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Abstract 

Recent electric micromobility solutions can represent a sustainable transport alternative in urban environments. Indeed, these can 
be adopted as a substitute of car, especially for specific distance classes, as well as they can increase accessibility to transit services. 
Aiming to investigate the potential demand that can be moved from private cars to environment-friendly micromobility modes 
(e.g., e-scooters and e-bikes), a methodology based on exploiting data by probe vehicles is presented. To test its goodness, it is 
applied to the city of Rome (Italy) with challenging results. 
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1. Introduction 

In recent years, the concept of sustainability of urban environments has become central (Eltis, 2019). Particularly, 
increasing attention is paid to micromobility systems such as bike-sharing and e-scooter-sharing, seen as favorable 
modes of transport due to emission mitigation, congestion reduction and improvements to users’ health and lifestyle 
(Zhang and Zhang, 2018; Caggiani et al., 2020). Furthermore, they can provide flexible options to solve first and last-
mile travel problems.  
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However, although current trends suggest the growth of micromobility, there is little research investigating how 
cities can plan and implement these systems in a way that best suits their unique transportation, weather, and 
demographic markets. Most of the existing literature focuses on user surveys and system-use data analysis (DeMaio, 
2009; Fishman et al., 2013; Lin et al., 2011), identifying features that can influence micromobility adoption. Only a 
few of them proposed methods for investigating new markets. 

Existing studies are usually qualitative or based on survey data from which general trends in travel behavior and 
usage among a self-selected sample can be identified. For example, recent studies on bike sharing based on revealed 
preferences quantify the effects of environmental conditions and population demographics (Lazarus et al., 2020; 
Moran et al., 2020; Parkes et al., 2013). Others showed that demographic, built environment and transport-
infrastructure statistics have a significant influence on shared bikes reallocation (Zhao et al., 2019). Additional studies 
investigated the factors affecting the bikeshare adoption using historical trip data (Noland et al., 2016; An et al., 2019) 
and demonstrating as also the weather has significant effects on bikeshare usage (El-Assi et al., 2015; Younes et al., 
2020). 

About the adoption of micromobility with respect to other modes, in particular with respect to private car (Fishman 
et al., 2015; Younes et al., 2019), research mainly tackled to the impact of travel times and costs, finding that the fuel 
price had a positive and significant impact on micromobility (Hamilton and Wichman, 2018; Wang and Zhou, 2017; 
He et al., 2020).  

The use of micromobility to serve short-distance trips has showed great potential to help alleviate traffic congestion 
by reducing many trips made by private cars. From the report of Porsche Consulting (2019) on sharing mobility, e-
scooters are mostly adopted for distances up to 3 km, while e-bikes up to 6 km. The National Household Travel Survey 
(NHTS) reported that nearly 60% of vehicle trips have less than six miles traveling distances (FHWA, 2017), while 
in Europe 50% of all car trips are shorter than 5 km. The convenience and affordability of micromobility has thus the 
potential to capture these short trips. Therefore, in this context, this study aims to fill a gap in the literature by 
empirically determining the potential demand that can be moved from private transport to (electric) micromobility 
services (e-bikes and e-scooters).  

Usually, the potential for modal shift has been based on collecting revealed-preference household questionnaires. 
However, the ongoing development of telematics to automate and facilitate tracing data collection at microscopic level 
can open new challenges. For example, data by probe vehicles (i.e., floating car data – FCD) have been vastly used in 
literature for travel time and travel demand estimation with specific regard to private transport (Nigro et al., 2018; 
Cipriani et al., 2014; Eisenman and List, 2004; Ásmundsdóttir, 2008; Ásmundsdóttir et al., 2010).  

The study aims to investigate urban private transport through floating car data (FCD) in order to identify the trip 
characteristics and infer which trips can be potentially interested to move to electric micromobility services, 
consequently facilitating the selection of policies to be implemented for pushing people to more environment-friendly 
transport services. 

Paper is organized as follows. Section 2 presents the methodology developed to point out the potential demand of 
micromobility, while Section 3 reports its implementation to Rome. Conclusions and the further developments are 
reported in the last Section. 

2. Methodology 

This paper presents a new approach for extrapolating potential (electric) micromobility demand by selecting 
compatible trips from floating car data (FCD) based on travel characteristics and availability of suitable infrastructure 
for micromobility in the study area.  

2.1. Analysis of the FCD dataset 

FCD derive by probe vehicles equipped with an OnBoard Unit (OBU). The OBU records and stores several 
information of the vehicle (vehicle ID, the day and time of the trip, the speed and the state of the engine, the geo-
referenced positions of the vehicle at regular detection intervals), tracking its position. Thus, information at high 
spatial coverage are collected, such as travel times of individual trips and route choice. 
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The raw data requires to be preprocessed to identify error sources and correct them. First, the dataset is subjected 
to a trip-concatenation process to filter out brief stops registered within a trip in order to assure its continuity and thus 
correctly identify the destination of the trip. For every trip, the first location where the engine of the vehicle is turned 
on is considered the origin 𝑂𝑂 and the location where the engine is turned off is considered the destination 𝐷𝐷 of the trip. 
However, stops can be registered due to temporary interruptions, loss of GPS signal, functionality issues of the vehicle 
engine etc, thus, all stops shorter than 10 minutes have been identified and filtered out. Then, trips whose distance is 
lower than the maximum pedestrian threshold have been removed, as well as trips whose duration is inexplicably long 
considering the area of our study. Removing error sources in the data brings to a 58% reduction of the initial FCD 
dataset; then, the trip-concatenation process generated an additional reduction of 28%. 

 
The remaining data 𝑁𝑁𝑂𝑂𝑂𝑂 is further classified into home-based trips (HB) and not home-based trips (NHB): in the 

first case, the origin point (or the destination) of the trip is the home of the user. The classification is performed through 
a clustering of the destinations reached by each vehicle. The clustering follows a DBScan algorithm (Ester et al., 
1996). DBSCAN parameters are: 1) the minimum number of points 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 that have to be in the neighborhood 
of a given point to start the development of a cluster and 2) the radius ε of said neighborhood, meaning that if the 
distance between two points is lower or equal to this value then the two points are considered neighbors and can 
belong to the same cluster. The radius ε was fixed to 120 meters and the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 equal to one. Once generated the 
clusters, for each vehicle the one with the highest frequency of overnight stops was classified as the residence. 
Overnight stops derived by the analysis of the time windows of arrival and departure times of vehicles.  

 
Lastly, the trips have been aggregated as a function of the temporal distribution of FCD demand on sample days in 

order to identify the on-peak demand and off-peak demand time intervals for both weekdays and weekends. 
Characterizing trips according to their temporal distribution as well as the HB/NHB classification can in fact be useful 
to determine the scope of the trip, which can help to identify the potential market segment for sharing electric micro-
mobility services or for private e-scooters and e-bikes. 

2.2. OD Compatibility Analysis 

In accordance with the values from literature, in this study we propose to adopt two distance thresholds: up to 6 
km, which represents the maximum e-bike trip length, and up to 3 km, which represents the maximum e-scooter trip 
length. The output dataset of the filtering and classification process described in Section 2.1 has thus been further 
classified according to the distance threshold 𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚 , where 𝑚𝑚 is the e-micromobility mode (e.g. e-bike or e-scooter). 
Then, for both home-based (HB) and not-home based (NHB) sets, the share of travel demand that could potentially 
be carried out through the e-micromobility mode m, only based on the average travelled distance, is calculated as: 

 

𝑁𝑁𝑚𝑚
𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚

𝐻𝐻𝐻𝐻

𝑁𝑁𝑂𝑂𝑂𝑂
; 𝑁𝑁𝑚𝑚

𝑁𝑁𝐻𝐻𝐻𝐻 = 𝑚𝑚𝑚𝑚
𝑁𝑁𝐻𝐻𝐻𝐻

𝑁𝑁𝑂𝑂𝑂𝑂
(1) 

where 𝑚𝑚𝑚𝑚
𝐻𝐻𝐻𝐻 and 𝑚𝑚𝑚𝑚

𝑁𝑁𝐻𝐻𝐻𝐻 are the number of home-based and not home-based trips, respectively, under the relative distance 
threshold 𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚 . 

2.3. Infrastructure Compatibility Analysis 

In a second phase, the characteristics of the road infrastructures, where the selected trips take place, are considered, 
developing an index that we called Micromobility Compatibility Index (MCI). MCI could be used by transportation 
planners and e-micromobility operators to evaluate the capacity of specific road segments to accommodate e-bikes 
and e-scooters. The index takes into account the physical and operational characteristics of the links of the road 
network as obtained from Open Street Map (https://www.openstreetmap.org). 

For each traffic zone z of the study area, the MCI is computed as the ratio between the total length of road 
infrastructures suitable for e-micro-mobility 𝐿𝐿𝑚𝑚

𝑧𝑧  (cycle ways, pedestrian streets and residential streets, secondary and 
tertiary roads with maximum one lane for travel direction, trails within parks and green areas with suitable paving) 
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and for private cars 𝐿𝐿𝑐𝑐
𝑧𝑧 (motorways, primary, secondary, tertiary roads, and residential streets):  

𝑀𝑀𝑀𝑀𝐼𝐼𝑧𝑧 = 𝐿𝐿𝑚𝑚
𝑧𝑧

𝐿𝐿𝑐𝑐𝑧𝑧
       (2) 

Then, for each trip 𝑘𝑘  up to 6 km, the maximum distance threshold defined in this study, the micromobility 
compatibility index 𝑀𝑀𝑀𝑀𝐼𝐼𝑘𝑘 of the trip is calculated as the weighted average of the indexes 𝑀𝑀𝑀𝑀𝐼𝐼𝑧𝑧 of each zone 𝑧𝑧 that 
the probe vehicle 𝑖𝑖 within the trip 𝑘𝑘 moves through, as depicted in Figure 1: 

𝑀𝑀𝑀𝑀𝐼𝐼𝑘𝑘 =
∑ 𝑀𝑀𝑀𝑀𝐼𝐼𝑧𝑧 ∙ 𝑙𝑙𝑘𝑘

𝑧𝑧
𝑧𝑧∈𝐼𝐼𝑖𝑖

∑ 𝑙𝑙𝑘𝑘
𝑧𝑧

𝑧𝑧∈𝐼𝐼𝑖𝑖
                           (3) 

where 𝑙𝑙𝑘𝑘
𝑧𝑧   is the length (in km) of the trip k in the zone 𝑧𝑧 (Figure 1).  

 

 

Fig. 1. Example of FCD track points and computation of travelled length in each zone. 

Lastly, a compatibility threshold 𝑀𝑀𝑀𝑀𝐼𝐼∗ is fixed and all the trips 𝑛𝑛𝑘𝑘
𝐻𝐻𝐻𝐻 and 𝑛𝑛𝑘𝑘

𝑁𝑁𝐻𝐻𝐻𝐻 whose 𝑀𝑀𝑀𝑀𝐼𝐼𝑘𝑘 ≤ 𝑀𝑀𝑀𝑀𝐼𝐼∗ are removed 
from the potential travel demand calculated in (1), thus obtaining new fraction of travel demand 𝑁𝑁′𝑚𝑚

𝐻𝐻𝐻𝐻and 𝑁𝑁′𝑚𝑚
𝑁𝑁𝐻𝐻𝐻𝐻 

compatible with e-micromobility that takes into account also road infrastructure compatibility.  

3. Numerical results 

The proposed approach has been used to assess the potential e-micromobility demand in the city of Rome, Italy, 
from a large FCD dataset containing 9 million recorded trips (post filtering process). The used FCD dataset belongs 
to the Octo Telematics company fleet and spans the entire metropolitan area of Rome through 243’784 vehicles (317 
millions of records, 7% penetration rate) tracked during November 2015. The detection intervals of FCD vary 
according to the road infrastructure: when the vehicle is located along the motorway network or main roads of 
metropolitan areas the position is recorded every 30 seconds, whereas on remaining roads the position is recorded 
once every two kilometres. 

The municipality area has been divided into 1’409 zones, posing as a compromise between the 13.656 census zones 
and the 155 census areas defined by the Italian Institute of Statistics. The average area of the zones is 86 ha, whereas 
the average population is of 1’900 inhabitants.  
 

3.1 OD compatibility analysis 

The filtered trip dataset has been first divided into weekdays and weekend trips and then into home-based trips 
(HB) and not home-based (NHB) trips. The number of suitable trips and resulting shares according to the two fixed 
thresholds of 3 km and 6 km are presented in Table 1.  

 



 Marialisa Nigro  et al. / Transportation Research Procedia 62 (2022) 401–407 405
 Nigro et al/ Transportation Research Procedia 00 (2021) 000–000  5 

     Table 1. OD compatibility analysis results. 
 

E-Scooters (≤3km) E-Bikes (≤6km) 

    
Number of 
trips 

Share on total 
FCD trips [%]     

Number of 
trips 

Share on total FCD 
trips [%] 

Weekdays 

HB trips 1’296’129 14.1 

Weekdays 

HB trips 2’255’902 24.6 

NHB trips 937’572 10.2 NHB trips 1’704’123 18.6 

Total Weekdays 2’233’701 24.3 Total Weekdays 3’960’025 43.2 

Weekends 

HB trips 438’813 4.7 

Weekends 

HB trips 752’820 8.2 

NHB trips 244’963 2.6 NHB trips 438’568 4.8 

Total Weekend 683’776 7.3 Total Weekend 1’191’388 13 

Total trips suitable for  
2’917’477 31.6 

Total trips suitable for  
5'151’413 56.2 

e-micromobility e-micromobility 

 
The 24.6% resulting share of potential e-bike demand (weekdays home-based trips) is quite high, however, further 

analyses on the zoning system of the Rome municipality show that most of these trips are generated from zones that 
cannot be considered micromobility-oriented. Thus, these results have highlighted the need for an infrastructure-based 
index that allows to select the trips moving along suitable road infrastructure that is able to accommodate e-
micromobility services such as e-scooters and e-bikes.  
 

3.2 Infrastructure Compatibility Analysis 
 

The trips that are compatible by travelled distance are then filtered through an index that considers the configuration 
of the road infrastructure the vehicles move across, as explained in section 2.3.  

In Figure 2 (a) the distribution of the MCIz computed as seen in (2) for all the zones is shown. Then, for each of 
the compatible trips 𝑘𝑘 (having travelled distances lower than 3 km and 6 km respectively), the MCIk is computed as 
in (3). 

 

 

Fig. 2. (a) Distribution of 𝑀𝑀𝑀𝑀𝐼𝐼𝑧𝑧 in Rome (b) Distribution of 𝑀𝑀𝑀𝑀𝐼𝐼𝑘𝑘  in Rome   

The MCIz calculated for each zone of the city of Rome (Figure 2, a) is equal on average to 0.998 and to 1.006 in 
the 75° percentile. This means that the ratio between the infrastructures that can be adopted by e-micromobility and 
the infrastructures for cars is generally well-balanced. As for the 𝑀𝑀𝑀𝑀𝐼𝐼𝑘𝑘 (Figure 2, b), its average value is equal to 
0.948 with a standard deviation of 0.240. 

If a threshold value 𝑀𝑀𝑀𝑀𝐼𝐼∗is considered, all those trips whose 𝑀𝑀𝑀𝑀𝐼𝐼𝑘𝑘 is less than 𝑀𝑀𝑀𝑀𝐼𝐼∗ are not considered compatible 
with micromobility due to the lack of suitable infrastructure. Therefore, these trips are removed from the demand 
shares presented previously in Section 3.1. In Table 2 we show that, as the 𝑀𝑀𝑀𝑀𝐼𝐼∗  threshold becomes lower, the 
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percentages of the demand shares decrease: if, for example, the 𝑀𝑀𝑀𝑀𝐼𝐼∗ is set to 0.7 (equal to the difference between the 
mean 𝑀𝑀𝑀𝑀𝐼𝐼𝑘𝑘 value and its standard deviation in the city of Rome), the demand shares decrease of approximately 1.1-
1.8 percentage points for weekdays and 0.2-0.5 percentage points for weekends, compared to the shares computed 
with 𝑀𝑀𝑀𝑀𝐼𝐼∗equal to 0 (meaning  the infrastructure compatibility is not taken into account).  

If the 𝑀𝑀𝑀𝑀𝐼𝐼∗ threshold is increased to 1.2 (equal to the mean 𝑀𝑀𝑀𝑀𝐼𝐼𝑘𝑘 value plus its standard deviation), the demand 
shares strongly decrease to values lower than 2% for weekdays and lower than 1% for weekends.  

Generally, 𝑀𝑀𝑀𝑀𝐼𝐼∗ has not to be fixed a priori. It can be adopted as an objective function for the city planner involved 
in improving the street layout and road network characteristics. 

Table 2. Impact of the MCI* threshold on the potential demand for weekdays and weekends, HB trips and NHB trips. 

   Potential demand [%] 
 𝑀𝑀𝑀𝑀𝐼𝐼∗ 

0 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 
Weekdays HB e-bikes 24.6 22.9 19.7 14.0 8.0 3.5 2.3 1.6 1.1 

e-scooters 14.1 13.0 11.4 8.3 5.0 2.1 1.4 1.0 0.8 
NHB e-bikes 18.6 16.8 13.6 9.4 5.5 2.9 2.0 1.5 1.1 

e-scooters 10.2 9.1 7.4 5.3 3.2 1.6 1.1 0.9 0.7 
Weekend HB e-bikes 8.2 7.6 6.6 4.7 2.7 1.2 0.8 0.5 0.4 

e-scooters 4.8 4.4 3.9 2.8 1.7 0.7 0.5 0.4 0.3 
NHB e-bikes 4.8 4.3 3.5 2.4 1.4 0.8 0.5 0.4 0.3 

e-scooters 2.6 2.4 1.9 1.4 0.9 0.4 0.3 0.2 0.2 
 

4. Conclusions and further developments 

The paper tackles electric micromobility solutions, such as e-scooters and e-bikes, by developing a methodological 
framework to extrapolate the potential demand for e-micromobility from FCD trips. The proposed methodology is 
innovative in the data adopted, since FCD are usually used to evaluate the traffic network performances or to derive 
private demand. Moreover, the method is parametric: it means that it can be easily transferred to other contexts of 
study where FCD data are available. 

The first step of the method is based only on travelled distances (OD compatibility analysis), whereas the second 
step moves a step forward through the definition of an index evaluating the compatibility of the network infrastructure 
with respect to micromobility. This index can be easily computed through the accessible Open Street Map open 
database.  

The method has been applied to the city of Rome (Italy) where the potential demand for e-micromobility ranges 
between 24.6% and 2.60% of the FCD sample, respectively for Home-based trips during weekdays carried through e-
bikes (up to 6 km) and for Not Home-based trips during weekends carried through e-scooters (up to 3 km). Since these 
percentages are based on travelled distances only, their values are quite high; however, when the infrastructure 
compatibility analysis is performed, the percentages decrease to respectively 2.3% and 0.3% for a micromobility 
compatibility index equal to 1.2. 

Further developments will focus on refining the methodological process, the identification of home-based round 
trips as well as to validate the representativeness of the findings and its expansion procedure from FCD to the entire 
population of Rome. Furthermore, the aim is also to identify those trips that can be shifted from car to a multimodal 
solution based on mass transit service and on micromobility for the access and egress phase to and from the stations. 
Lastly, a standard behavioral approach can be considered based on random utility models, thus calibrating a modal 
shift model able to represent the choice between private mobility and sustainable mobility options such as e-
micromobility for single trips or for multimodal trips by public transport. 
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