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Abstract
Nonlinear wave–wave coupling constitutes an important route for the turbulence 
spectrum evolution in both space and laboratory plasmas. For example, in a reactor 
relevant fusion plasma, a rich spectrum of symmetry-breaking shear Alfvén wave 
(SAW) instabilities is expected to be excited by energetic fusion alpha particles, and 
self-consistently determines the anomalous alpha particle transport rate by the satu-
rated electromagnetic perturbations. In this work, we will show that the nonlinear 
gyrokinetic theory is a necessary and powerful tool in qualitatively and quantita-
tively investigating the nonlinear wave–wave coupling processes. More specifically, 
one needs to employ the gyrokinetic approach to account for the breaking of the 
“pure Alfvénic state” in the short-wavelength kinetic regime, due to the short-wave-
length structures associated with nonuniformity intrinsic to magnetically confined 
plasmas. Using well-known toroidal Alfvén eigenmode (TAE) as a paradigm case, 
three nonlinear wave–wave coupling channels expected to significantly influence 
the TAE nonlinear dynamics are investigated to demonstrate the strength and neces-
sity of nonlinear gyrokinetic theory in predicting crucial processes in a future reac-
tor burning plasma. These are: 1. the nonlinear excitation of meso-scale zonal field 
structures via modulational instability and TAE scattering into short-wavelength sta-
ble domain; 2. the TAE frequency cascading due to nonlinear ion-induced scattering 
and the resulting saturated TAE spectrum; and 3. the cross-scale coupling of TAE 
with micro-scale ambient drift wave turbulence and its effect on TAE regulation and 
anomalous electron heating.

Keywords Gyrokinetic theory · Burning plasma · Shear Alfvén wave · Energetic 
particles · Nonlinear mode coupling
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1 Introduction

Shear Alfvén waves (SAWs) (Alfvén 1942) are fundamental electromagnetic 
fluctuations in magnetized plasmas, and are ubiquitous in space and laboratories. 
SAWs exist due to the balance between restoring force via magnetic field line 
bending and plasma inertia. SAWs are characterized by transverse magnetic per-
turbations propagating along equilibrium magnetic field lines, with the parallel 
wavelength comparable to system size, and the perpendicular wavelength vary-
ing from system size to ion Larmor radius. Due to their nearly incompressible 
character, SAWs can be driven unstable with a lower threshold in comparison to 
that of compressional Alfvén waves or ion acoustic waves. In magnetically con-
fined plasmas typical of fusion reactors, such as ITER (Tomabechi et  al. 1991) 
and CFETR (Wan et al. 2017), with their phase/group velocity comparable to the 
characteristic speed of super-thermal fusion alpha particles, SAW instabilities 
could be strongly excited by fusion alpha particles as well as energetic particles 
(EPs) from auxiliary heating. The enhanced symmetry-breaking SAW fluctua-
tions could lead to transport loss of EPs across magnetic field surfaces; raising an 
important challenge to the good EP confinement required for sustained burning 
(Fasoli et al. 2007; Chen and Zonca 2016).

In magnetic confined fusion devices, due to the nonuniformities associated 
with equilibrium magnetic geometry and plasma profile, SAW frequency var-
ies continuously across the magnetic surfaces and forms a continuous spectrum 
(Grad 1969), on which SAWs suffer continuum damping by mode conversion to 
small-scale structures Landau damped, predominantly, by electrons (Chen and 
Hasegawa 1974; Hasegawa and Chen 1976; Chen et al. 2021). As a result, SAW 
instabilities can be excited as various kinds of EP continuum modes (EPMs) 
when the EP resonant drive overcomes continuum damping (Chen 1994), or as 
discretized Alfvén eigenmodes (AEs) inside continuum gaps to minimize the 
continuum damping, among which the famous toroidal Alfvén eigenmode (TAE) 
(Cheng et  al. 1985; Chen 1988; Fu and Van Dam 1989; Wong et  al. 1991) is 
a celebrated example. Although the interaction with the continuous spectrum is 
minimized for AEs located inside the SAW frequency gaps, their residual damp-
ing is not vanishing and may be due to a variety of kinetic interactions with both 
electrons and ions, as well as dissipative effects due to collisions. For a thorough 
understanding of the SAW instability spectrum in reactors, interested readers may 
refer to Refs. Vlad et  al. (1999); Fasoli et  al. (2007); Zonca and Chen (2014); 
Pinches et  al. (2015); Chen and Zonca (2016); Todo (2019) for comprehensive 
reviews.

The SAW instability-induced EP anomalous transport/acceleration/heating 
rate depends on the SAW instability amplitude and spectrum via wave–particle 
resonance conditions (Chen 1999; Chen and Hasegawa 1991), which are deter-
mined by the nonlinear saturation mechanisms. The first channel for SAW insta-
bility nonlinear saturation is the nonlinear wave–particle interactions, i.e., the 
acceleration/deceleration of EPs by SAW instability-induced EP “equilibrium” 
distribution function evolution and the consequent self-consistent SAW spectrum 
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evolution, among which there are well-known and broadly used models intro-
duced by Berk and Breizman (1990a, 1990b, 1990c) by analogy to the wave–par-
ticle trapping in one-dimensional beam-plasma instability system (O’Neil 1965). 
More recently, Zonca et al. systematically developed the non-adiabatic wave–par-
ticle interaction theory, based on nonlinear evolution of phase space zonal struc-
tures (PSZS) (Zonca et  al. 2021, 2015; Falessi and Zonca 2019; Falessi et  al. 
2023; Zonca et al. 2015), i.e., the phase space structures that are un-damped by 
collisionless processes. The PSZS approach, by definition of the “renormalised” 
nonlinear equilibria typically varying on the mesoscales in the presence of micro-
scopic turbulences, self-consistently describes the EP phase space non-adiabatic 
evolution and nonlinear evolution of turbulence due to varying EP “equilibrium” 
distribution function, very often in the form of non-adiabatic frequency chirp-
ing, and is described by a closed Dyson–Schrödinger model (Zonca et al. 2021). 
Both processes are tested and corresponding theoretical frameworks are broadly 
used in the interpretation of experimental results as well as large-scale numerical 
simulations, e.g., Wang et al. (2012), Zhang et al. (2012), Yu et al. (2022). The 
other channel for SAW nonlinear evolution, relatively less explored in large-scale 
simulations, is the nonlinear wave–wave coupling mechanism, describing SAW 
instability spectrum evolution due to interaction with other electromagnetic oscil-
lations, and is the focus of the present brief review using TAE as a paradigm case. 
These approaches developed for TAE and the obtained results are general, and 
can be applied to other SAW instabilities based on the knowledge of their linear 
properties.

The nonlinear wave–wave coupling process, as an important route for SAW 
instability nonlinear dynamic evolution and saturation (Chen and Zonca 2013), is 
expected to be even more important in burning plasmas of future reactors; where, 
different from present-day existing magnetically confined devices, the EP power 
density can be comparable with that of bulk thermal plasmas, and the EP character-
istic orbit size is much smaller than the system size. As a consequence, there is a rich 
spectrum of SAW instabilities in future reactors (Fasoli et al. 2007; Chen and Zonca 
2016; Wang et al. 2018; Ren et al. 2020), with most unstable modes being charac-
terized by n ≳ O(10) for maximized wave–particle power exchange, with n being 
the toroidal mode number. That is, multi-n modes with comparable linear growth 
rates could be excited simultaneously. These SAW instabilities are, thus, expected 
to interact with each other, leading to complex spectrum evolution that eventually 
affects the EP transport. It is noteworthy that the nonlinear wave–particle interac-
tions, described by Dyson Schrödinger model and nonlinear wave–wave couplings 
embedded within a generalized nonlinear Schrödinger equation, are two pillars of 
the unified theoretical framework for self-consistent SAW nonlinear evolution and 
EP transport, as summarized in Ref. Zonca et  al. (2021), which is being actively 
developed by the Center for Nonlinear Plasma Physics (CNPS) collaboration.1

1 For more information and activities of CNPS, one may refer to the CNPS homepage at https:// www. 
afs. enea. it/ zonca/ CNPS/.
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Due to the typically short-scale structures associated with continuous spectrum, 
the nonlinear couplings of SAW instabilities are dominated by the perpendicular 
nonlinear scattering via Reynolds and Maxwell stresses, instead of the polarization 
nonlinearity (Hasegawa and Chen 1976; Chen and Zonca 2011; Sagdeev and Galeev 
1969). Thus, the kinetic treatment is needed to capture the essential ingredients of 
SAW nonlinear wave–wave coupling dominated by small structures that naturally 
occur due to SAW continuum, and some other fundamental physics not included 
in magnetohydrodynamic (MHD) theory, e.g., the wave–particle interaction crucial 
for ion-induced scattering of TAEs (Hahm and Chen 1995; Qiu et  al. 2019), and 
trapped particle effects in the low-frequency range that may lead to neoclassical 
inertial enhancement, which plays a key role for zonal field structure (ZFS) genera-
tion (Rosenbluth and Hinton 1998; Chen et al. 2000; Chen and Zonca 2012). These 
crucial physics ingredients are not included in the MHD description, and kinetic 
treatment is mandatory to both quantitatively and qualitatively study the nonlinear 
wave–wave coupling processes of SAWs. These features can be fully and conveni-
ently covered by nonlinear gyrokinetic theory (Frieman and Chen 1982) derived 
by systematic removal of fast gyro motions with Ωc ≫ 𝜔A , and yield quantitatively, 
using TAE as a paradigm case, the nonlinear saturation level, and corresponding EP 
transport and/or heating. The general knowledge obtained here, as noted in the con-
text of this review, can be straightforwardly applied to other kinds of SAW instabili-
ties, with the knowledge of their linear properties.

The rest of the paper is organized as follows. In Sect. 2, the general background 
knowledge of nonlinear wave–wave coupling of SAW instabilities in toroidal 
geometry is introduced, where SAW instabilities in toroidal plasmas and nonlinear 
wave–wave coupling are briefly reviewed. The kinetic theories of TAE saturation 
via nonlinear wave–wave coupling are reviewed in Sect. 3, where three channels for 
TAE nonlinear dynamic evolution are introduced. Finally, a brief summary is given 
in Sect. 4.

2  Theoretical framework of nonlinear mode coupling and SAWs 
in toroidal plasmas

In this section, the basic elements needed for SAW nonlinear mode coupling are 
introduced, including the linear SAW dispersion relation, pure Alfvénic state, per-
pendicular nonlinear coupling, and nonlinear gyrokinetic theoretical framework. For 
accessibility to general readers, these materials are introduced in a pedagogical way. 
Readers interested in more technical details may refer to references given.

2.1  Nonlinear wave–wave coupling

The nonlinear wave–wave coupling corresponds to wave spectrum evolution 
due to interaction with other collective oscillations, and is an important pillar 
of nonlinear plasma physics (Sagdeev and Galeev 1969). For SAW instability, 
there is an important property that, in uniform plasmas and ideal MHD limit, the 
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Reynolds and Maxwell stresses, will exactly cancel each other. Thus, SAWs can 
grow to large amplitudes without being distorted by nonlinear effects. This is 
called “pure Alfvénic state”, and will be addressed briefly below. As a result, for 
the nonlinear mode couplings of SAWs, the pure Alfvénic state shall be broken 
by, e.g., system nonuniformity and/or kinetic compression, as addressed in Ref. 
Chen and Zonca (2013).

The momentum equation for the incompressible SAW nonlinear evolution in 
the low � plasma limit, keeping up to quadratic terms, can be written as

with � being the mass density, v the fluid velocity, J the current density, B the mag-
netic field, and � indicating perturbed quantities. Equation (1) together with the 
Ampere’s law

and the Faraday’s law with ideal MHD condition embedded

yield in the linear limit

which correspond to the famous Walen relation (Kieras and Tataronis 1982). In 
deriving Eq. (4), the linear SAW dispersion relation, derived from linearised Eqs. 
(1) and (3), �2 = k2

∥
V2
A
 is used, with VA ≡ √

B2
0
∕(4��0) being the Alfvén velocity.

Equation (1), in the nonlinear limit, can be rewritten as

with MX ≃ −�B
⟂
⋅ ∇�B

⟂
∕(4�) and RS ≡ �0�v⟂ ⋅ ∇�v

⟂
 being, respectively, the 

Maxwell and Reynolds stresses, and the first term on the right-hand side correspond-
ing to the parallel ponderomotive force (Sagdeev and Galeev 1969), which is typi-
cally much smaller than RS and MX due to the typical k∥ ≪ k

⟂
 ordering. It can be 

seen clearly that, in the present model of ideal MHD, uniform plasma limit, RS and 
MX cancel each other, so SAW can grow to large amplitude without being distorted 
by nonlinear processes. Thus, to understand the nonlinear evolution of SAW insta-
bilities as this pure Alfvénic state is broken, higher order nonlinearities that occur on 
longer time scales should be introduced, i.e., it is necessary to go beyond the ideal 
MHD description. As we shall show in the following applications using TAE as an 
example, plasma nonuniformity as well as plasma compressibility may play crucial 
roles in breaking the Alfvénic state for different control parameters. To account for 
these effects for SAWs as well as drift waves (DWs) involved in the analysis with 
frequencies much lower than ion cyclotron frequency, nonlinear gyrokinetic theory 
is shown to be extremely useful in studying the nonlinear wave–wave interaction 

(1)�0(�t + �v ⋅ ∇)�v = �J × B0∕c + �J × �B∕c,

(2)∇ × �B = 4��J∕c

(3)�t�B = ∇ × (�v × B0),

(4)
�v

VA

= ±
�B

B0

,

(5)�0�t�v
(2) = −∇|�B|2∕(8�) − MX − RS ,
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physics, and is introduced in Sect. 2.2. For a thorough discussion of pure Alfvénic 
state and SAW/KAW nonlinear dynamics as it is broken by various effects, inter-
ested readers may refer to Ref. Chen and Zonca (2013) for more details.

2.2  Nonlinear gyrokinetic theoretical framework

The nonlinear gyrokinetic equation is derived by systematic removal of the fast gyro-
motion of particles, noting the conservation of magnetic moment � ≡ mv2

⟂
∕(2B) in the 

low-frequency regime with 𝜔 ≪ Ωc , and it is a powerful tool in theoretical/numeri-
cal studies of low-frequency fluctuations of interest in magetically confined plasmas 
(Frieman and Chen 1982; Brizard and Hahm 2007; Sugama 2017). In gyrokinetic the-
ory, the fluctuating particle response can be separated into adiabatic and non-adiabatic 
components

with the non-adiabatic particle response derived from nonlinear gyrokinetic equa-
tion (Frieman and Chen 1982)

Here, E = v2∕2 is the energy per unit mass, vd = b × [(v2
⟂
∕2)∇ lnB0 + v2

∥
b ⋅ ∇b] is the 

magnetic drift, �̂�∗ ≡ k ⋅ b × ∇ lnF0∕Ωc is related to the diamagnetic drift frequency 
associated with plasma nonuniformities. In the present work focusing on the nonlinear 
evolution of TAE with prescribed amplitude due to nonlinear mode coupling, with 
dominant role played by thermal plasma contribution to RS and MX, in the rest of the 
manuscript, Maxwellian distribution function is adopted for thermal plasmas, and one 
has �EFM = −(m∕T)FM with T being the plasma temperature, �̂�∗FM = (m∕T)𝜔∗FM 
with �∗ ≡ −i(cT∕qB0)jb × ∇ lnFM ⋅ ∇ = ck�Tj∕(qB0Ln)j

[
1 + �(E∕T − 3∕2)

]
j
 , k� is 

the poloidal wavenumber, and � = Ln∕LT with Ln and LT being, respectively, the char-
acteristic scale length of density and temperature nonuniformities. Furthermore, 
Jk ≡ J0(k⟂�) is the Bessel function of zero index accounting for finite Larmor radius 
effects, �Lk ≡ �� − v∥�A∥∕c , and Λk�

k��
≡ (c∕B0)b ⋅ ��� × �� accounts for perpendicular 

scattering with the constraint on wavenumber matching condition given by k = k
� + k

�� . 
In the rest of the paper, −i�l��k = ��A∥k∕c is introduced for conveniently treating the 
inductive parallel electric-field component, which allows recovering the ideal MHD 
condition ( �E∥ = 0 ) by straightforwardly taking ��k = ��k.

The governing equations are derived from quasi-neutrality condition

(6)�fj =
( q

m

)
j
��k

�

�E
F0j + exp(−� ⋅ ∇)�Hj,

(7)

(
𝜕t + v∥b ⋅ ∇ + vd ⋅ ∇

)
𝛿Hk

= i
q

m

(
𝜔𝜕E + �̂�∗

)
F0Jk𝛿Lk −

∑
k=k�+k��

Λk�

k��
Jk�𝛿Lk�𝛿Hk�� .

(8)
n0e

2

Ti

�
1 +

Te

Ti

�
��k =

�
j=e,i

⟨qJk�Hk⟩,
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with angular brackets denoting velocity space integration and, with magnetic com-
pression being negligible in the low-� limit of interest here, the nonlinear gyroki-
netic vorticity equation becomes (Chen and Hasegawa 1991; Chen et al. 2001)

Nonlinear gyrokinetic vorticity equation is derived from parallel Ampere’s law 
�J∥ = −(c∕4�)∇2

⟂
�A∥ , quasi-neutrality condition and nonlinear gyrokinetic equa-

tion, and it forms, together with quasi-neutrality condition, Eq. (8), a closed set of 
equations describing the dynamics of low frequency fluctuations in low � plasmas. 
Note that, for the application in the present review, in Eq. (9), only effects associ-
ated with plasma density nonuniformity are accounted for, while effects associated 
with temperature gradients are neglected systematically, i.e., � ≡ Ln∕LT = 0 . The 
terms on the left-hand side of Eq. (9) are, respectively, the field line bending, inertia, 
and curvature-pressure coupling terms. This clearly shows the convenience of the 
present formulation based on the gyrokinetic vorticity equation in studying SAW-
related physics, since field bending and inertia terms balance at the leading order 
for these fluctuations. The terms on the right-hand side, on the other hand, are the 
formally nonlinear generalized gyrokinetic RS and MX, dominated, respectively, by 
ion and electron contributions.

In this brief review focusing on the TAE physics due to nonlinear wave–wave 
interactions, TAE with prescribed amplitude are assumed, while EPs contribu-
tion is typically small. Thus, we include only the thermal plasma contribution in 
the above governing equations. The EPs, crucial for the TAE excitation, can also 
be important in ZFS generation during the TAE exponential growth phase due 
to resonant EP drive, and lead to the “forced driven” excitation of ZFS by TAE 
(Todo et al. 2010; Qiu et al. 2016). We, however, will not discuss this case in the 
present review aiming at giving a fundamental picture of TAE nonlinear dynam-
ics via nonlinear mode coupling. This interesting topic of nonlinear ZFS forced 
driven process connected with the nonlinear EP response is beyond the intended 
present scope and will only be briefly discussed in Sect. 3.1.

Note that, for TAE of interest of the present review, with frequency typically 
much larger than thermal plasma diamagnetic frequency, the system nonuni-
formity associated with �∗ is typically weak and, thus, systematically neglected 
in the majority of present review on TAE nonlinear physics. It is maintained, 
however, in Sect. 3.3 in the analysis of TAE scattering by DWs, where finite �∗ 
is crucial for the high-n DW physics, as well as for the enhancement of nonlin-
ear scattering rates due to the |𝜔∗| ≫ |vi∕(qR0)| ordering.

(9)

c2

4��2
B
�

�l

k2
⟂

B

�

�l
��k +

e2

Ti

�
1 −

�∗

�

�
k

��
1 − J2

k

�
FM

�
��k −

�
j=e,i

�
qJ0

�d

�
�H

�
k

= −
i

�k

�
k=k�+k��

Λk�

k��

�
⟨e(JkJk� − Jk�� )�Lk��Hk��⟩ + c2

4�
k��2
⟂

�l��k��l��k��

�k��k��

�
.
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2.3  SAW instabilities in toroidal plasmas

In this section, the SAW dispersion relation in the WKB limit will be derived, which is 
then used to symbolically demonstrate the formation of SAW continuum structure and 
the existence of discrete Alfvén eigenmode, using the well-known TAE as an example. 
The obtained linear particle responses can be used in the following analysis of TAE 
nonlinear dynamics via nonlinear wave–wave coupling processes. For the conveni-
ence of following analysis on nonlinear wave–wave couplings, the particle responses 
to SAW are derived in real space, and the obtained mode equation, will be solved by 
transforming into ballooning space. Note that for TAE of interest here, |𝜔∗∕𝜔| ≪ 1 
is satisfied for most unstable TAEs with perpendicular wavelength comparable to EP 
drift orbit width; so that the thermal plasma �∗ effects on SAW dispersion relation are 
expected to be small. Thus, in the majority of the paper, the �∗ effects on TAE/KAW 
dispersion relation are systematically neglected. However, in our derivation of linear 
thermal plasma response to SAW �∗ correction is kept, which will be used in Sect. 3.3, 
where �∗ effects on KAW can be important due to its relatively high toroidal mode 
number due to momentum conservation in high-n DW scattering.

The linear electron response to SAW can be derived noting the |𝜔∕k∥ve| ≪ 1 order-
ing, and one obtains

Meanwhile, assuming unity charge for simplicity in calculating the ion response, 
and noting the |𝜔| ≫ |k∥vi| ≫ |𝜔d| ordering, one has at the leading order

Substituting into quasi-neutrality condition, one obtains

with

Γk = I0(bk) exp(−bk) , bk = k2
⟂
�2
i
 , �2

i
= (Ti∕mi)∕Ω

2
ci
 , and I0 being the modified Bes-

sel function. Noting |k
⟂
𝜌i| ≪ 1 and |𝜔∗i∕𝜔| ≪ 1 for most unstable TAEs, one has 

�∗k ≃ 1 , i.e., ideal MHD condition is satisfied at the lowest order. At the next order, 
one has

with ��(1)

k
 being derived from quasi-neutrality condition, and contributing to SAW 

continuum upshift. Note that, here, we have dropped odd terms in v∥ resulting in 

(10)�Hke ≃ −
e

Te
FM

(
1 −

�∗e

�

)
k
��k.

(11)�H
(0)

ki
≃

e

Ti
FMJk

(
1 −

�∗i

�

)
k
��

(0)

k
.

(12)��
(0)

k
= �∗k��

(0)

k
,

(13)�∗k =
1 + � − �Γk(1 − �∗i∕�)k

(1 − �∗e∕�)k
,

(14)�H
(1)

ki
≃

e

Ti
FMJk

(
��

(1)

k
+

�di

�
��

(0)

k

)
,
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vanishing contributions to the dispersion response. The hence obtained particle 
response can be substituted into linear gyrokinetic vorticity equation, and yields

with the SAW operator in the WKB limit given by

The terms of �Ak correspond to field line bending, inertia, and curvature coupling 
terms, where ballooning-interchange terms are included. Resonant excitation by 
EPs can be straightforwardly accounted for by substituting the corresponding EP 
response into the curvature coupling term. Note that b

k
≡ −�2

i
∇2

⟂
 and k∥ should be 

strictly understood as operators, and are not commutative. The SAW instability wave 
equation and eigenmode dispersion relation in torus can be derived by transforming 
Eq. (15) into ballooning space, and noting the two-scale structures of SAW insta-
bilities due to plasma nonuniformity. Here, for simplicity of discussion, we focus on 
modes in the TAE frequency range and, thus, the curvature coupling term that con-
tributes to SAW continuum upshift and BAE generation is neglected from now on. 
The |�∗i∕�| correction is also systematically neglected except when explicitly stated 
and needed. The perturbed scalar potential ��k can be decomposed as

with Ak being the radial envelope, m0 being the reference poloidal mode number, 
m = m0 + j , and Φj being the fine radial scale structure associated with k∥ . Defining 
z = nq − m = −k∥qR0 , � being the Fourier conjugate of z, and

the SAW eigenmode equation, Eq. (15), can be reduced to the following simplified 
form for a (ŝ, 𝛼) model equilibrium with shifted circular magnetic flux surfaces:

with �̂2
⟂ = −r2∇2

⟂∕(n
2q2) = (ŝ� − � sin �)2

(

1 + 2Δ′ cos �
)

− 2ŝ�Δ′ sin � + 1 − 2
(

r∕R0 + Δ′) cos � , 
Φ̂ ≡ �̂�

⟂
𝜙(𝜂) , ŝ ≡ rq�∕q being the magnetic shear and � = −R0q

2d�∕dr the 
usual ballooning mode normalized pressure gradient, Ω2

A
= �2q2R2

0
∕V2

A
 , and 

�0 = 2(r∕R0 + Δ�) with Δ� being Shafranov shift. Equation (19) has a clear two-
scale character, and can be solved by asymptotic matching of two scale structures. 

(15)�bk�Ak��
(0)

k
= 0,

(16)
�Ak ≡ −

(
V2
A

b

k∥bk∥

�2

)

k

�∗k +
1 − Γk

bk

(
1 −

�∗i

�

)
k

+
⟨
qJk

�d

�
�H

(1)

ki

⟩/(
n0e

2

Ti
bk��

(0)

k

)
.

(17)��k = Ake
−in�−i�t+im0�

∑
j

eij�Φj(nq − m),

(18)Φ(z) = ∫ �(�)e−i�zd�,

(19)

[
𝜕2

𝜕𝜂2
+ Ω2

A

(
1 + 2𝜖0 cos 𝜂

)
−

(ŝ − 𝛼 cos 𝜂)2

�̂�4
⟂

+
𝛼 cos 𝜂

�̂�2
⟂

]
Φ̂ = 0,
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For inertial layer contribution with |ŝ𝜂| ≫ 1 (often referred to as “external region”, 
denoted hereafter by the subscript E), Eq. (19) reduces to

i.e., Mathieu’s equation describing mode propagating in periodic systems, which can 
be solved noting its two-scale character,

with A(�) and B(�) being slowly varying with respect to periodic variations reflect-
ing typical |k∥| ≃ 1∕2qR0 structures of TAE modes. One then has

with Γl ≡ Ω2
A
− 1∕4 + �0Ω

2
A
 and Γu ≡ Ω2

A
− 1∕4 − �0Ω

2
A
 determining the lower and 

upper accumulational points of toroidicity-induced SAW continuum gap (Cheng 
et al. 1985), which then yields

The “±” sign should be chosen in the way, such that e∓
√
−ΓlΓu� decay as |�| → ∞ . 

Noting Eq. (21) and that � is the Fourier conjugate of z = −k∥qR0 , the cos(�∕2) - 
and sin(�∕2)-dependence of Φ̂E corresponds to radial mode localization at 
|nq − m| = 1∕2 ; i.e., the two neighboring poloidal harmonics m and m ± 1 couple 
between two adjacent mode rational surfaces, where (nq − m) = −(nq − m ± 1) 
and their respective dispersion relations are degenerated, forming the well-known 
“rabbit-ear” like mode structure. This feature of the radial TAE mode structure is 
important for the nonlinear mode coupling processes investigated in Sect. 3, due to 
the dominant contribution from the radially fast-varying fluctuation structures in 
the inertial layer. The SAW continuum with corrections due to toroidicity can be 
obtained from

which then yields the toroidicity-induced SAW continuum gap formation, inside 
which the discrete TAE can be excited with minimized continuum damping. A 
sketched continuum is shown in Fig. 1. The corresponding discrete Alfvén eigen-
mode, i.e., TAE, can then be excited by, e.g., EPs, inside this toroidicity-induced 
continuum gap, with minimum requirement on EP drive due to the minimized con-
tinuum damping (Chen 1988; Fu and Van Dam 1989). The TAE excitation mecha-
nism, however, is beyond the scope of the present review intended to focus on the 

(20)
[
𝜕2

𝜕𝜂2
+ Ω2

A

(
1 + 2𝜖0 cos 𝜂

)]
Φ̂E = 0,

(21)Φ̂E = A(𝜂) cos(𝜂∕2) + B(𝜂) sin(𝜂∕2),

(22)−B�(�) =
(
Ω2

A
− 1∕4 + �0Ω

2
A

)
A ≡ ΓlA,

(23)A�(�) =
(
Ω2

A
− 1∕4 − �0Ω

2
A

)
B ≡ ΓuB,

(24)Φ̂E(𝜂) = a
�√

−Γu cos
𝜂

2
±
√
Γl sin

𝜂

2

�
e∓

√
−ΓlΓu𝜂 .

(25)k∥qR0 =
1

2
±
√
ΓlΓu,
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nonlinear evolution of TAE with prescribed amplitude due to nonlinear wave–wave 
coupling, and, thus, will not be addressed here.

3  TAE saturation via nonlinear wave–wave coupling

Nonlinear mode coupling describes the TAE distortion due to interaction with other 
oscillations, and is expected to play crucial role in TAE nonlinear saturation in future 
reactors, where system size will be much larger than characteristic orbit size of EPs, 
and, thus, SAW instabilities with a broad spectrum in toroidal mode numbers will 
be simultaneously excited by EPs. To illustrate the richness of nonlinear mode cou-
plings of TAE and the strength of gyrokinetic theory in the investigation of under-
lying physics, three examples are presented, i.e., the nonlinear excitation of n = 0 
zonal field structure (ZFS) by TAE (Chen and Zonca 2012), which corresponds to 
single-n TAE nonlinear envelope modification via modulational instability; nonlin-
ear spectral evolution of TAE via ion-induced scattering (Hahm and Chen 1995; Qiu 
et al. 2019), which is expected to play crucial role in determining the broad toroidal 
mode number TAE saturated spectrum and ensuing EP transport; and cross-scale 
scattering and damping of meso-scale TAE by micro-scale DW (Chen et al. 2022), 
suggested by recent experiments as well as simulations showing improved thermal 
plasma confinement in the presence of significant amount of EPs (Citrin et al. 2013; 
Di Siena et al. 2019; Mazzi et al. 2022). All these three channels of wave–wave cou-
plings are shown to significantly influence the TAE nonlinear dynamics in different 
ways, and their relative importance and implications on TAE saturation in burning 
plasma parameter regimes are discussed. For the sake of simplicity and for consist-
ency with original literatures, different notations that are needed are defined only in 
the corresponding subsections.

3.1  ZFS generation by TAE

Zonal field structures correspond to toroidally and near poloidally symmetric pertur-
bations with n = 0 , and are, thus, linearly stable, since they cannot tap the expansion 

TAE

Fig. 1  Toroidicity-induced SAW continuum gap. The horizontal axis is radial position with rm denoting 
the q = m∕n rational surface, and vertical axis corresponds to �2 . The dashed and solid curves corre-
spond to the SAW continuum in the cylindrical and toroidal limits, respectively; and �U and �L denote 
the upper and lower accumulational points of toroidicity-induced continuum gap
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free energy associated with plasma profile nonuniformities. ZFS can be nonlinearly 
excited by DW turbulence including drift Alfvén waves (DAWs), and in this process, 
self-consistently scatter DW/DAW into the linearly stable short radial wavelength 
domain, leading to turbulence regulation and confinement improvement. ZFS excita-
tion was extensively studied in the DWs’ dynamics (Lin et al. 1998; Chen et al. 2000; 
Zonca et al. 2004; Diamond et al. 2005), observed in simulations with TAEs (Spong 
et al. 1994; Todo et al. 2010), while theoretical implications of ZFS to the nonlinear 
physics of TAE were discussed in Chen and Zonca (2012). The nonlinear excitation 
process can be described by the four-wave modulational instability, where upper/lower 
TAE sidebands due to ZFS modulation are generated, and the nonlinear dispersion 
relation for ZFS generation can be obtained by the coupled ZFS and TAE sidebands 
equations. It is noteworthy that both electrostatic zonal flow (ZF) and electromagnetic 
zonal magnetic field (zonal current, ZC) should be accounted for on the same footing 
for the proper understanding of the ZFS generation process (Zonca et al. 2015; Chen 
and Zonca 2012).

For the clarity of presentation, we focus on the modulational instability of TAE 
originally investigated in Ref. Chen and Zonca (2012). The further extensions, 
including the enhanced nonlinear coupling due to existence of “fine-radial-scale” 
structure ZFS (Qiu et al. 2017), and effects of resonant EPs in rendering the ZFS 
generation process into a forced driven process (Qiu et al. 2016) will be only briefly 
discussed at the end of this section to give the readers a more complete picture of the 
state-of-art research. Considering that TAE constitutes the pump wave Ω0(�0, k0) 
and its upper and lower sidebands Ω±(�±, k±) due to the radial modulation of ZFS 
ΩZ(�Z , kZ) , and assuming Ω± = ΩZ ± Ω0 as the wave vector/frequency matching 
conditions, the perturbations can be decomposed as

��0 = A0ei(n�−m0�−�0t)
∑

j
e−ij�Φ0(x − j),

��± = A±e±i(n�−m0�−�0t)ei(∫ kZdr−�Z t)
∑

j
e∓ij�

{

Φ0(x − j)
Φ∗

0(x − j)

}

,

��Z = AZei(∫ kZdr−�Z t).

Fig. 2  Frequency and wave-
number matching condition for 
ZFS generation by TAE. Here, 
the horizontal axis is the radial 
envelope wavenumber kr , and 
vertical axis is the frequency. 
The solid curve is the TAE 
dispersion relation, and ΔT is the 
frequency mismatch

kr
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The frequency and wavenumber matching conditions are already assumed, as illus-
trated in Fig. 2. We note that the expression of ��± indicates that the parallel mode 
structure ( Φ0 ) is not altered by the radial envelope modulation process, which occurs 
on a longer time scale than the formation of the parallel mode structure itself.

We start from ZFS generation. The first equation for zonal flow generation can be 
derived from nonlinear vorticity equation. Noting that ZFS have k∥Z = 0 , one obtains

Substituting ion responses of Ω0 and Ω± into RS, noting k
⟂
𝜌i ≲ O(1) , and averaging 

over fast varying radial scale, one obtains

Here, �̂�iZ ≡ 𝜒iZ∕(k
2
Z
𝜌2
i
) , with �iZ ≃ 1.6k2

Z
�2
i
q2∕

√
� corresponds to the neoclas-

sical inertial enhancement (Rosenbluth and Hinton 1998), �A = VA∕(qR0) and 
1 − �2

A
∕(4�2

0
) ∼ O(�) corresponds to the RS and MX non-cancelation due to toroi-

dicity, and finite coupling comes from radial envelope modulation ( ∝ k2
Z
�2
i
 ) by ZFS.

The zonal magnetic field equation can be derived from electron parallel force bal-
ance equation in stead of the quasi-neutrality condition

Noting that �E∥ ≡ −�l�� − c�t�A∥ , �u⟂ ≃ cb × ∇
⟂
��∕B , �B

⟂
= ∇ × �A∥b , one 

also obtains

where we have introduced the parallel induction potential ��Z = �0�A∥Z∕(ck∥0) for 
ZFS by analogy to the definition of ��k for TAE. In deriving Eq. (28), we also noted 
�± = �Z ± �0 as well as ideal MHD condition for TAEs.

The TAE sidebands equations can be derived from nonlinear vorticity equation. 
We will start with the upper sideband, while the derivation of the governing equations 
for the lower sideband is similar. Neglecting the curvature coupling term due to the 
|𝜔| ≫ 𝜔G ordering for TAEs, substituting the linear ion responses to Ω0 and ΩZ into 
Eq. (9), and noting k

⟂
𝜌i ≲ O(1) , we have

n0e
2

Ti

�
(1 − J2

Z
)
FM

n0

�
��Z −

�
s=e,i

�
q

�
JZ�d�H

(1)

Z

�

= −
i

�Z

�
k
�+k��=kZ

Λk�

k��

�
⟨e(JZJk� − Jk�� )�Lk��Hk��⟩ + c2

4�
k��2
⟂

�l��k��l��k��

�k��k��

�
.

(26)i𝜔Z�̂�iZ𝛿𝜙Z = −
c

B0

k𝜃0kZ

(
1 −

𝜔2
A

4𝜔2
0

)(
A0A− − A0∗A+

)
.

(27)�E∥ + b ⋅ �u
⟂
× �B

⟂
∕c = 0.

(28)��Z = −
i

�0

c

B0

kZk�0
(
A0A− + A0∗A+

)
,

(29)k2
⟂+

[
−k2

∥0
��+ +

�2
+

V2
A

��+

]
= −i

c

B0

kZk�0
(
k2
Z
− k2

⟂0

)�0

V2
A

��0

(
��Z − ��Z

)
.
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The other equation for Ω+ can be derived from the electron parallel force balance 
equation, Eq. (27), noting that k∥0 = k∥+ and ��0 ≃ ��0 for the pump TAE, and we 
obtain

Substituting Eq. (30) into (29), one then have

with �A+ being the Ω+ dispersion relation in the WKB limit. The Ω− equation can be 
derived similarly. Multiplying both sides of Eq. (31) by Φ0 and averaging over the 
fast radial scale, one has

with

ΛT ≡ √
−ΓlΓu as given by Eq. (25), and 𝛿Ŵ(𝜔, kZ) being the normalized potential 

energy.
The modulational dispersion relation for ZFS generation by TAE can then be 

derived from Eqs. (26), (28), and (32), and one obtains

which can be solved by expanding D(�±, kZ) as

with �Z = −i�Z and ΔT ≡ �T (kZ) − �0 being the frequency mismatch, as shown in 
Fig. 2, and one obtains

with the first term in the square brackets ( ∝ ΔT∕�0 ) corresponding to the contri-
bution from ZC, while the other term accounts for ZF contribution. It is readily 

(30)��+ − ��+ = i
c

B0

kZk�0
1

�0

��0

(
��Z − ��Z

)
.

(31)b+�A+��+ = 2
i

�0

c

B0

k�0kZb0��0

(
��Z − ��Z

)
,

(32)b±𝜖A±A± = 2
i

𝜔0

c

B0

k𝜃0kZb0

(
A0

A∗
0

)(
𝛿𝜙Z − 𝛿𝜓Z

)
,

(33)𝜖A± =
(
𝜔4
A
ΛT (𝜔)D(𝜔, kZ)∕𝜖0

)
𝜔=𝜔±

,

(34)D(𝜔, kZ) =ΛT (𝜔) − 𝛿Ŵ(𝜔, kZ),

(35)
2

(
c

B0

kZk𝜃0|A0|
)2

b0

bZ

[
1 − 𝜔2

A
∕(4𝜔2

0
)

�̂�iZ(𝜔Z∕𝜔0)

(
1

𝜖A+
−

1

𝜖A−

)
+

(
1

𝜖A+
+

1

𝜖A−

)]

= −1,

(36)D(�±, kZ) = ±
�D

��0

(
i�Z ∓ ΔT

)
,

(37)

𝛾2
Z
=

(
c

B0

kZk𝜃0|A0|
)2

b0

bZ

𝜖0

ΛT

4𝜔0∕𝜔
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0
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−
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seen that ZF contribution can be of higher order due to the neoclassical shield-
ing ( 1∕�̂�iZ ≪ 1 ) and RS-MX near cancelation by �2

0
∕�2

A
− 1∕4 ∼ O(�) . Thus, for 

ΔT∕𝜔0 > 0 , excitation via the ZC channel can be favored due to its much lower 
threshold condition on pump TAE amplitude A0 . On the other hand, for ΔT∕𝜔0 < 0 , 
ZF excitation is still possible, however, on quite stringent conditions; i.e., 
𝜔2
0
∕𝜔2

A
> 1∕4 , which corresponds to the pump TAE located in the upper half of the 

toroidicity-induced continuum gap (Qiu et al. 2013) and the pump TAE amplitude 
being large enough to overcome the threshold due to frequency mismatch. It thus 
suggests that ZFS may be dominated by ZC for ΔT∕𝜔0 > 0 due to the trapped-ion 
enhanced polarizability; thus, a kinetic treatment is necessary. On the other hand, if 
MHD model without trapped particle effects is adopted, the obtained ZFS excitation 
condition and corresponding ZFS level will be qualitatively incorrect. This discus-
sion illustrates the richness of the phenomenology underlying the nonlinear route 
to TAE saturation via wave–wave coupling and ZFS generation. Meanwhile, it also 
clarifies that the result of numerical simulations may depend on the adopted phys-
ics model. Furthermore, it is also worth noting that the “preferential channel via ZC 
excitation” is connected with the properties of the TAE of interest here, for which 
RS and MX nearly cancel each other. This argument cannot be straightforwardly 
generalized to other SAW instabilities; e.g., BAE with |k∥VA∕𝜔| ≪ 1 will predomi-
nantly excite ZF (Qiu et  al. 2016; Zhang and Lin 2013); while for reversed shear 
Alfvén eigenmode (RSAE) with frequency between TAE and BAE frequency range, 
depending on the specific |nqmin − m| value, both ZF and/or ZC excitation can be 
preferred (Wei et al. 2021).

For ZC excitation with ΔT∕𝜔0 > 0 and typical parameters of most unstable TAE 
with k

⟂
�E ∼ O(1) , noting |�Br0| ≃ |k�0�A∥0| ≃ |ck∥0k�0A0∕�0| , the threshold condi-

tion can be estimated from Eq. (37) as

which is consistent with the observed magnetic perturbations in the present-day 
tokamak experiments (Heidbrink et al. 2007), suggesting the ZFS excitation can be 
important for TAE saturation2. As the drive by pump TAE is significantly higher 
than the threshold, the ZFS growth rate is linearly proportional to pump TAE ampli-
tude, typical of spontaneous excitation processes by modulational instability. This 
feature identifies the parameter space region, where spontaneous excitation is domi-
nant, and clearly distinguishable from, e.g., the forced driven process with the ZFS 
growth rate determined by the instantaneous TAE growth rate, as discussed below 
(Biancalani et al. 2021; Qiu et al. 2016).

In the present analysis, only thermal plasma contribution to inertial layer is con-
sidered; consistent with EP contribution being negligible in the perpendicular scat-
tering process due to the k

⟂
𝜌E ≫ 1 ordering. The EP response, however, can play 

(38)
||||
�Br0

B0

||||
2

∼ O(10−8),

2 Interested readers may refer to Ref. Chen and Zonca (2012) for the detailed analysis of the threshold 
condition on ZFS excitation. The analysis is presented following Eq. (24) therein.
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an important role in the ideal region, as addressed in Ref. Qiu et al. (2016), where it 
was shown that, as the pump TAE is exponentially growing due to resonant EP con-
tribution, nonlinear EP response to ZFS contributes to the curvature-pressure term 
in the vorticity equation, dominating over the RS and MX in the uniform plasma 
limit. This EP enhanced coupling occurs in the exponentially growing stage of the 
pump TAE, with ZF excitation dominating over ZC contribution. In that case, the 
ZF excitation process corresponds to a “forced driven” process, with the ZF growth 
rate being twice of the instaneous TAE growth rate, as frequently observed in 
numerical simulations (Todo et al. 2010; Biancalani et al. 2021; Mazzi et al. 2022). 
The “forced driven” excitation process is thresholdless, and can occur when the 
TAE amplitude is still very small. On the other hand, the spontaneous excitation 
via modulational instability requires the nonlinear drive to overcome the threshold 
due to frequency mismatch, and is expected to occur as the TAE amplitude is large 
enough. It is also interesting to note that other nonlinear processes, e.g., nonlinear 
wave–particle trapping with the characteristic time scale ∝ 1∕�B ∝ 1∕

√�A0� , could 
occur and significantly affect the nonlinear dynamics of the TAE before ZFS genera-
tion via modulational instability takes place. More in-depth investigation are needed 
to illuminate these issues.

Another important finding on ZFS excitation by SAW instabilities is due to their 
weak/moderate ballooning features, corresponding to a smaller or comparable radial 
width of the parallel mode structure with respect to the distance between mode 
rational surfaces. As a result, the ZFS excited by TAE has a fine-scale radial struc-
ture (Qiu et al. 2016; Zhang and Lin 2013), in addition to the meso-scale radial enve-
lope corrugation, different from the well-known “meso”-scale ZF excitation in the 
typically moderately/strongly ballooning DWs, as shown in Fig. 3. This fine-scale 
radial structure may significantly enhance the ZFS generation rate and its impact on 
regulating SAW instabilities via the perpendicular scattering. For a comprehensive 
review of gyrokinetic theory of ZFS generation by TAE, interested readers may refer 
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Fig. 3  Cartoon for ZFS excitation by strongly ballooning DWs (left panel) v.s. weakly ballooning SAW 
instabilities (right panel). Here, the dashed curves correspond to the parallel mode structure Φ

0
(nq − m) 

for DWs (left panel) and SAW instabilities (right panel), respectively; while the solid blue curves in both 
panels correspond to 

∑
m �Φ

0
�2 . Thus, for DWs with 

∑
m
�Φ

0
�2 being almost independent of r (Zonca 

et al. 2004), radial envelope modulation leads to meso-scale ZF excitation; while for SAW instabilities, 
fine-scale structure ZFS is excited
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to Ref. Qiu et al. (2017), where different physics are clarified; e.g., forced driven vs. 
spontaneous excitation, meso-scale corrugation vs. fine-scale structure.

3.2  TAE saturation due to ion‑induced scattering

Nonlinear ion-induced scattering is another potentially important channel for SAW 
instability nonlinear saturation, corresponding to parametric decay into another 
SAW and a heavily ion Landau damped ion quasi-mode (Sagdeev and Galeev 1969). 
The role of this process in TAE saturation was originally explored in Ref. Hahm 
and Chen (1995). It is of particular interest, since TAEs lie between two neigh-
boring mode rational surfaces and are characterized by finite parallel wavenumber 
|k∥| ≃ 1∕(2qR0) , as discussed in Sect. 2.3. Thus, two TAEs with close frequencies 
may propagate in the opposite direction along the equilibrium magnetic field. As 
two “counter-propagating” TAEs couple, a low-frequency mode with finite paral-
lel wavenumber can be generated, i.e., an ion sound mode, which can be heavily 
ion Landau damped, leading to significant consequence on TAE nonlinear dynam-
ics. Compared to ZFS generation investigated in the previous section as a self-inter-
action process of a single-n TAE, ion-induced scattering process is expected to be 
of particular importance in reactor-scale machines with system size being much 
larger than the characteristic orbit width of fusion alpha particles, where TAEs with 
multiple toroidal mode numbers and comparable linear growth rates could coexist 
(Pinches et  al. 2015; Chen and Zonca 2016; Wang et  al. 2018; Ren et  al. 2020). 
Thus, the ion-induced scattering process can determine the saturated spectrum of 
TAEs and, consequently, the alpha particle transport rate. Meanwhile, the Landau 
damping of the nonlinearly generated ion quasi-mode will indirectly transfer the 
fusion alpha particle power to heat deuterium and tritium ions, providing a poten-
tial effective alpha-channeling mechanism (Hahm 2015; Fisch and Herrmann 1994; 
Fisch and Rax 1992; Qiu et al. 2018, 2019; Wei et al. 2022).

The TAE saturation via ion-induced scattering was originally investigated in Ref. 
Hahm and Chen (1995) using drift kinetic theory, which was generalized to fusion 
relevant short-wavelength regime with k2

⟂
𝜌2
i
≫ |𝜔∕Ωci| in Ref. Qiu et  al. (2019). 

Correspondingly, the dominant nonlinear scattering mechanism is qualitatively 
replaced by the perpendicular scattering (Chen and Zonca 2011), and the saturation 
level is consequently reduced by one order of magnitude. However, the conceptual 
workflow of Ref. Qiu et al. (2019) is similar to that of Ref. Hahm and Chen (1995). 
In a single scattering process, a pump TAE decays into a counter-propagating side-
band TAE and an ion quasi-mode, and the parametric decay process can occur spon-
taneously as the sideband TAE frequency is lower than that of the pump wave, as 
shown in Fig. 4. This process may lead to TAE saturation as the sideband TAE is 
damped due to the enhanced coupling to lower accumulational point of SAW con-
tinuum. As there are many TAEs coexisting, each TAE may simultaneously inter-
act with many TAEs; in some processes, it may act as the pump wave, while in 
some other processes, it acts as the decay wave. To analyze this spectral cascading 
process, the interaction of a representative “test” TAE with a “background” TAE 
is studied; and the equation for the test TAE nonlinear evolution due to interaction 



 Reviews of Modern Plasma Physics (2023) 7:28

1 3

28 Page 18 of 36

with the background TAE and the ion quasi-mode is derived. In the case of multiple 
background TAEs simultaneously interacting with the test TAE, one then obtains 
the equation describing TAE spectral evolution.

Thus, with the linear instability spectrum determined by the equilibrium pro-
files, the nonlinear process gives the nonlinear saturation spectrum, which eventu-
ally determines the electromagnetic fluctuation-induced alpha particle transport, as 
sketched in Fig. 5.

3.2.1  Parametric decay instability

Starting from the nonlinear interaction of the test TAE Ω0(�0, k0) with the counter-
propagating background TAE Ω1(�1, k1) , during which the ion sound mode (ISM) 
Ωs(�s, ks) fluctuation is generated, our analysis involves the coupled equations of 
ISM generation and background TAE evolution. Considering the |k∥sve| ≫ |𝜔s|, |𝜔ds| 
ordering, and assuming electrostatic ISM, the linear thermal plasma response to 
ISM can be derived as

Fig. 4  Cartoon of TAE paramet-
ric decay in the low-� limit
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Adopting the linear electron response to TAEs derived in Eq. (10), the nonlinear 
gyrokinetic equation for electron response to ISW becomes

with Λk∗
1

k0
≡ (c∕B0)b̂ ⋅ �� × ��∗ . Noting that �1∗ ≃ −�0 , k∥1∗ ≃ k∥0 and consequently 

that k∥s ≃ 2k∥0 , one has

Nonlinear ion response to Ωs can be derived noting the 𝜔s ∼ k∥sv∥ ≫ 𝜔ds ordering, 
and one has

It is noteworthy that �s ∼ k∥sv∥ , which is crucial for the resonant wave–particle 
interactions that determines the scattering process. Substituting Eqs. (41) and (43) 
into quasi-neutrality condition, one obtains the nonlinear equation for Ωs generation

with �s ≡ 1 + � + �Γs�sZ(�s) being the ISM linear dispersion relation, 
�s ≡ �s∕(k∥svit) , Z(�s) being the well-known plasma dispersion function defined as

the nonlinear coupling coefficient �1 = 1 + �F1(1 + �sZ(�s)) and F1 ≡ ⟨J0J1JsFM∕n0⟩
.

The nonlinear particle response to the test TAE, can be derived as
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In deriving �H(2)

0e
 and �H(2)

0i
 , the nonlinear particle responses to Ωs are also included 

due to the fact that it may be heavily ion Landau damped. One then obtains

with �(2)

0
≡ (Λ

k∗
1

k0
)2
[
−1 + �F2(1 + �sZ(�s)

]|��1|2∕�2
0
 , D0 = i�Λ

k∗
1

k0
F1[1 + �sZ(�s)]∕�0 , 

and F2 = ⟨J2
0
J2
1
FM∕n0⟩.

The other equation of Ω0 can be derived from nonlinear gyrokinetic vorticity equa-
tion as

with

From Eqs. (47), (48), and (44), one obtains the following nonlinear eigenmode equa-
tion of the test TAE Ω0 due to interaction with the background TAE Ω1:

with �2 ≡ �1 − �s . Multiplying both sides of Eq. (49) with Φ∗
0
 , and averaging over 

the fast radial scale of 1∕(nsq�) ≪ 𝛿 ≪ 1∕(n0q
�) , one then obtains

with 𝜖A0 being the Ω0 linear eigenmode dispersion relation obtained from 
𝜖A0 ≡ ∫ |Φ0|2𝜖A0dr∕ ∫ |Φ0|2dr , Δ0 , �0 and Ĉ0 corresponding, respectively, to non-
linear frequency shift, ion Compton scattering and shielded-ion scattering. Their 
specific expressions can be found in Ref. Qiu et  al. (2019). Equation (50) can be 
understood as the parametric dispersion relation for ��1 decaying into ��0 and ��s 
and the condition for the nonlinear process to occur can be determined for different 
parameter regimes that crucially enter through the properties of ��s.
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For typical tokamak parameters with � ∼ O(1) , Ωs is heavily Landau damped 
with |�s,I| comparable to |�s,R| , with subscripts “R” and “I” denoting real and imagi-
nary parts. One then has from the imaginary part of Eq. (50)

with Ĉ0 and �0 corresponding, respectively, to the shielded-ion and nonlin-
ear ion Compton scatterings. Since both Ĉ0 and �0 are positive definite, and that 
�s,I =

√
��Γs�s exp(−�

2
s
) with �s ≡ (�0 − �1)∕|k∥svit| , one then has, 𝛾 > 0 corre-

sponds to 𝜔1 > 𝜔0 , i.e., the parametric decay spontaneously occur as the pump TAE 
frequency is higher than the sideband TAE. Thus, the above discussed parametric 
decay process will lead to power transfer from higher frequency part of the spectrum 
to the lower frequency part (Sagdeev and Galeev 1969; Hahm and Chen 1995), as 
shown in Fig. 5. The sideband TAE, with lower frequency, can be saturated due to 
enhanced damping due to coupling to the lower part of the SAW continuum.

3.2.2  Spectral evolution

The spontaneous power transfer from ��1 to ��0 investigated above can lead to TAE 
scattering to the lower frequency fluctuation spectrum. In burning tokamak plasma 
of reactor scale, where multiple TAEs coexist, characterized by comparable frequen-
cies and growth rates, each TAE can interact with the “bath” of background TAEs, 
and this process can be described by an equation for spectral evolution derived from 
Eq. (50). Denoting the generic test TAE with subscript k and background TAE with 
subscript k1 , and summing over all background TAEs, one obtains

Multiplying Eq. (52) with A∗
k
 , and taking the imaginary part, we then obtain the 

equation describing TAE nonlinear evolution due to interaction with the bath of 
TAEs

which can be rewritten as

with I� =
∑

k Ik�(� − �k) being the continuum version of Ik , Ik ≡ |∇
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being the highest frequency for TAE to be linearly unstable, and �L being the 
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lowest frequency of TAE spectrum, which is, in fact, linearly stable, and nonlinearly 
excited in the downward cascading process, as shown by Fig. 5. The integration ker-
nel V(�,��) is given by

The saturated TAE spectrum can thus be derived from the fixed point solution of Eq. 
(54) by taking �tI� = 0 . The obtained integral equation can be reduced to a differen-
tial equation noting that I�′ varies in �′ much slower than V(�,��) , with the former 
varying on the scale of |�M − �L| ≃ �0�A , while the latter on the scale of |vit∕(qR0)| 
determined by �s,I . Thus, noting I�� = I� − �s��I� , and |𝜔M − 𝜔L| ∼ 𝜖0𝜔A ≫ 𝜔s for 
the ion-induced scattering process to be important, as shown in Fig. 4, one has

with

In deriving Eqs. (57) and (58), it is noted that V(�s) ∝ �s,I is odd function of �s . 
Equation (56) is the desired differential equation for the saturated spectrum, and 
gives

which, after integrating over the fluctuation population zone, yields the overall TAE 
intensity

with �eff ≡ 1 − �M∕�L ∼ O(�0) . Noting that |�Br|2 ≃ |k��A∥|2 = |ck�k∥∕(�kr)|2ISat , 
one then obtains the saturation level of the magnetic fluctuations
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which then yields, for typical parameters in burning plasma regime, the scaling law 
for the magnetic perturbations

Here, Am is the mass ratio of thermal ion to proton, TE is the characteristic tempera-
ture of EPs, and n0 is the thermal plasma density. For typical parameters of reac-
tors, e.g., ITER (Tomabechi et al. 1991) or CFETR (Wan et al. 2017), the expected 
magnetic fluctuation level is |�Br∕B0|2 ∼ O(10−8 ∼ 10−7) . It is noteworthy that the 
obtained TAE magnetic perturbation depends sensitively on the local inverse aspect 
ratio � , which is, however, not surprising, since TAE exist due to toroidicity ( ∝ � ) 
induced SAW continuum gap and the saturation process, determined by ion-induced 
scattering, is the TAE downward spectrum cascading (by ∼ ��A ) that leads to 
enhanced coupling to SAW continuum.

3.2.3  EP transport

The TAE-induced fusion alpha particle transport can be obtained from nonlinear 
gyrokinetic transport theory (Chen 1999; Chen et al. 2021), with the expected mag-
netic fluctuation level given by Eq. (62). Here, taking circulating EP as an example, 
whose transport is mainly caused by resonance overlapping induced EP orbit sto-
chasticity (Wang et al. 2019), the quasilinear transport equation for EP equilibrium 
distribution function evolution is Chen (1999), Brizard (1995)

with k = kZ r̂ = �� + ��� denoting the bounce averaged phase space zonal structure 
modulation (Falessi and Zonca 2019) in the radial direction. Meanwhile, the per-
turbed linear EP distribution function for well circulating EPs can be given by Qiu 
et al. (2016), Fu and Cheng (1992)

with QF0E ≡ (𝜔𝜕E − �̂�∗)F0E , F0E being equilibrium EP distribution function, 
�̂�k = k

⟂
v̂d∕𝜔tr denoting finite drift orbit width effects, and �0r ≡ tan−1(kr∕k�) . Sub-

stituting Eq. (64) into Eq. (63), one obtains the equation for the slow evolution of the 
equilibrium EP distribution function
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(Ĉ0∕|𝜖s|2 + 𝜒0)Ω
2
ci
𝜌2
it

,

(62)

||||
�Br

B0

||||
2

∼
mi

8��3∕2e2�0

�L

�T

T2
E

T2
i

q2n−1
0
�6
0
R−2
0

∼1.2 × 1015Amq
2n−1

0
�6
0
R−2
0

T2
E

T2
i

�L

�T

.

(63)�tF0E = −
∑

k=��+���

Λk�

k��
Jk��Lk��Hk�� ,

(64)𝛿HkE = −
e

m
QkF0EJk𝛿Lk

∑
l,p

Jl(�̂�k)Jp(�̂�k)e
−i(l−p)(𝜃−𝜃0r)

𝜔k − k∥v∥ + l𝜔tr

,



 Reviews of Modern Plasma Physics (2023) 7:28

1 3

28 Page 24 of 36

with the �∕(�r) from the radial derivative due to kZ = −i�r . Integrating over veloc-
ity space, noting the expression of �∗ and non-vanishing contribution from resonant 
particles (Chen 1999), one then obtains

with n0E being the equilibrium EP density, the resonant circulating EP radial diffu-
sion rate given as

and |�VEr,l| ≡ ck�Jk|��k|l�tr∕(B0�k) being the resonant EP electric-field drift veloc-
ity. We note the above diffusion rate can be applied to well circulating EP transport 
by TAE, as the TAE saturation level is given. Substituting the saturated TAE fluctua-
tion given by Eq. (61) into Eq. (66), and noting again |��|2 = �2�B2

r
∕(c2k2

�
k2
∥
) , one 

obtains

corresponding to the resonant EP transit time �−1
tr,Res

 being the wave–particle de-cor-
relation time. The scaling law for TAE induced circulating EP diffusion rate can 
then be derived as

For typical parameters of a reactor-size tokamak, the TAE-induced resonant circu-
lating EP diffusion rate can be estimated as DRes ∼ 1 − 10 m2∕s for � ∼ 1∕6 − 1∕3.

3.2.4  Open questions

The present analysis of TAE saturation via nonlinear ion-induced scattering extends 
the previous work based on drift kinetic theory (Hahm and Chen 1995), and gives a 
more quantitatively accurate estimation of the TAE saturation level and, thus, of the 
fusion alpha particle transport rate. For a predictive ability of the impact on fusion 
plasma performance, besides validation of the present analytical results using first-
principle-based large-scale simulations, there are several factors which remain to be 
explored.
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First, the present analysis neglects the nonuniformity of bulk plasma, and focuses 
on the scattering off ion sound mode. However, in the nonlinear parametric decay of 
kinetic Alfvén wave (KAW), it has been demonstrated that bulk plasma nonuniform-
ity may significantly affect the nonlinear process, by enhancing the ion Compton 
scattering rate by an order of magnitude, since |𝜔∗i| ≫ |k∥svit| . Furthermore, plasma 
nonuniformity qualitatively breaks the parity of the decay KAW spectrum and may 
have significant implications on finite momentum transport (Chen et al. 2022). As 
the TAE cascading process of interest in the present review has a one-to-one cor-
respondence to the KAW parametric decay in slab geometry, we expect that thermal 
plasma nonuniformity may also have an important consequence on the TAE satura-
tion; this aspect will be further explored in a separate work (Cheng et al. 2023).

Second, the nonlinearly generated ion quasi-mode in the present analysis, or drift 
sound wave as bulk plasma nonuniformity is accounted for, are both heavily ion 
Landau damped. Thus, they provide a channel for nonlinearly transfer the alpha par-
ticle power to fuel deuterium–tritium ions, as originally proposed and investigated 
in Ref. Hahm (2015) based on the results from Ref. Hahm and Chen (1995). Deriv-
ing the ion heating power from the present results and evaluating the implications 
to sustained burning may provide elements of crucial importance for reactors with 
high-temperature plasma and thus low collisonality.

The third point to be explored is alpha particle global transport and the steady-
state alpha particle as well as bulk plasma profiles in reactor relevant conditions. 
In fact, Eq. (68) provides an estimate of local transport. However, the feedbacks of 
alpha particle-driven instabilities on bulk plasmas and energetic particles themselves 
via different channels (Di Siena et  al. 2019; Citrin et  al. 2013; Chen et  al. 2023) 
should be properly taken into account.

3.3  TAE scattering and damping by DW turbulence

The last nonlinear process to be discussed is TAE scattering by DW turbulence. 
Microscopic DW turbulence driven by expansion free energy associated with 
plasma nonuniformities is another significant low frequency fluctuation in mag-
netically confined plasmas, and is crucial for thermal plasma transport (Horton 
1999). DWs typically have frequencies comparable to plasma diamagnetic fre-
quency, and perpendicular wavelength in the range of thermal ion Larmor radius 
or even shorter, when electron dynamics plays an important role. With differ-
ent free energy sources, DWs may be driven as ion temperature gradient mode, 
trapped electron modes, etc., and be predominant in different frequency range of 
the spectrum. Effects of DWs on EP transport were investigated in Refs. Zhang 
et al. (2008), Feng et al. (2013), suggesting that the direct EP transport by DWs 
can be negligible due to the scale separation between EP orbit size and typical 
DW perpendicular wavelength. This result is consistent with theoretical expecta-
tions and should be considered a well-assessed fact, despite some discussions of 
about a decade ago, due to the anomaly in EP confinement that was reported by 
AUG (Günter et  al. 2007), JT-60U (Suzuki et  al. 2008), and DIII-D (Heidbrink 
et al. 2009). In fact, it was demonstrated that the observed behavior was due to 
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ITG driven diffusion of EP with low relative energy E w.r.t. the core thermal 
energy Tc . For E∕Tc ≳ 10 , the EP diffusivity is typically an order of magnitude 
less than that of core plasma ions (Zweben et al. 2000), and, thus, “EP transport 
by microturbulence in reactor relevant conditions and above the critical energy 
(at which plasma ions and electrons are heated at equal rates by EPs) is negli-
gible and EP turbulent diffusivities have intrinsic interest mostly in the present-
day experiments with low characteristic values of E/Tc.” (Chen and Zonca 2016). 
On the other hand, EP may influence the DWs stability via many mechanisms, 
such as thermal ion dilution (Tardini et  al. 2007), modification of curvature by 
increased pressure gradient (Bourdelle et al. 2005), etc. For the reference of EP 
stabilization of DW turbulence, interested readers may refer to a recent review by 
Citrin and Mantica (2023).

With two fundamental fluctuations groups coexisting, DWs and SAWs, or more 
precisely drift Alfvén waves (DAWs), characterized by distinct spatial and temporal 
scales, and dominating transport in different energy ranges, it is natural to consider 
their mutual effects. The nonlinear interactions of DWs and SAW instabilities via 
ZFS have been proposed theoretically (Chen and Zonca 2016, 2012; Qiu et al. 2016; 
Chen et al. 2001; Qiu et al. 2016; Zonca et al. 2015) and investigated numerically 
(Todo et  al. 2010; Spong et  al. 1994; Zhang and Lin 2013), and were suggested 
as possible interpretation of experimental observation of confinement improvement 
with large fraction of EPs (Citrin et al. 2013; Di Siena et al. 2019, 2021; Ishizawa 
et al. 2021; Mazzi et al. 2022). This “indirect channel” remains to be investigated 
in more detail due to the multiple facets consisting of complex nonlinear behav-
iors. It was proposed, in our recent work, that the DWs and SAW instabilities can 
also mutually interact via direct nonlinear mode coupling processes, which can lead 
to, e.g., suppression of TAE due to the scattering by finite-amplitude electron DW 
(eDW) (Chen et  al. 2022). The “inverse” process, on the other hand, shows that 
finite-amplitude TAE has negligible effects on the eDW stability (Chen et al. 2023). 
This paradigm, proposed using TAE and eDW as example, can be generalized to 
include other effects such as trapped electron contribution. Here, we will briefly 
review the TAE scattering by finite-amplitude eDW.

The TAE-eDW scattering process can be understood as the test TAE “linear” sta-
bility in the presence of finite-amplitude eDW, and can be considered as a two-step 
process. In the first process, short wavelength upper and lower kinetic Alfvén wave 
(KAW) sidebands are generated, with frequency comparable to TAE and high toroi-
dal mode number determined by eDW. In the second step, KAW then couple with 
eDW and feed back on the test TAE, modifying its dispersive properties and stability, 
as shown in Fig. 6. The damping of the mode-converted upper and lower KAWs, as 
shown in Fig. 7, then leads to the damping of the test TAE. Note that Fig. 7 does not 
report the SAW continuum for n± , which would be characterized by the toroidicity-
induced frequency gap, analogous to that of the test TAE mode. What is qualitatively 
shown in Fig. 7 is the frequency of the lower/upper KAW spectrum, assuming fixed 
k
⟂±�

2
i
∼ O(1) . At such short wavelengths, the concept of continuum itself is lost, and 

the continuous curves of Fig. 7 actually represent the geometric loci satisfying the side-
band KAW dispersion relation. Consistent with this, the gap in the “KAW continuum” 
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occurs when counter-propagating KAW with opposite k∥ have degenerate frequencies, 
typically higher than the well-known TAE gap frequency, which is not shown here.

3.3.1  KAW generation

We start from the upper sideband Ω+ generation channel due to test TAE Ω0 and eDW 
Ωs coupling, noting that the analysis for Ω− is similar. The linear and nonlinear particle 
responses to Ω+ can be derived noting the |k∥vte| ≫ |𝜔+| ≫ |k∥vti| ordering, and one 
has to the leading order

The nonlinear ion response to Ω+ can be derived as
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Fig. 6  Cartoon of the two-step nonlinear process of TAE scattering by eDW. The first process corre-
sponds to short-scale KAW sidebands generation due to eDW scattering, while the second corresponds 
to their feedback on the test TAE

Fig. 7  Cartoon of upper and lower KAWs generation due to TAE-eDW scattering, and coupling with the 
“KAW continuum”, which is distinct from the SAW continuum for the toroidal mode numbers n± . Here, 
the red box indicates the test TAE, the wavy curves indicate the upper and lower KAWs due to TAE-
eDW coupling, and the solid curve is the sketched “KAW continuum” with high toroidal mode number 
n± due to TAE and eDW coupling
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having noted the linear ion response to Ω0 and Ωs . On the other hand, nonlinear 
electron contribution to upper KAW can be neglected, since Ωs is predominantly 
electrostatic. Substituting the particle responses into quasi-neutrality condition, we 
then have

where �∗k , derived in Eq. (13), denotes the deviation from ideal MHD condition due 
to plasma nonuniformity and/or FLR effects, while D+ = �(�∗i∕�)sF+∕(1 − �∗e∕�)+ 
denotes nonlinear contribution with F+ = ⟨J0JsJ+FM∕n0⟩v . The other equation for 
Ω+ , can be derived from nonlinear vorticity equation, by substituting the linear par-
ticle responses to Ω0 and Ωs into the Reynolds stress term

with �+ = �[Γs − Γ0 + (�∗i∕�)s(F+ − Γs)].
Combining Eqs. (72) and (73), one obtains, the equation for upper KAW genera-

tion due to Ω0 and Ωs coupling

where �A+ is the linear SAW/KAW operator given by Eq. (16) with curvature cou-
pling term neglected due to high TAE frequency range, and

The generation of lower KAW Ω− due to Ω∗
0
 and Ωs coupling can be derived simi-

larly as

with

3.3.2  Feedback to Ä
0
 and consequence on TAE stability

The effect of eDW scattering on the test TAE can be derived by accounting for feed-
back of Ω± via nonlinear coupling to Ωs . Here, we only discuss the contribution to Ω0 
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by nonlinear coupling between Ω+ and Ω∗
s
 , noting that the contribution due to Ω− and 

Ωs coupling can be derived similarly.
The nonlinear ion response to Ω0 can be derived as

with the second term corresponding to �H(2)

+i
 contribution. The nonlinear electron 

response to Ω0 is negligible. The quasi-neutrality condition then yields

with �0 = −(Λs
0
∕2�0)

2�(�∗i∕�)sF2 , F2 ≡ ⟨J2
0
J2
s
FM∕n0⟩v mainly contributing to non-

linear frequency shift, while D+
0
= �(�∗i∕�)sF+∕(1 − �∗e∕�)0.

The other equation for Ω0 can then be derived from nonlinear vorticity equation, as

Substituting Eq. (79) into (80), and neglecting the nonlinear frequency shift while 
focusing on the stability of the test TAE due to scattering by background eDW, one 
then obtains

Substituting ��+ from Eq. (74) into (81), one obtains

which can be solved noting the spatial scale separation between ��0 and ��s , 
as sketched in Fig.  8. Thus, the nonlinear coupling processes occur in in a nar-
row region of the eDW localization. Expanding 𝛿𝜙0 = Φ0(x0) + Φ̃0(xs, x0) 
with x0 = (R∕n0, r∕m0, 1∕n0q

�) , xs = (R∕ns, r∕ms, 1∕nsq
�) and 

|Φ̃0|∕|Φ0| ∼ O(|e𝛿𝜙s∕Te|2) ≪ 1 , Eq. (82) becomes after averaging over xs scale

with ⟨⋯⟩s denoting averaging over eDW scales
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Equation (83) can then be solved noting that the absorption due to Im (1∕�A+) 
can be expressed as Im (1∕�A+) = −��(�A+) ≃ −(�∕4�∗+)�(z

2
s
− z2

+
) with 

z2
+
= (1 − �∗i∕�)+(1 − Γ+)(�∕�A)

2
+
∕(b+�∗+) . This implies that KAW are absorbed 

locally. Thus, expanding �+ with respect to bs noting the two spatial scale separation 
k2
⟂+

≃ k2
⟂s

+ 2krskr0 , and properly reinstating the lower KAW contribution, one obtains

with � = �+ + �− , and

Equation (85) can be solved perturbatively in ballooning space, � . Letting Φ̂0(𝜂) 
being the lowest order linear eigenmode satisfying b̂0𝜖A0(𝜂, 𝜕𝜂 ,𝜔0)Φ̂0(𝜂) = 0 , and 
expanding �0 = �0,R + i�AD with �AD being the eDW scattering-induced test TAE 
damping rate, Eq. (85) then gives

with ⟨⋯⟩� ≡ ∫ ∞
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(⋯)d� . Noting Eq. (24) for TAE, we obtain
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Fig. 8  Cartoon of scale separa-
tion between TAE and eDW, 
with the dashed curve being the 
sketched parallel mode structure 
of a TAE poloidal harmonic, 
while the solid curve being the 
parallel mode structure of eDW 
with much smaller radial width 
than that of the TAE
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The eDW scattering-induced TAE damping rate is comparable to the TAE growth 
rate due to EP drive (Chen and Zonca 2016), and can significantly reduce or com-
pletely suppress TAE fluctuations with sufficiently large eDW intensity. This may 
imply improved fusion alpha particle confinement in the existence of microturbu-
lence, and, consequently, enhanced thermal plasma heating.

As the nonlinearly generated KAW quasi-modes are dissipated by predominantly 
electron Landau damping (Hasegawa and Chen 1976; Chen et al. 2021), the result-
ing electron heating rate can be estimated as

which, for typical parameters, can be comparable to the electron heating by alpha 
particle slowing down, and potentially, contribute significantly to the “anomalous” 
electron heating in burning plasmas (Chen et al. 2022).

The present analysis, using TAE scattering by ambient eDW as an example to 
demonstrate the novel physics of direct cross-scale interaction among meso/macro-
scale SAW instabilities and micro-scale DW turbulence, and the obtained results are 
expected to be, at least qualitatively, applicable to other Alfvén eigenmodes, such 
as reversed shear Alfvén eigenmode (RSAE), interacting with various branches of 
DWs, including the physics of finite temperature gradients or trapped electrons. 
These applications to more realistic scenarios can be investigated for a more detailed 
understanding of the SAW stabilities and fusion alpha particle confinement in 
reactors.

4  Summary

Using toroidal Alfvén eigenmode (TAE) nonlinear saturation due to mode–mode 
coupling as example, we show that nonlinear gyrokinetic theory is not only efficient, 
but also necessary to investigate various crucial physics in the nonlinear mode cou-
pling processes of SAW instabilities. This necessity occurs, since SAW instabilities 
often have a small-scale structure associated with the SAW continuum related to 
equilibrium magnetic geometry and plasma nonuniformity of magnetically confined 
fusion devices. The nonlinear coupling is, thus, dominated through perpendicular 
scattering (Chen and Zonca 2011).

Three main processes developed in the past decade are briefly reviewed, i.e., the 
zonal field structure generation by TAE (Chen and Zonca 2012), TAE spectral cas-
cading due to ion-induced scattering (Hahm and Chen 1995; Qiu et al. 2019), and 
cross-scale interaction with electron drift wave (eDW) via direct nonlinear interac-
tion (Chen et  al. 2022). The fundamental physics involved in the three processes 
are reviewed in a pedagogical way, parameter regimes for them to occur and domi-
nate are discussed, and state-of-art developments as well as open questions are 
introduced.

While there are still many questions open for further investigation, the ZFS gen-
eration corresponds to the nonlinear radial envelope modulation of a single-n TAE, 
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and a threshold on TAE amplitude is required for this process to occur. The ion-
induced scattering, on the other hand, is expected to occur and dominate when many 
TAEs simultaneously exist, as typically happens in a reactor-scale tokamak. It may 
significantly affect the saturated spectrum and thus, the EP confinement level, as 
well as fuel-ion heating via the Landau damping of the quasi-mode. The scattering 
by ambient DWs, on the other hand, impacts the “linear” stability of TAE in the 
presence of finite-amplitude micro-scale DWs, and determines the increased thresh-
old on EP profile gradients for the TAE to be unstable. These understandings present 
a road map for a comprehensive and quantitative study of SAW instability spectrum 
in fusion reactors, and provide guidance for large-scale simulations using realistic 
geometry and plasma parameters.

It is obvious that the nonlinear mode coupling processes reviewed in the present 
work, and the self-consistent EP transport should be considered on the same foot-
ing for the comprehensive understanding of nonlinear dynamics and self-organiza-
tion in burning fusion plasmas. There exists a general theoretical framework that 
addresses the former wave–wave coupling processes, which can be described by the 
nonlinear radial envelope equation in the form of a nonlinear Schrödinger equation. 
Meanwhile, the latter nonlinear wave–particle interactions and ensuing EP transport 
may be described by the Dyson–Schrödinger model. Together, they provide a gen-
eral theoretical framework for SAW nonlinear dynamics and EP transport in burning 
plasmas (Zonca et al. 2015; Chen and Zonca 2016; Zonca et al. 2021; Falessi and 
Zonca 2019; Falessi et al. 2023).
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