
quency of the modes are calculated. The decomposition intro-
duced with equation (C.5) discriminates the contributions due
to the kinetic compressibility δK̂s and the advective response
of the plasma, while resonant and nonresonant responses are
further identified by Fourier analysis, as we will see in the
next paragraphs. As already stated in this section, these expres-
sions for the fluxes are general and admit, as a particular
case, the quasilinear limit if the linear particle response for
δK̂s is adopted, i.e. the solution of equation (C.6). However,
if the solution of the nonlinear gyrokinetic equation is used,
the corresponding gyrokinetic fluxes are fully consistent with
the results of a global gyrokinetic/hybrid code [76] when the
self-consistent radial envelope A(r, t) is assumed. Recently, an
intermediate approach has been introduced in [4, 21], the so-
called DSM, where the most important nonlinear effects are
retained in the description of radial envelope, while the parallel
mode structure is given by the solution of linear gyrokin-
etic equations. As anticipated, these three levels of simpli-
fication of the gyrokinetic fluxes within a unified theoret-
ical framework constitute a hierarchy of reduced descriptions
for plasma transport that can be used to develop advanced
reduced transport models and for validation and verification
purposes [87].

In this final part of appendix B, without losing general-
ity, we focus on the calculation of the quasilinear fluxes that
are evaluated numerically in section 5. As already stated,
we proceed by substituting the solution of (C.6) inside
equation (C.14), thus obtaining the complete expression for
the fluctuation-induced fluxes. As an example, we show

here one of the contributions due to the kinetic compression
response

ˆ
dϑ

r3/2√
r−λ

ϕ̄⋆(ϑ)δK̂sn(ϑ− 2πℓ)

=
1
x
i

(
−ω+ωT∗ns−

3
2
ωT∗Ts+ωT∗Tsx

2
)

×FsN(λ)
ˆ

dηϕ̄⋆σ̂
ˆ ϑ−2πℓ

−σ̂∞
dη′N(λ)

×
[
Φ̄′

∥ +
ωTds
ω
x2
(
2− λ

r′

)
g′ψ̄′

]
× exp

[
N(λ)
x

σ̂

ˆ ϑ′

ϑ−2πℓ
dη′′

(
−i ω
ωTs

+ i
ωTds
ωTs

x2
(
2− λ

r′

)
g′′
)]

where Φ̄∥ = ϕ̄ − ψ̄. For the sake of notation simplicity, we can
rewrite the preceding equation as

ˆ
dϑ

r3/2√
r−λ

ϕ̄⋆(ϑ)δK̂sn(ϑ− 2πℓ)

=
1

xωTs
i

(
−ω+ωT∗ns−

3
2
ωT∗Ts+ωT∗Tsx

2
)

×FsN(λ)
2
ˆ xr

xl

dηϕ̄⋆
ˆ η−2πℓ

xl

dη′

×
[
Φ̄′

∥ +
ωTds
ω
x2
(
2− λ

r′

)
g′ψ̄′

]
× exp

[
−i ω
ωTs

σ̂N(λ)
x

(
η′ − η+ 2πℓ

)]
× exp

{
i
ωTds
ωTs

xN(λ)σ̂
[
W
(
η′
)
−W(η− 2π l)

]}
.

Here, xl and xr represent the lower and upper boundaries in
the extended η angle domain that is used to cover the balloon-
ing space in the actual calculation. By analyzing the flux in
the Fourier space, we can immediately show, as expected, that
the kinetic compression contribution is deeply related with the
resonant particles. In fact, focusing on the ∝ Φ̄ ′

∥ integrand, as
the other contributions can be handled in a similar fashion

ˆ
dϑ

r3/2√
r−λ

ϕ̄∗ (ϑ)δK̂sn (ϑ− 2πℓ)

=

(
−ω+ωT∗ns−

3
2
ωT∗Ts+ωT∗Tsx

2
)
FsN(λ)

× (−2π)
ˆ

dk′
ϕ̂∗ (k′; l)Φ̂(k′)
ω− σ̂k′ωts

where

Φ̂(k) =
1
2π

ˆ
dηΦ̄∥ exp

[
−i(ωTds/ωTs)xN(λ)σ̂W(η)

]
exp(−ikη)

(C.15)

ϕ̂(k;ℓ) =
1
2π

ˆ
dηϕ̄(η+ 2πℓ)exp

[
−i(ωTds/ωTs)xN(λ)σ̂W(η)

]
× exp(−ikη) . (C.16)
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