

Article Energy Planning of Renewable Energy Sources in an Italian Context: Energy Forecasting Analysis of Photovoltaic Systems in the Residential Sector

Domenico Palladino * D and Nicolandrea Calabrese

DUEE Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, Santa Maria di Galeria, 00123 Rome, Italy * Correspondence: domenico.palladino@enea.it

Abstract: Solar photovoltaic systems will play a key role in the country's energy mix thanks to their ability to meet increasing energy needs while reducing greenhouse gas emissions. Despite the potential of solar photovoltaic energy, several criticalities remain, such as the intermittent nature and the need for significant land use for its implementation. In this regard, this work aimed at evaluating the photovoltaic potentiality in a national context by 2030 and 2050, considering only installations on the roof surfaces of existing buildings, i.e., without consuming additional land. This study has allowed the answering of three key points: (i) the roof surface could represent a valuable and alternative solution for new installations, since it could amount to around 450 km², (ii) the national target cannot be reached by only using installations on existing buildings, although some regions could get close to the target by 2050, and (iii) long-term energy incentives should be implemented branching out to each national region, considering their photovoltaic potential. Finally, a regional potential index was also defined, capable of evaluating the photovoltaic potential in each region, helping policymakers to adopt the most suitable energy strategies.

Citation: Palladino, D.; Calabrese, N. Energy Planning of Renewable Energy Sources in an Italian Context: Energy Forecasting Analysis of Photovoltaic Systems in the Residential Sector. *Energies* 2023, *16*, 3042. https://doi.org/10.3390/ en16073042

Academic Editors: Linas Martišauskas and Ričardas Krikštolaitis

Received: 27 February 2023 Revised: 23 March 2023 Accepted: 25 March 2023 Published: 27 March 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). **Keywords:** photovoltaic energy system; energy supply security; energy planning; renewable energy source; domestic energy consumption; photovoltaic potentiality

1. Introduction

The current geopolitical situation has highlighted multiple issues in the energy strategies of many countries looking for alternative energy sources to fossil fuels. In addition, the new European targets of achieving net-zero emissions by 2050 and the decoupling of national growth from the use of resources have led to a breakthrough in the green transition of the European Union to reduce net emissions by 2030 compared to 1990 levels [1]. Among the actions undertaken to achieve these objectives is the promotion of the use of renewable energy sources and the energy efficiency of buildings, which remains one of the main sectors accountable for total energy consumption.

In Italy, residential buildings are still accountable for 12% of total emissions [2], corresponding to about 30% of total energy requirements [3], mainly due to heating energy services, and mostly due to poor building envelope performance. In recent years, multiple energy efficiency actions have been implemented, ranging from the renovation of the whole national building stock, such as the Superbonus scheme [4], to raising awareness of the use of high-energy class equipment. However, this sector, which includes more than 12 million buildings across the country [5], is one of the most energy-intensive sectors, with an electricity consumption of over 65,500 GWh on average in the last years [6–13]. Among the possible strategies to cover this energy need could be the massive use of photovoltaic systems, since over 1100 kWh per kW of installed power could be produced on average across the country [14–19].

Solar photovoltaic energy could be crucial both in Europe and Italy due to its potential of meeting increasing energy needs while reducing greenhouse gas emissions. According to a study carried out by the International Energy Agency (IEA), Italy set an ambitious target of 52 GW of photovoltaic capacity by 2030, i.e., around 2.5 times the value recorded in 2020, indicating photovoltaic systems as a key player in the country's energy mix [20].

In the literature, photovoltaics is widely studied, both in terms of technology development and forecasting model implementation. Only in the last year, a large number of studies were carried out with different purposes, such as performing energy and exergy balances of photovoltaic systems [21–25], the analysis of new materials or photovoltaic technologies [26,27], forecasting analysis to check its potentiality over the years [28–31] by also using machine learning [32–34] or other specific methods [35–37], or to analyze national energy policy [38,39].

Despite the potential and convenience of solar photovoltaic energy, as highlighted in these works, there are several criticalities: the intermittent nature of solar energy, the need for significant land use for its implementation, high levels of bureaucracy, and the regulatory uncertainties that have hindered the growth of the sector. As an energy policy, solar photovoltaic energy could have significant potential to become one of the major sources of electricity. Nevertheless, there are relevant challenges that need to be addressed, particularly concerning land use.

To increase the number of photovoltaic installations, Italy has issued the new Law Decree n. 17 of 2022 [40] aiming at reducing the levels of bureaucracy and promoting new installations of photovoltaic systems on the roofs of existing buildings, including those falling in A-zones, i.e., the historical city centers.

As a result of this framework, this study aimed at evaluating the potentiality and energy production of photovoltaics in a national context. In particular, as photovoltaic systems will play a key role in the national energy mix, this study was performed to understand the real potential of photovoltaics by 2030–2050 when only installed on the roofs of existing buildings, i.e., without consuming additional land. The study aims to answer three key points in detail:

- (1) Is it possible to use only the roof surface of existing buildings for the new installations of photovoltaic panels?
- (2) What could be the productivity of the photovoltaic panels by 2050 and what could be the theoretical maximum power that could be placed on the roof surface of existing buildings?
- (3) Would it be possible to meet European targets by placing photovoltaic panels only on the roof surfaces of existing buildings?

To answer these key questions, a careful research procedure was adopted aimed at (i) evaluating the roof surface available for new installations of photovoltaic systems, (ii) understanding the current number of installations and productivity of the photovoltaic systems placed only in the residential sector, (iii) assessing the growth rates of photovoltaic panels in the residential sector, (iv) performing a forecast analysis, and (v) analyzing and comparing the theoretical photovoltaic energy production with respect to European targets.

The paper is structured as follows: the research procedure is detailed in Section 2, the underlying current energy consumption of the residential sector (Section 2.1), the stateof-the-art photovoltaic system (Section 2.2), and the theoretical roof surface of existing buildings (Section 2.3). As national reports provide disaggregated data only on an annual basis, a comparison of the energy production of photovoltaic panels on a monthly and annual basis was also performed to check the reliability of the annual forecasting analysis. This discussion is reported at the beginning of Section 3 (Section 3.1). Finally, the results of the forecasting analysis were discussed in Section 3.2, whilst the main findings are remarked upon in the conclusions.

2. Materials and Methods

The forecasting analysis was performed by planning a detailed research procedure (Figure 1) based on: (i) the energy consumption of the buildings sector, based on national reports provided by the National Electricity Network [6–13], (ii) the state-of-the-art photovoltaic panels placed only on the roofs of residential buildings, according to the annual reports provided by Energy Services Manager [14–19], and (iii) the type and number of building units as well as their roof surface area across the country, assessed from data provided by the National Institute of Statistics [5]. Data from the National Electricity Network and Energy Services Manager is provided for each Italian region; therefore, all of the analyses were carried out in regional detail. However, for clarity in the presentation, the aggregated results are discussed, distinguishing five Italian zones:

- Northwest: including Valle d'Aosta, Piemonte, Liguria, and Lombardia regions;
- Northeast: including Trentino, Friuli Venezia Giulia, Veneto, and Emilia Romagna;
- Centre: grouping Toscana, Umbria, Marche, and Lazio;
- South: grouping Abruzzo, Campania, Molise, Puglia, Basilicata, and Calabria;
- Islands: including the two islands of Sicilia and Sardegna.

Figure 1. Research procedure adopted for performing photovoltaic forecasting.

A key point of the work consists of the evaluation of the available roof surface area where photovoltaic panels could be placed; in fact, one of the purposes of the study is to check the possibility of using existing surfaces for this kind of application, i.e., without further land use. For this analysis, an estimation of the roof surface area of existing buildings starting with data provided by the National Institute of Statistics [5] was attempted.

Furthermore, for each region, the growth rates relating to the number and peak power of photovoltaic panels placed on existing buildings and the energy consumption of the building sector were also estimated. In addition, the improvements in photovoltaic panels over the year could also be taken into account, although the developments of this technology in the future are neither available nor foreseeable. For that reason, the following growth or development rates (GR or DR) were taken into account for the forecasting analysis based on data availability:

- Growth rate of energy consumption (GR_{EC}): this was calculated considering the annual growth rates from 2014 (see Section 2.1);
- Growth rate of photovoltaic panels (GR_{PhV}): this was calculated considering the annual growth rates from 2016 (see Section 2.2);
- Development rate of photovoltaic panels (DR_{P-PhV}): this was calculated considering the annual development rates recorded from 2016 (see Section 2.2).

The mean annual values of energy consumption and the number of new installations of photovoltaic panels were also calculated and assumed as the reference values (data used from 2022) for the forecasting analysis by applying different GR values.

Finally, the forecasting analysis was performed for 2050 by checking: (i) the photovoltaic power installed by 2030 and 2050, (ii) the theoretical roof area needed for photovoltaic panels, and (iii) the energy need covered by photovoltaic panels. The forecasting analysis was performed with and without DR_{P-PhV} to highlight the increase in energy production due to technology development.

Results were finally analyzed to evaluate the achievement of the national targets by 2030 and 2050 and to underline the potentiality and the issues of only installing photovoltaic systems on the roofs of existing buildings.

2.1. Energy Consumption of National Buildings Stock

The electrical energy consumption of the national building stock was assessed in agreement with national annual reports provided by the National Electricity Network [6–13]; in particular, the available data on an annual basis between 2014 and 2021 was taken into account (Table 1).

Table 1. Electrical energy consumption (GWh) for the residential building stock of each region and national zone: data from the National Electricity Network [6–13].

National Zones	2014	2015	2016	2017	2018	2019	2020	2021
Valle d'Aosta	178.4	175.9	176.6	176.6	177.9	165.7	161.0	156.2
Piemonte	4579.3	4627.1	4538.6	4554.3	4555.6	4545.3	4623.2	4534.8
Liguria	1729.9	1737.5	1701.0	1693.0	1698.8	1687.3	1699.5	1686.5
Lombardia	10,999.5	11,341.4	11,124.3	11,258.9	11,333.8	11 <i>,</i> 511.6	11,456.7	11 <i>,</i> 346.1
Trentino Alto Adige	1195.2	1149.2	1156.2	1148.6	1160.1	1164.0	1158.9	1160.9
Veneto	5195.5	5570.4	5396.5	5552.7	5595.5	5688.0	5644.3	5747.4
Friuli Venezia Giulia	1316.4	1369.4	1340.2	1381.4	1391.2	1383.0	1377.4	1397.1
Emilia Romagna	4900.0	5201.7	5041.2	5136.2	5143.5	5159.8	5174.8	5199.8
Toscana	4032.9	4110.5	4026.9	4082.1	4087.0	4126.3	4156.8	4146.2
Umbria	912.0	935.4	907.6	926.3	921.6	925.2	938.4	945.4
Marche	1520.0	1555.2	1513.2	1537.2	1546.4	1543.7	1567.3	1584.6
Lazio	6699.9	6852.9	6670.5	6686.3	6456.3	6322.4	6518	6551.6
Abruzzo	1286.4	1320.9	1286.6	1304.8	1294.2	1318.1	1317.7	1337.1
Molise	284.4	286.4	279.8	282.4	276.1	277.7	281.0	284.8
Campania	5351.9	5484.1	5260.1	5347.6	5312.1	5443.8	5532.3	5633.0
Puglia	3988.5	4160.7	3996.7	4168.6	4100.6	4133.9	4175.4	4397.9
Basilicata	490.3	498.9	488.5	503.2	494.0	495.6	501.1	512.0
Calabria	1998.1	2044.8	1984.2	2041.9	1992.2	2036.3	2036.2	2120.7
Sicilia	5481.8	5614.1	5340.6	5552	5436.9	5433.2	5666.2	5974.6
Sardegna	2114.5	2150.5	2074.7	2156.6	2164.0	2277.1	2225.7	2335.5
Northwest	17,487.1	17,881.9	17,540.5	17,682.8	17,766.1	17,909.9	17,940.4	17,723.6
Northeast	12,607.1	13,290.7	12,934.1	13,218.9	13,290.3	13,394.8	13,355.4	13,505.2
Centre	13,164.8	13,454	13,118.2	13,231.9	13,011.3	12,917.6	13,180.5	13,227.8
South	13,399.6	13,795.8	13,295.9	13,648.5	13,469.2	13,705.4	13,843.7	14,285.5
Islands	7596.3	7764.6	7415.3	7708.6	7600.9	7710.3	7891.9	8310.1
Total	64,254.9	66,187	64,304	65,490.7	65,137.8	65,638	66,211.9	67,052.2

5 of 28

According to this data, a slight but significant variation (in relative terms) in electricity consumption can be highlighted; in fact, the energy consumption of the building sector has varied over the years by a value between -6.86% (Valle d'Aosta, 2019) and +7.22% (Veneto, 2015). Based on this trend, annual growth rates associated with energy consumption (GR_{EC}) were estimated for each region as the relative difference between two consecutive years. Starting from these values, a mean GR_{EC} was assessed and used to evaluate the variation in electrical energy consumption of the national building stock in the forecasting analysis. The mean GR_{EC} assessed from the data in Table 1 is reported in the next section (see Section 3.2).

2.2. Photovoltaic Systems: Growth and Development Rates and Energy Production

Based on the annual reports provided by Energy Services Manager [14–19], the state-ofthe-art photovoltaic systems in the residential building sector were also detailed. In this case, disaggregated data were available only from 2016 and on an annual basis, although more information on photovoltaic systems is available from 2008. The number of photovoltaic panel installations on the roofs of the building stock and the total photovoltaic power produced every investigated year is detailed in Tables 2 and 3, whilst the roof surface required for photovoltaic panels is reported in Table 4. It is worth noting that while the number of new photovoltaic panel installations and the photovoltaic power output are both provided by national reports, the roof surface area required by photovoltaic panels was assessed considering an average area per kW of $6.18 \text{ m}^2/\text{kW}$. This average value was evaluated based on the surface generally required by polycrystalline panels (the most common solution as indicated in [14–19]) with nominal power of between 150 and 450 W, and increased by a precautionary factor of 1.25.

National Zones	2016	2017	2018	2019	2020	2021
Valle d'Aosta	1610	1738	1833	1925	1972	2094
Piemonte	39,350	41,976	44,641	48,030	50,060	54,141
Liguria	6204	6677	7219	7811	8282	8792
Lombardia	87,343	94,721	102,340	111,356	119,000	131,822
Trentino Alto Adige	16,715	17,568	18,284	19,056	19,004	20,287
Veneto	83,891	90,150	97,453	106,419	113,993	126,203
Friuli Venezia Giulia	25,784	27,159	28,660	30,323	31,480	33 <i>,</i> 395
Emilia Romagna	59 <i>,</i> 075	63,572	68,189	73,724	77,773	84,471
Toscana	30,705	32,565	34,604	36,999	38,420	41,666
Umbria	13,238	13,971	14,929	15,829	16,466	16,077
Marche	18,887	20,263	21,315	22,731	23,607	24,924
Lazio	39 <i>,</i> 906	43,526	47,159	51,268	54,328	58,368
Abruzzo	13,240	15,200	16,118	17,205	17,437	18,005
Molise	2748	2948	3049	3214	3282	3367
Campania	22,514	24,110	25,816	27,817	28,781	31,077
Puglia	30,903	36,235	38,117	40,644	42,551	42,782
Basilicata	4959	5393	5612	5974	5994	6186
Calabria	17,367	18,546	19,509	20,676	21,255	22,539
Sicilia	37,111	41,123	43,634	46,727	48,888	50,930
Sardegna	28,435	30,248	31,643	33,384	34,226	35,484
Northwest	134,507	145,112	156,033	169,122	179,314	196,849
Northeast	185,465	198,449	212,586	229,522	242,250	264,356
Centre	102,736	110,325	118,007	126,827	132,821	141,035
South	91,731	102,432	108,221	115,530	119,300	123,956
Islands	65,546	71,371	75,277	80,111	83,114	86,414
Total	579,985	627,689	670,124	721,112	756,799	812,610

Table 2. The total number of photovoltaic installations installed each year (-): data provided by the Energy Services Manager [14–19].

National Zones	2016	2017	2018	2019	2020	2021
Valle d'Aosta	8.0	9.0	9.0	10.0	9.0	10.0
Piemonte	198.0	209.0	220.0	235.0	232.0	253.0
Liguria	26.0	29.0	31.0	34.0	34.0	37.0
Lombardia	390.0	421.0	453.0	493.0	516.0	578.0
Trentino Alto Adige	80.0	90.0	94.0	97.0	88.0	92.0
Veneto	393.0	421.0	451.0	491.0	509.0	568.0
Friuli Venezia Giulia	126.0	129.0	135.0	143.0	145.0	155.0
Emilia Romagna	271.0	287.0	306.0	330.0	330.0	361.0
Toscana	139.0	148.0	156.0	166.0	166.0	182.0
Umbria	62.0	66.0	70.0	74.0	73.0	73.0
Marche	93.0	100.0	104.0	110.0	106.0	111.0
Lazio	183.0	199.0	213.0	230.0	239.0	257.0
Abruzzo	71.0	84.0	88.0	93.0	88.0	91.0
Molise	16.0	17.0	18.0	19.0	18.0	18.0
Campania	118.0	126.0	134.0	144.0	145.0	158.0
Puglia	159.0	188.0	196.0	207.0	206.0	206.0
Basilicata	29.0	31.0	32.0	33.0	31.0	32.0
Calabria	96.0	106.0	111.0	117.0	114.0	120.0
Sicilia	199.0	221.0	232.0	247.0	250.0	262.0
Sardegna	136.0	148.0	154.0	161.0	159.0	163.0
Northwest	622.0	668.0	713.0	772.0	791.0	878.0
Northeast	870.0	927.0	986.0	1061.0	1072.0	1176.0
Centre	477.0	513.0	543.0	580.0	584.0	623.0
South	489.0	552.0	579.0	613.0	602.0	625.0
Islands	335.0	369.0	386.0	408.0	409.0	425.0
Total	2793.0	3029.0	3207.0	3434.0	3458.0	3727.0

Table 3. Annual photovoltaic panel power output (MW): data provided by Energy Services Manager [14–19].

According to data from the national reports [14–19], it was worth noting that the highest number of installations can be found in the Northeast zone of Italy (around 15,780 photovoltaic installations overall) thanks to the highest number of new installations found in Lombardia in 2021. Although the Islands zone takes into account only two regions (Sardegna and Sicilia), it is worth noting that the number of installations is similar to the number for the South, as well as the photovoltaic power and roof surface area occupied by photovoltaic panels, highlighting the strong impact of this technology in these two regions.

Based on this data, some growth rates correlated to the number of new installations (GR_{PhV}) were assessed (Table 5); in particular, four growth rates for each region were considered:

- GR_{PhV-1}: this was assessed as the mean value considering all of the available data from 2016 to 2021;
- GR_{PhV-2}: this was assessed as the mean value considering all of the available data by excluding the extreme values (i.e., the minimum and the maximum values in order to neglect the effect of the last national incentive (Superbonus), which led to a significant increase in the number of new installations in many regions);
- GR_{PhV-3}: this was assessed as the maximum value considering all of the available data but excluding the extreme values;
- GR_{PhV-4}: this was assessed as the minimum value considering all of the available data but excluding the extreme values.

Furthermore, based on data assessed or provided by national reports, the mean values in terms of photovoltaic power, the number of installations, energy production, and roof surface area required for each installation were finally assessed and assumed as reference values from 2022 (see Section 3) as this information is not yet available.

National Zones	2016	2017	2018	2019	2020	2021
Valle d'Aosta	0.04	0.04	0.04	0.05	0.04	0.05
Piemonte	0.98	1.03	1.09	1.16	1.15	1.25
Liguria	0.13	0.14	0.15	0.17	0.17	0.18
Lombardia	1.93	2.08	2.24	2.44	2.55	2.86
Trentino Alto Adige	0.40	0.45	0.46	0.48	0.44	0.46
Veneto	1.94	2.08	2.23	2.43	2.52	2.81
Friuli Venezia Giulia	0.62	0.64	0.67	0.71	0.72	0.77
Emilia Romagna	1.34	1.42	1.51	1.63	1.63	1.79
Toscana	0.69	0.73	0.77	0.82	0.82	0.90
Umbria	0.31	0.33	0.35	0.37	0.36	0.36
Marche	0.46	0.49	0.51	0.54	0.52	0.55
Lazio	0.91	0.98	1.05	1.14	1.18	1.27
Abruzzo	0.35	0.42	0.44	0.46	0.44	0.45
Molise	0.08	0.08	0.09	0.09	0.09	0.09
Campania	0.58	0.62	0.66	0.71	0.72	0.78
Puglia	0.79	0.93	0.97	1.02	1.02	1.02
Basilicata	0.14	0.15	0.16	0.16	0.15	0.16
Calabria	0.47	0.52	0.55	0.58	0.56	0.59
Sicilia	0.98	1.09	1.15	1.22	1.24	1.30
Sardegna	0.67	0.73	0.76	0.80	0.79	0.81
Northwest	3.08	3.30	3.53	3.82	3.91	4.34
Northeast	4.30	4.59	4.88	5.25	5.30	5.82
Centre	2.36	2.54	2.69	2.87	2.89	3.08
South	2.42	2.73	2.86	3.03	2.98	3.09
Islands	1.66	1.83	1.91	2.02	2.02	2.10
Total	13.82	14.98	15.86	16.99	17.11	18.44

Table 4. Theoretical total roof surface area required for photovoltaic panel installations every year (km^2) .

Table 5. Annual growth rates (%) of photovoltaic installations (GR_{PhV}) adopted for the forecasting analysis for each region.

Regions	GR _{PhV-1}	GR _{PhV-2}	GR _{PhV-3}	GR _{PhV-4}
Valle d'Aosta	5.4	5.6	6.5	4.3
Piemonte	6.6	6.9	7.5	5.7
Liguria	7.2	7.3	8.0	6.6
Lombardia	8.6	8.4	9.3	7.8
Trentino Alto Adige	4.0	4.5	5.4	2.7
Veneto	8.5	8.3	9.3	7.6
Friuli Venezia Giulia	5.3	5.6	5.8	4.9
Emilia Romagna	7.4	7.7	8.1	6.8
Toscana	6.3	6.4	7.2	5.4
Umbria	4.0	5.2	6.1	2.4
Marche	5.7	5.8	6.5	4.9
Lazio	7.9	8.2	8.7	7.3
Abruzzo	6.4	5.3	9.2	3.5
Molise	4.2	3.8	5.4	2.7
Campania	6.7	7.3	7.6	5.9
Puglia	6.9	5.5	9.7	3.5
Basilicata	4.6	4.6	6.4	2.5
Calabria	5.4	5.7	6.3	4.7
Sicilia	6.6	5.9	8.0	5.0
Sardegna	4.5	4.6	5.5	3.6
Italy	7.0	7.2	7.7	6.4

Finally, to take into account the improvements in photovoltaic technology over the years, a mean development rate was also estimated for each region. In particular, based on

the number of new installations and the total power of photovoltaic systems installed every year, the average power for each installation was assessed and development rates of this technology (DR_{P-PhV}) were evaluated as the relative difference between two consecutive years. Starting from these values, a mean DR_{P-PhV} was assessed (Table 6).

Regions	2016-2017	2017-2018	2018-2019	2019–2020	2020–2021	Mean
Valle d'Aosta	5.6	5.3	6.8	-1.3	9.1	5.1
Piemonte	12.5	0.0	11.1	-10.0	11.1	4.9
Liguria	11.5	6.9	9.7	0.0	8.8	7.4
Lombardia	7.9	7.6	8.8	4.7	12.0	8.2
Trentino Alto Adige	12.5	4.4	3.2	-9.3	4.5	3.1
Veneto	7.1	7.1	8.9	3.7	11.6	7.7
Friuli Venezia Giulia	2.4	4.7	5.9	1.4	6.9	4.3
Emilia Romagna	5.9	6.6	7.8	0.0	9.4	6.0
Toscana	6.5	5.4	6.4	0.0	9.6	5.6
Umbria	6.5	6.1	5.7	-1.4	0.0	3.4
Marche	7.5	4.0	5.8	-3.6	4.7	3.7
Lazio	8.7	7.0	8.0	3.9	7.5	7.0
Abruzzo	18.3	4.8	5.7	-5.4	3.4	5.4
Molise	6.3	5.9	5.6	-5.3	0.0	2.5
Campania	6.8	6.3	7.5	0.7	9.0	6.1
Puglia	18.2	4.3	5.6	-0.5	0.0	5.5
Basilicata	6.9	3.2	3.1	-6.1	3.2	2.1
Calabria	10.4	4.7	5.4	-2.6	5.3	4.6
Sicilia	11.1	5.0	6.5	1.2	4.8	5.7
Sardegna	8.8	4.1	4.5	-1.2	2.5	3.7
Italy	9.1	5.2	6.6	-1.5	6.2	5.1

Table 6. Annual development rates (%) of photovoltaic technology (DR_{P-PhV}) adopted for the forecasting analysis for each region.

2.3. National Building Stock: Roof Surface Area Calculation

One key point in the forecasting analysis lies in the roof surface area assessment, which used the roof surface area of existing buildings and is calculated using data provided by the National Institute of Statistics [5], which is available online. Considering the limited information and correlation provided by [5], such as the number of residential buildings per number of floors, the number of buildings per number of building units, and the number of building units per net surface range, the following steps were followed for the roof surface area calculations:

- Step 1: a correlation between the number of buildings per number of floors (the National Institute of Statistics groups data into "one floor", "two floors", "three floors", and "four and more floors") and the number of buildings per building units (data grouped into "one unit", "two units", "three or four units", "from five to eight units", "from nine to fifteen units", and "more than sixteen units") was attempted;
- Step 2: the total net surface area of building units was assessed by correlating data obtained from step 1 and the number of building units per specific net surface range provided by [5] (data groups into "≤29 m²", "30–39 m²", "40–49 m²", "50–59 m²", "60–79 m²", "80–99 m²", "100–119 m²", "120–149 m²", and "≥150 m²");
- Step 3: for the buildings falling into the group "four or more floors" provided by [5], an average and weighted height was assessed varying the number of the floors in the 4–14 range based on the number of building units;
- Step 4: for each group of buildings ("one floor", "two floors", "three floors", and "four and more floors"), the total net surface area was assessed and divided for the height of the buildings, calculating the theoretical roof surface area of existing buildings.

According to [5], it was possible to perform this analysis by considering around 12 million residential buildings, of which almost 50% are on "two floors", around 24% on "three floors", and just over 17% on "one floor". Buildings with "four or more floors" represent the minority of the sample (just under 10%). Furthermore, the number of building units for each building is highly variable, with a clear difference for single-family units (SFH—around 54% of the sample) and multi-family houses (MFH). Finally, the data highlights that buildings with more than nine building units are a small percentage of the sample (less than 5% overall), indicating a lower diffusion of this type of building.

To proceed with step 1, the following assumptions were made:

- buildings on "one floor" were considered buildings with only one building unit;
- buildings on "two floors" were associated with buildings from one to four building units;
- buildings on "three floors" were considered as buildings from two to eight building units;
- buildings on "four or more floors" were associated with buildings with more than four building units.

Based on these assumptions, around 31 million building units were correlated and grouped into the ranges, as shown in Table 7: around 21% of the sample falls into "one floor" (SFH), about 25% fall into "two floors" (around 8.5 million of the sample), whilst more than 40% fall into buildings with "four or more floors".

Table 7. Building units (grouped into "n. 1", "n. 2", "n. 3–4", "n. 5–8", "n. 9–15", and "n. \geq 16") distribution (%): breakdown by geographical area in Italy, number of building floors ("one floor", "two floors", "three floors", and "four and more floors"), and building type (single-family house—SFH and multi-family house—MFH).

	SF	Н	MFH								
Zones	1 Floor		2 Floors	6		3 Floors			≥4 I	Floors	
	n. 1	n. 1	n. 2	n. 3–4	n. 2	n. 3–4	n. 5–8	n. 3–4	n. 5–8	n. 9–15	n. ≥16
Piemonte	0.3	1.5	0.3	0.1	0.9	0.3	0.8	0.7	0.1	1.0	1.7
Valle d'Aosta	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.0	0.1
Liguria	0.1	0.3	0.2	0.0	0.2	0.1	0.4	0.3	0.0	0.5	1.1
Lombardia	0.4	1.7	1.1	1.5	1.3	0.8	2.1	0.5	0.3	2.2	3.4
Trentino Alto Adige	0.0	0.2	0.0	0.0	0.3	0.1	0.3	0.3	0.0	0.2	0.2
Veneto	0.3	1.5	0.8	0.9	0.9	0.4	0.9	0.2	0.2	0.9	0.8
Friuli Venezia Giulia	0.1	0.5	0.0	0.0	0.4	0.1	0.2	0.2	0.0	0.3	0.3
Emilia Romagna	0.2	1.0	0.6	0.4	0.7	0.4	1.2	0.7	0.1	1.2	1.2
Toscana	0.3	0.9	0.5	0.5	0.6	0.4	0.9	0.4	0.1	0.8	0.9
Umbria	0.1	0.3	0.1	0.0	0.2	0.1	0.2	0.2	0.0	0.1	0.1
Marche	0.1	0.4	0.1	0.0	0.4	0.2	0.4	0.4	0.0	0.3	0.3
Lazio	0.5	0.7	0.5	0.8	0.6	0.4	0.8	0.2	0.4	1.3	2.1
Abruzzo	0.1	0.5	0.1	0.0	0.4	0.1	0.3	0.3	0.0	0.3	0.3
Molise	0.0	0.2	0.0	0.0	0.1	0.0	0.1	0.1	0.0	0.1	0.1
Campania	0.5	0.9	0.6	1.3	0.8	0.4	0.5	0.0	0.6	0.9	1.4
Puglia	1.4	0.5	0.5	1.1	0.6	0.0	0.0	0.0	0.8	0.8	1.0
Basilicata	0.1	0.2	0.1	0.0	0.1	0.1	0.1	0.1	0.0	0.1	0.1
Calabria	0.4	0.7	0.3	0.1	0.5	0.2	0.5	0.5	0.1	0.4	0.4
Sicilia	1.3	1.5	0.4	0.1	1.5	0.5	0.9	1.2	0.1	0.8	1.0
Sardegna	0.4	0.7	0.2	0.0	0.3	0.1	0.3	0.3	0.0	0.3	0.3
Northwest	0.8	3.5	1.6	1.6	2.6	1.3	3.2	1.5	0.4	3.8	6.3
Northeast	0.6	3.2	1.4	1.3	2.3	1.0	2.6	1.4	0.4	2.6	2.6
Centre	0.9	2.3	1.3	1.4	1.9	1.0	2.3	1.2	0.5	2.6	3.4
South	2.6	2.9	1.6	2.4	2.5	0.8	1.5	1.1	1.5	2.4	3.3
Islands	1.7	2.2	0.6	0.1	1.8	0.6	1.2	1.5	0.1	1.1	1.3
Total	6.7	14.3	7.9	3.7	9.7	5.2	12.4	9.3	1.4	12.5	16.9

The evaluated distribution was merged with the distribution of the sample per specific surface area ranges provided by the National Institute of Statistics (step 2), and a theoretical net surface area of building units was assessed by considering an average value for each

surface area range (step 3). An iteration analysis varying the number of floors for the buildings falling into the "four or more floors" group was carried out, calculating an average and weighted number of floors for this type of building equal to 5.48 m (step 4). A total roof surface area was assessed to be around 1350 km²; finally, since no information regarding the inclination of the roofs is provided, an average pitch inclination of 25° was assumed, obtaining a total roof surface area of about 1490 km², which is considered as the roof surface area value for existing buildings. It is worth noting that the theoretical roof surface area of building units. Therefore, it could be possible that the actual surface area could also be higher than the estimated value. Furthermore, assuming that not all of the roofs have an optimal orientation for the installation of photovoltaic panels, the calculated roof surface area values have been further reduced. In this regard, it was assumed that only 30% of the surface area has suitable conditions for the installation of photovoltaic systems, reducing the available surface area to around 447 km² overall.

The percentage distribution of the sample from steps 2 and 3 for each surface area range is shown in Table 8, whilst the maximum theoretical roof surface areas and the reference roof surface areas adopted for the forecasting analysis are detailed in Table 9. More detailed information in Tables A1–A3 is reported in Appendix A.

Table 8. Net surface distribution (%) of building units (BU): breakdown for the geographical area of Italy (NW = Northwest, NE = Northeast, C = Centre, S = South, and I = Islands) and building type (single-family house—SFH and multi-family house—MFH).

Decil din e Terre		Net Surface Area Distribution of the Building Units (%)										
Building Type	Area	≤29 *	30–39	40-49	50-59	60–79	80–99	100–119	120–149	≥ 150		
	NW	0.0	0.0	0.2	0.5	2.2	3.6	3.1	2.9	4.6		
	NE	0.0	0.0	0.1	0.3	1.6	3.0	3.3	3.4	5.9		
SFH	С	0.0	0.0	0.1	0.3	1.6	2.9	2.8	2.5	3.6		
	S	0.0	0.1	0.2	0.5	2.6	6.2	6.5	6.0	7.9		
	Ι	0.0	0.0	0.2	0.4	1.8	3.9	4.8	4.6	5.6		
MFH (2 floors)	NW	0.0	0.3	1.0	1.8	6.4	9.3	6.8	5.7	7.7		
	NE	0.0	0.1	0.3	0.5	2.3	3.7	3.4	3.2	5.1		
	С	0.0	0.1	0.4	0.7	2.8	3.8	2.9	2.3	3.0		
	S	0.0	0.2	0.4	0.7	3.0	5.7	4.8	3.6	4.1		
	Ι	0.0	0.0	0.1	0.1	0.4	0.8	0.8	0.7	0.7		
	NW	0.0	0.3	1.1	1.9	6.9	9.8	7.2	6.0	8.2		
	NE	0.0	0.1	0.3	0.6	2.5	4.0	3.7	3.3	5.1		
MFH (3 floors)	С	0.0	0.1	0.4	0.7	2.6	3.6	2.8	2.2	2.9		
	S	0.0	0.1	0.2	0.4	1.5	2.8	2.4	1.8	2.1		
	Ι	0.0	0.1	0.2	0.4	1.5	2.7	2.9	2.2	2.4		
	NW	0.0	0.3	1.1	1.9	7.0	9.9	7.2	6.0	8.3		
	NE	0.0	0.1	0.3	0.5	2.1	3.3	2.9	2.6	4.0		
MFH (\geq 4 floors)	С	0.0	0.1	0.4	0.7	2.9	4.0	3.1	2.4	3.1		
	S	0.0	0.1	0.3	0.5	2.0	3.9	3.3	2.5	2.9		
	Ι	0.0	0.1	0.2	0.3	1.2	2.2	2.3	1.8	1.9		

* Order of magnitude of the values shown in this column is around 0.0043 on average.

Table 9. Assessment of the mean roof surface area (km²) of existing buildings by varying the roof pitch.

Zones	SFH	MFH	Total	25°	30%
Piemonte	41.85	46.74	88.58	97.74	29.32
Valle d'Aosta	1.19	0.07	1.26	1.39	0.42
Liguria	8.08	7.44	15.53	17.13	5.14
Lombardia	51.63	251.99	303.62	335.01	100.50

Zones	SFH	MFH	Total	25 °	30%
Trentino Alto Adige	5.52	2.76	8.28	9.13	2.74
Veneto	53.63	71.34	124.97	137.89	41.37
Friuli Venezia Giulia	16.61	3.68	20.30	22.40	6.72
Emilia Romagna	30.24	58.96	89.20	98.42	29.53
Toscana	29.55	39.96	69.51	76.69	23.01
Umbria	8.74	2.11	10.85	11.98	3.59
Marche	11.89	6.56	18.45	20.36	6.11
Lazio	32.90	71.37	104.27	115.05	34.51
Abruzzo	18.00	4.71	22.72	25.06	7.52
Molise	5.73	0.24	5.97	6.59	1.98
Campania	38.42	66.67	105.09	115.95	34.78
Puglia	72.93	38.16	111.09	122.58	36.77
Basilicata	8.41	0.85	9.26	10.22	3.07
Calabria	36.59	11.74	48.33	53.32	16.00
Sicilia	89.58	60.16	149.74	165.22	49.57
Sardegna	37.82	6.63	44.45	49.04	14.71
Northwest	102.75	306.24	408.99	451.27	135.38
Northeast	106.01	136.74	242.75	267.84	80.35
Centre	83.09	119.99	203.08	224.07	67.22
South	180.09	122.36	302.45	333.72	100.12
Islands	127.40	66.79	194.18	214.26	64.28
Total	599.33	752.13	1351.45	1491.16	447.35

Table 9. Cont.

3. Results and Discussion

3.1. Photovoltaic Energy Production: Annual vs. Monthly Calculations

As stated, all of the national reports on photovoltaic systems [14–19] provided disaggregated data only on an annual basis, whilst aggregate data (i.e., including all of the sectors) is also provided monthly. The electrical energy consumption is only provided on an annual basis [6–13] for each sector. As the impact of the photovoltaic system on the residential sector was studied in this work, it was only possible to take into account disaggregated data on an annual basis. However, the energy production of photovoltaic systems, as well as the energy requirements of the residential sector, are strongly dependent on the month of the year and location. For that reason, a preliminary analysis was performed aimed at checking the reliability of the annual forecasting concerning monthly forecasting because of the unavailability of some monthly data. This analysis was only possible for photovoltaic energy production since this monthly data can be obtained from the solar atlas provided by the Energy Services Manager [41].

For this preliminary analysis, the following assumptions were made:

- 1. The energy production per m² of a photovoltaic system with monthly steps is assessed according to the solar atlas provided by the Energy Services Manager for each region and investigated year [41];
- 2. Since national reports [14–19] provide only the number of new installations with annual steps, it was equally shared by the days of each month. The same assumption was made for the installed power since national reports did not provide any information on a monthly step.

Based on these assumptions (the monthly energy production, the number of new installations, and the power of photovoltaic systems installed on the roof of buildings), it was possible to carry out a monthly forecasting analysis for each region up to 2050. It was performed with the same approach adopted for the annual analysis, i.e., considering monthly growth rates for the number of new installations. Annual results estimated adopting monthly steps were thus compared to that returned on the annual basis to check the reliability of the two approaches.

The energy production comparison assessed with an annual or monthly approach for each region and year is shown in Figure 2. The annual estimated energy production starting from the monthly step is reported on the ordinate axis, whilst that on the annual basis is shown on the abscissa. It is worth noting that a little difference can be highlighted by adopting these two approaches; greater differences were found for the years 2017 and 2021, although this difference is around $\pm 10\%$ in the larger energy-producing regions.

Figure 2. Comparison of the energy production of photovoltaic systems: annual vs. monthly calculation.

This result can be affected by the assumptions made in this work; however, the lack of information on the number of new installations every month meant that it was not possible to perform a more accurate analysis. Nevertheless, although the outcomes on an annual basis are slightly lower than those on a monthly basis, they can be considered reliable and precautionary. It means that it is possible that the energy production of the photovoltaic systems could be even greater than the estimated values. According to this result, the forecasting analysis on an annual basis can be considered a cautionary scenario.

3.2. Photovoltaic Energy Forecasting

As already stated in previous sections, the forecasting analysis started in 2022 assuming the number of new installations of photovoltaic panels to be equal to the mean value found in the previous investigated years, as well as the photovoltaic power and energy production. Similarly, a mean value of energy consumption was also adopted. Based on these average values, using values from 2022 as the reference values, as detailed in Table 10, specific annual growth rates associated with the energy consumption of the residential sector (GR_{EC}) were applied to calculate the outgoing energy consumption in addition to the annual growth rates of the number of new installations of photovoltaic panels (GR_{PhV}), as already described in Table 8.

National Zones	Number (-)	Power (kW)	Energy (kWh/kW)	Available Roof Surface (km ²)	Energy Consumption (kWh)	GR _{EC} (%)
Valle d'Aosta	1862.0	9.2	1111.6	0.42	172.3	-1.36
Piemonte	46,366.3	224.5	1036.6	29.32	4566.1	-0.44
Liguria	7497.5	31.8	998.7	5.14	1701.6	-0.54
Lombardia	107,763.7	475.2	978.3	100.50	11,310.2	0.01
Trentino Alto Adige	18,485.7	90.2	1053.0	2.74	1158.2	-0.64
Veneto	103,018.2	472.2	1010.5	41.37	5574.6	0.54
Friuli Venezia Giulia	29,466.8	138.8	1013.1	6.72	1373.8	0.35
Emilia Romagna	71,134.0	314.2	1039.1	29.53	5142.6	0.01
Toscana	35,826.5	159.5	1075.6	23.01	4097.5	0.15
Umbria	15,085.0	69.7	1101.9	3.59	926.5	0.19
Marche	21,954.5	104.0	1127.9	6.11	1545.0	0.32
Lazio	49,092.5	220.2	1110.4	34.51	6597.1	-0.61
Abruzzo	16,200.8	85.8	1152.8	7.52	1307.1	0.22
Molise	3101.3	17.7	1180.7	1.98	281.7	-0.19
Campania	26,685.8	137.5	1100.3	34.78	5412.0	0.47
Puglia	38,538.7	193.7	1189.2	36.77	4122.7	0.92
Basilicata	5686.3	31.3	1176.8	3.07	497.2	0.24
Calabria	19,982.0	110.7	1198.5	16.00	2024.9	0.34
Sicilia	44,735.5	235.2	1224.9	49.57	5530.7	0.87
Sardegna	32,236.7	153.5	1204.6	14.71	2181.4	1.03
Northwest	163,489.5	740.7	1031.3	135.4	17,750.1	-0.58
Northeast	222,104.7	1015.3	1028.9	80.4	13,249.1	0.06
Centre	121,958.5	553.3	1103.9	67.2	13,166.1	0.01
South	110,195.0	576.7	1166.4	100.1	13,645.5	0.33
Islands	76,972.2	388.7	1214.7	64.3	7712.1	0.95
Total	694,719.8	3274.7	1104.2	447.3	65,522.8	0.09

Table 10. Mean values for the photovoltaic systems in Italy: number of installations, power, energy production, and net surface area required for each installation.

The results for estimated photovoltaic systems power output by 2050 are shown in Figure 3 whilst Figure 4 displays the results relating to the theoretical optimal roof surface area required by the photovoltaic systems by 2050. The results give an interesting insight, highlighting the greatest impact of photovoltaic panels in specific zones of Italy. From all of the adopted scenarios, the most promising zone could be the Northeast zone of Italy mainly due to the important contribution provided by the Veneto (which affects the photovoltaic power by about 59%) and Emilia Romagna regions (which affects the photovoltaic power by about 29%). In this zone, the most probable scenario (GR_{PhV-2}) could potentially recognize more than 9 GW of photovoltaic power by 2050, requiring a little less than 70% of the available roof surface of this zones. Even in the most conservative scenario (GR_{PhV-4}) it could be possible to reach 7 GW of photovoltaic power output by 2050, confirming that this zone is the most promisingly productive areas in Italy. In the most promising scenario (GR_{PhV-3}), 11 GW of photovoltaic power output by 2050 could potentially be achieved; however, it could require almost 80% of the available roof surface area. Moreover, this scenario is closely linked to the use of specific incentive systems such as the Superbonus, making it one of the more improbable scenarios.

The greatest potential can be highlighted in the Northwest and in the South zones, where less than 30–40% of the available roof surface could be used. In these zones, a photovoltaic power output of 7.0 GW (both Northwest and South) could potentially be achieved in the most promising scenario (GR_{PhV-3}), although values of 5.5 GW (Northwest) and 4.0 GW (South) seem to be most probable (GR_{PhV-2}), corresponding to less than 30% of the available roof surface area in those zones.

Figure 3. Power (MW) of photovoltaic panels: forecasting analysis over the years to 2050 for all of the national zones adopted in this study.

Figure 4. The theoretical roof surface area (%) required by photovoltaic panels: forecasting analysis over the years to 2050 for all of the national zones adopted in this study.

Similarly, the Centre zone showed significant room for flexibility since around 60–70% of the roof surface area would remain available. On the other hand, the Islands zone showed the least potential photovoltaic power output by 2050 due to the limited use of roof surfaces.

All of these scenarios confirmed a less marked growth for the central and southern regions of Italy, highlighting the need for specific incentive systems in those zones if more than the 5 GW threshold is to be exceeded by 2050.

It is worth noting that all of these scenarios could be feasible and technically possible since they could require less roof surface area than that estimated. Only for the Northeast area, the analyzed scenarios may not be feasible if greater incentives were adopted due to the smaller roof surface area available in that zone. According to these results, overall, it could be possible to reach around 6 GW of photovoltaic power output by 2030 if the moderate scenarios were considered (GR_{PhV-1} and GR_{PhV-2}), i.e., 11.5% of the national goal, or a little bit more than 6.5 GW in the most promising scenario (GR_{PhV-3} corresponding to about 12.7% of the national goal). In the most conservative scenario (GR_{PhV-4}), it could be possible to reach around 5.5 GW of photovoltaic power by 2030 overall, corresponding to about 10.5% of the national goal. The evaluated trends confirm the need for specific national incentives to increase the number of photovoltaic installations by 2030.

The energy produced and supplied by photovoltaic systems, with the respect to the electrical energy consumption of the building stock, was thus analyzed; the comparison is shown in Figures 5–9 for each considered zone (disaggregated data are reported in Appendix A). The energy required for the residential sector was assessed over the year by adopting the estimated mean GR_{EC} , as reported in Table 10.

Figure 5. Energy requirements for the buildings sector, energy production, and energy requirements potentially met by photovoltaic panels by 2050 for various growth rates: the Northwest area of Italy.

Figure 6. Energy requirements for the buildings sector, energy production, and energy requirements potentially met by photovoltaic panels by 2050 for various growth rates: the Northeast area of Italy.

Figure 7. Energy requirements for the buildings sector, energy production, and energy requirements potentially met by photovoltaic panels by 2050 for various growth rates: the central area of Italy.

Figure 8. Energy requirements for the buildings sector, energy production, and energy requirements potentially met by photovoltaic panels by 2050 for various growth rates: the South area of Italy.

Figure 9. Energy requirements for the buildings sector, energy production, and energy requirements potentially met by photovoltaic panels by 2050 for various growth rates: the Islands of Italy.

Relevant findings can be highlighted in these figures:

- 1. Northwest zone: the energy supplied by photovoltaic panels could potentially exceed 5500 GWh in all of the GR_{PhV} scenarios, allowing 40% to 50% of the electrical energy requirements by the building stock to be met, depending on the growth rate. It is worth noting that the blue lines in Figures 5–9 (representing the electrical energy to be covered by other energy sources) always have a downward concavity, indicating the good impact of these technologies already in this zone;
- 2. Northeast zone: the energy supplied by photovoltaic panels could potentially reach 7100 GWh even with low growth rates (GR_{PhV-4}), covering more than 50% of the predicted electrical energy requirements of the building stock by 2050 (the red line crosses the blue line). Moreover, in the most promising scenario (GR_{PhV-3}), the energy produced by photovoltaic panels could potentially reach more than 10,000 GWh, meeting more than 74% of electrical energy requirements;
- 3. Centre zone: although a smaller growth than in the northern area of Italy, it could be possible to meet 27–39% of the electrical energy requirements of the building stock by 2050. In that case, the most probable scenarios (GR_{PhV-1} and GR_{PhV-2}) showed an energy coverage of 30–32% by achieving a potential energy production of around 3700–4000 GWh. However, these results pointed out that it could be necessary to take specific energy actions to reach the 50% threshold;
- 4. South zone: a completely different trend can be observed in this zone, which could underline possible issues of these regions to achieve the national target by 2050, where Puglia and Campania alone could produce more than 65% of the whole photovoltaic energy production. Nevertheless, the energy production would not exceed 6200 GWh, even in the most optimistic scenario (GR_{PhV-3}), which would allow the meeting of 38% of the predicted electrical energy requirements of the building stock. The evaluated trends highlighted significant issues for all of these regions mainly due to the limited number of installations recorded to date. In this case, it could also be necessary to implement additional actions to reach the 50% threshold;
- 5. Islands: similar to the South zone, the results have also underlined how far away the target is for the Islands zone, even if the Sicilia region alone could produce more than 1200–1500 GWh on average. The produced energy in that zone could allow between 13% (GR_{PhV-4}) and 28% (GR_{PhV-3}) of electrical energy requirements to be met, with an average and most probable outcome of 19–20%; therefore, additional specific energy actions should also be considered to reach the 50% threshold in this area.

As stated, all of the scenarios are potentially feasible since the required roof surface area would always be less than the estimated value (equal to around 450 km² overall). In fact, only in the Northeast area of Italy, could almost 80% of the roof surface be required, whilst, in all of the other zones, relevant room for improvement can be highlighted. In particular, when considering the produced energy and the available roof surface area, the northwestern area seems to be the area with the greatest power output potential, an area already widely distributed with this technology.

Furthermore, it is pertinent to underscore that, theoretically, the installable power on the roof surface areas (the estimated roof surface area could be around 450 km²) could exceed 72 GW, enabling the production of over 79,000 GWh of energy. When compared to national objectives, namely a 55% reduction in emissions and the installation of 52 GW of new photovoltaic capacity by 2030, these objectives may potentially be achievable solely through the utilization of existing building roof surface areas, without the need for additional land use. However, the analyses have revealed the necessity of a region-specific incentive system tailored to the real potential, in terms of available surface area.

In addition to this cautionary scenario, a further analysis was performed in which the development rate of photovoltaic technology was also taken into account. For this analysis, the mean DR_{P-PhV} defined in Table 6 was considered for each region. A comparison between the two forecasting analyses (with and without considering DR_{P-PhV}) was, therefore, carried out. The results shown in Table 11 are for two representative years (2030 and 2050) and the

average scenario (GW_{PhV-2}), highlighting that further development of this technology could help to reach a higher energy production by 2050 (around 26,000 GWh), i.e., increasing potential energy production by around 6% overall.

Table 11. Comparison between the energy production with and without considering the development rates of photovoltaic power (GR_{P-PhV}), i.e., with and without taking into account the predicted improvements in photovoltaic technology.

National	Energy Forecastin	g without DR _{P-PhV}	Energy Forecasting with DR _{P-PhV}		
Zones	2030	2050	2030	2050	
Northwest	1513.8	7016.7	1623.3	7537.5	
Northeast	1994.5	8630.8	2122.5	9207.1	
Centre	1039.4	4071.6	1098.3	4313.8	
South	994.7	3188.1	1046.7	3358.6	
Islands	644.8	1875.0	676.9	1970.5	
Italy	6187.2	24,782.2	6567.7	26,387.4	

Nevertheless, since the developments of this technology in the future are neither available nor foreseeable, the forecasting analysis carried out without DR_{P-PhV} can be considered a more conservative scenario.

In this light, a new index has been introduced, namely the regional potential index (RPI), defined as the ratio between the photovoltaic power installed by three chosen reference years (2021, 2030, and 2050) and the theoretical maximum that could be installed on the calculated optimal roof surface area (around 450 km²). For this analysis, the photovoltaic forecasting results with GR_{PhV-2} were considered since it is the average trend in many national regions.

The results of the RPI assessment are reported in Figure 10, where the blue, red, and green lines are the assessed RPI for each region by 2021 (actual situation), 2030, and 2050. It is worth noting that the closer the RPI gets to 0%, the greater the photovoltaic potential of the region, i.e., much of the calculated roof surface area could still be available for new installations.

The figure shows that the RPI could potentially be lower than 40% by 2050 in all of the southern regions, reflecting their great potential to realize new installations also in the following years. Many northern and central regions have an RPI closer to or greater than 40%; in particular, the Veneto region reaches an RPI in the order of 90%, indicating the possible saturation of the roof surface area a few years after 2050. It is worth noting that although the different potential of the regions, in terms of the available roof surface area, all of the northern and central regions have shown a similar trend in RPI, indicating similar actions in using and placing photovoltaic panels based on their energy requirements and potential. On the other hand, the South and Islands regions have shown a greater potential from 2050 (RPI lower than 30–40%), highlighting a currently lower photovoltaic diffusion in these zones. Furthermore, a greater gap between the 2030 and 2050 lines can also be observed but only in a few regions (such as Veneto and Marche); this trend could indicate that in those regions, the growth rate of new photovoltaic installations could be more marked (tending more towards an exponential rather than linear trend). On the other hand, in all other regions, the smaller differences between these two lines could indicate a greater need to adopt appropriate incentive actions to increase the number of new installations.

It is worth noting that none of the analyses took into account the effects of climatic change. As already known, climatic change can significantly affect the productivity of photovoltaic panels; however, it is difficult to understand or forecast these effects due to various environmental factors. For instance, increased temperatures and extreme weather events, such as droughts, floods, and storms, could reduce photovoltaic efficiency. Dust and air pollution on the surface of solar panels can reduce their ability to absorb sunlight and convert it into electricity. Furthermore, changes in cloud cover and atmospheric conditions can impact the amount and intensity of sunlight that reaches the panels, resulting in a

decrease in their overall productivity. All of these factors can have a significant impact on the productivity of photovoltaic panels and should be considered when evaluating the potential effects of climate change on renewable energy production.

Figure 10. Regional Potential Index (RPI) calculated for each region and different years: 2021 (current situation), 2030 (red lines), and 2050 (green lines).

According to this premise, climate change can negatively influence the assessed producibility of photovoltaic panels through various environmental factors; however, many of these influences are still being researched, and it was not possible to forecast or include the real influence of climate change on our analysis. The study of its effects on the producibility of photovoltaic panels could be investigated in a medium-to-long-term study.

4. Conclusions

The International Energy Agency (IEA) has indicated solar photovoltaic systems as a key player in the country's energy mix. Italy has set a target of achieving 52 GW of photovoltaic capacity by 2030, which is two and a half times the capacity recorded in 2020. Therefore, solar photovoltaic energy could be crucial for meeting increasing energy needs while reducing greenhouse gas emissions, both in Europe and Italy. Despite the potential and convenience of solar photovoltaic energy, there are several challenges associated with solar photovoltaic energy, such as the intermittent nature of the source, the significant land use required for its implementation, and the high levels of bureaucracy and regulatory uncertainties. Nevertheless, photovoltaic systems play a key role in national energy policies, with new decrees being issued to reduce the bureaucracy and promote new installations of photovoltaic systems on the roofs of existing buildings.

In this framework, this study aims to evaluate the photovoltaic potential and energy production in the national context, without consuming additional land, by focusing only on the roof surface area of existing buildings. The study aims to answer three key points (KP) to assess the potential and critical issues associated with the implementation of national policies.

The study found that the roof surfaces of existing buildings offer a potential area of around 450 km², with considerable growth potential in several regions across Italy (KP1). Theoretically, the installable power on the roof surfaces could exceed 72 GW, enabling the production of over 79,000 GWh of energy (KP2). When compared to national objectives, namely the installation of 52 GW of new photovoltaic capacity by 2030, these objectives may potentially be achievable solely through the utilization of the roof surfaces of existing buildings, without the need for additional land use (KP3). However, the most probable scenarios have shown that it could be possible to reach only around 6 GW of photovoltaic power by 2030 overall, i.e., 11.5% of the national goal (KP2), indicating the need for a region-specific incentive system tailored to the real potential of each national zone (in terms of available surface area).

Moreover, the energy production in the moderate scenarios could only meet around 10% of the electricity needs of residential buildings, with an estimated production of around 6200 GWh at the national level (KP2-KP3). By 2050, photovoltaic production could potentially cover more than 38% of the energy needs but would still fall short of national and European targets. In the most promising scenarios, it could be possible to cover almost 50% of the electricity consumption by 2050 with long-term energy incentives (KP2-KP3). The use of the roof surface of existing buildings can help to reduce the land use required for this type of application; however, it is not enough to achieve the ambitious energy targets by 2030. Nevertheless, some regions of Italy, such as Veneto, Emilia Romagna, and Lombardia, could come close to meeting national targets but only by 2050, even in a moderate scenario, indicating the need to develop different forms of energy incentives in the national context. Although this study has considered the more conservative scenarios, it did not take into account the effects of climatic change, which can negatively influence the assessed energy production of photovoltaic panels due to various environmental factors. To evaluate the influence of climatic change on the present forecasting analysis a medium-to-long-term study should be carried out.

Finally, based on these results, a new index, namely the regional potential index, was also defined as the ratio between the photovoltaic power installed and the theoretical maximum that could be installed based on the calculated optimal roof surface areas. This index can be used to evaluate the photovoltaic potential for each region and it could be useful as support for the development of specific incentives based on the real availability of roof surface areas of the regions. Author Contributions: Conceptualization, D.P.; methodology, D.P.; software, D.P.; validation, D.P.; formal analysis, D.P.; investigation, D.P.; resources, D.P. and N.C; data curation, D.P.; writing—original draft preparation, D.P.; writing—review and editing, D.P.; visualization, D.P.; supervision, D.P. and N.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data elaboration is from a new design analysis carried out consistently within the aim of this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviation

- BU Building units
- C Centre
- DE Difference between energy consumption and energy produced by photovoltaic panels
- DR Development rate
- EC Energy consumption
- GR Growth rate
- I Islands
- KP Key point
- MFH Multi-family house
- NE Northeast
- NW Northwest
- P Power
- PhV Photovoltaics
- RPI Regional potential index
- S South
- SFH Single-family house

Appendix A

Table A1. Building distribution (absolute values): breakdown by geographical area of Italy, number of building floors, and building type (single-family house—SFH and multi-family house—MFH).

	SF	Ή					MFH				
Zones	1 Floor		2 Floors			3 Floors			≥4 F	loors	
	n. 1	n. 1	n. 2	n. 3–4	n. 2	n. 3–4	n. 5–8	n. 3–4	n. 5–8	n. 9–15	n. ≥16
Piemonte	2,083,389	4,458,357	1,232,233	290,666	1,506,062	407,623	646,827	728,390	71,870	324,261	219,559
Valle d'Aosta	82,127	475,443	51,209	5690	147,405	24,361	39,776	55,212	4420	25,045	21,953
Liguria	3135	15,452	0	0	11,400	2050	2670	5125	297	1056	701
Lombardia	29,963	86,319	25,020	2780	34,336	10,097	19,193	22,462	2133	13,698	14,919
Trentino Alto Adige	135,547	519 <i>,</i> 959	170,355	118,771	208,211	61,571	106,533	35,156	13,047	57,984	44,248
Veneto	10,893	65,281	0	0	47,781	9288	17,109	23,219	1901	5617	3110
Friuli Venezia Giulia	93,862	478,762	118,525	69,672	144,863	32,775	47,210	12,265	12,832	23,705	10,824
Emilia Romagna	35,916	156,712	0	0	57,459	6240	12,549	15,600	1394	8393	4217
Toscana	60,500	310,998	93,821	28,403	114,671	33,069	60,398	54,270	6711	30,295	15,597
Umbria	79,859	279,145	79,127	42,309	96,711	29,111	48,438	30,468	5382	21,313	11,218
Marche	15,817	86,717	16,748	1861	37,430	7007	8708	15,656	968	3661	1946
Lazio	21,253	122,228	21,674	2408	63,507	12,725	20,476	29,404	2275	8801	3501
Abruzzo	153,357	220,709	81,749	63,115	99,916	31,844	41,628	16,496	19,242	33,933	27,743
Molise	44,813	153,658	16,368	1819	60,139	11,102	15,242	25,937	1694	6716	3775
Campania	13,351	48,913	0	0	17,693	2383	2806	5957	312	1412	977
Puglia	159,125	270,142	97,531	98,438	119,205	28,335	26,714	0	32,444	22,885	18,287
Basilicata	427,892	160,169	76,919	81,820	94,012	0	0	0	39,413	19,612	13,488
Calabria	39,307	53,922	14,972	1664	19,950	4978	6364	10,781	707	2493	1133
Sicilia	138,784	217,662	48,505	5389	80,147	19,152	25,177	42,491	2797	9583	4677
Sardegna	400,175	477,253	56,842	6316	226,965	39,849	48,536	93 <i>,</i> 306	5393	21,251	13,485

Umbria

Marche Lazio

Abruzzo

Molise

Campania

Puglia

Basilicata

Calabria

Sicilia

Sardegna

86,717

122,228

220,709

153,658

48,913

270,142

160,169

53,922

217,662

477,253

216,538

15,817

21,253

153,357

44,813

13,351

159,125

427,892

39,307

138,784

400,175

137,713

7444

9633

252,459

7275

0

393,751

327,280

6654

21,558

25,263

15,472

33,496

43,348

163,499

32,737

0

195,062

153,838

29,945

97,009

113,684

69,622

	SI	FH					MFH				
Zones	1 Floor		2 Floors			3 Floors			\geq 4 F	loors	
	n. 1	n. 1	n. 2	n. 3–4	n. 2	n. 3–4	n. 5–8	n. 3–4	n. 5–8	n. 9–15	n. ≥16
Piemonte	82,127	475,443	102,418	22,760	294,810	97,442	238,658	220,846	26,518	300,540	526,872
Valle d'Aosta	3135	15,452	0	0	22,800	8200	16,022	20,500	1780	12,672	16,824
Liguria	29,963	86,319	50,040	11,120	68,672	40,387	115,160	89,849	12,796	164,376	358,056
Lombardia	135,547	519,959	340,709	475,085	416,423	246,283	639,197	140,623	78,283	695,808	1,061,952
Trentino Alto Adige	10,893	65,281	0	0	95,562	37,151	102,654	92,877	11,406	67,404	74,640
Veneto	93,862	478,762	237,049	278,690	289,727	131,101	283,259	49,062	76,993	284,460	259,776
Friuli Venezia Giulia	35,916	156,712	0	0	114,918	24,960	75,292	62,400	8366	100,716	101,208
Emilia Romagna	60,500	310,998	187,643	113,610	229,341	132,277	362,389	217,081	40,265	363,540	374,328
Toscana	79,859	279,145	158,254	169,236	193,422	116,442	290,628	121,870	32,292	255,756	269,232

28,027

50,899

127,377

44,409

9531

113,341

0

19,911

76,608

159,394

41,697

74,860

127,014

199,832

120,277

35,386

238,410

188,024

39,899

160,295

453,930

104,636

62,625

117,616

65,984

103,748

23,829

0

0

43,123

169,962

373,223

88,771

52,245

122,855

249,766

91,454

16,837

160,285

0

38,183

151,060

291,217

85,369

43,932

105,612

407,196

80,592

16,944

274,620

235,344

29,916

114,996

255,012

81,696

5805

13,651

115,454

10,162

1871

194,663

236,478

4243

16,784

32,357

9485

46,704

84,024

665,832

90,600

23,448

438,888

323,712

27,192

112,248

323,640

90,240

Table A2. Building units distribution (absolute values): breakdown by geographical area of Italy, numf huilding fl d huilding trops (single family h CELI . . . ulti familu k MITT I)

Table A3. Total net surface area distribution (absolute values in km²) of building units (BU): breakdown by geographical area of Italy (Northwest, Northeast, Centre, South, and Islands) and building type (single-family house—SFH and multi-family house—MFH).

Deril din e Terre				Net Surfac	e Distribu	tion of the	Building U	J nits (km²)		
Building Type	Area —	≤29	30–39	40–49	50-59	60–79	80–99	100–119	120–149	≥ 150
	Northwest	0.00	0.22	1.15	2.84	13.25	21.72	18.33	17.45	27.77
	Northeast	0.00	0.12	0.69	1.74	9.36	18.25	19.79	20.40	35.66
SFH	Centre	0.00	0.15	0.76	1.90	9.69	17.41	16.57	14.84	21.76
	South	0.00	0.31	1.34	3.04	15.87	37.16	38.98	36.09	47.29
	Islands	0.00	0.21	0.96	2.14	10.63	23.48	28.72	27.59	33.67
	Northwest	0.03	0.72	2.41	4.31	15.62	22.70	16.62	13.74	18.71
	Northeast	0.01	0.18	0.68	1.26	5.50	9.04	8.36	7.76	12.50
MFH (2 floors)	Centre	0.01	0.31	0.96	1.74	6.75	9.18	7.08	5.52	7.30
	South	0.02	0.41	1.09	1.80	7.35	13.79	11.71	8.78	10.05
	Islands	0.00	0.06	0.17	0.28	1.08	1.96	2.05	1.65	1.77
	Northwest	0.03	0.90	2.99	5.36	19.51	27.80	20.29	16.83	23.22
	Northeast	0.01	0.25	0.91	1.67	7.15	11.43	10.39	9.33	14.56
MFH (3 floors)	Centre	0.01	0.33	1.01	1.84	7.27	10.22	8.03	6.26	8.22
	South	0.01	0.24	0.64	1.06	4.29	7.81	6.81	5.19	6.00
	Islands	0.01	0.24	0.68	1.09	4.23	7.71	8.10	6.32	6.66
	Northwest	0.03	0.73	2.43	4.36	15.90	22.46	16.33	13.52	18.69
	Northeast	0.01	0.17	0.60	1.11	4.71	7.45	6.67	5.91	9.10
MFH (≥ 4 floors)	Centre	0.01	0.30	0.94	1.70	6.56	8.97	6.96	5.41	7.10
	South	0.01	0.26	0.68	1.13	4.63	8.71	7.52	5.76	6.62
	Islands	0.01	0.16	0.44	0.70	2.74	5.00	5.25	4.10	4.33

N/									Na	tional	Regio	ons								
Years	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2016	210	9	27	387	86	399	127	281	153	68	104	206	82	19	131	193	35	118	252	170
2017	231	10	31	435	100	446	136	321	173	80	123	241	105	22	150	244	39	138	294	195
2018	222	10	31	440	97	457	138	312	164	74	114	232	99	20	144	229	36	128	281	177
2019	246	11	31	484	99	477	140	343	178	81	124	251	107	22	157	245	38	140	300	194
2020	237	11	34	500	95	519	150	344	176	81	121	269	103	22	162	241	38	137	304	191
2021	247	10	36	533	92	559	152	353	182	76	117	262	97	20	161	227	35	133	291	180
2022	248	11	34	505	99	518	148	351	182	80	124	264	105	22	161	246	39	140	307	193
2023	263	10	38	578	101	573	159	374	186	78	120	264	100	20	161	228	35	127	275	173
2024	280	11	40	627	105	622	167	402	198	81	127	285	107	21	172	244	37	133	293	181
2025	299	12	43	681	109	675	176	431	210	84	134	308	114	21	184	260	39	141	313	189
2026	319	12	47	740	113	733	185	463	223	87	142	332	121	22	196	278	40	148	333	198
2027	340	13	50	803	117	795	195	498	237	91	150	358	129	23	209	297	42	156	355	207
2028	362	14	53	872	122	863	206	535	252	95	158	387	137	24	223	318	44	164	378	216
2029	386	14	57	947	127	936	217	574	268	98	167	417	146	25	238	340	46	173	403	226
2030	411	15	61	1029	132	1016	228	617	285	102	177	450	155	26	254	363	48	183	430	236
2031	439	16	66	1117	137	1103	240	663	303	106	187	486	165	27	270	388	50	192	458	247
2032	468	17	71	1213	143	1197	253	712	322	111	198	524	176	28	289	414	53	203	488	258
2033	498	18	76	1317	148	1299	266	765	343	115	209	566	187	30	308	443	55	214	520	270
2034	531	19	81	1430	154	1409	281	821	364	120	221	611	199	31	328	473	58	225	554	282
2035	566	20	87	1553	160	1529	295	882	387	125	233	659	212	32	350	506	60	237	590	295
2036	604	21	93	1686	167	1660	311	948	412	130	247	711	226	34	374	540	63	250	629	308
2037	644	22	100	1831	173	1801	328	1018	438	135	261	767	240	35	398	578	66	263	670	322
2038	686	23	107	1988	180	1954	345	1094	465	140	276	828	256	36	425	617	69	277	714	337
2039	731	24	115	2159	188	2121	363	1175	494	146	291	893	272	38	453	660	72	292	761	352
2040	779	26	123	2345	195	2301	383	1262	526	152	308	964	290	39	484	705	75	308	811	368
2041	831	27	132	2546	203	2497	403	1356	559	158	326	1040	308	41	516	753	79	324	864	384
2042	886	29	142	2765	211	2710	424	1456	594	164	344	1122	328	43	550	805	82	342	921	402
2043	944	30	152	3002	219	2941	447	1564	631	171	364	1211	349	45	587	860	86	360	981	420
2044	1006	32	163	3260	228	3192	471	1680	671	178	385	1307	372	46	626	919	90	379	1046	439
2045	1073	33	175	3540	237	3463	496	1805	714	185	407	1410	396	48	668	982	94	400	1115	459
2046	1144	35	188	3844	246	3758	522	1939	759	192	430	1522	421	50	713	1050	98	421	1188	480
2047	1219	37	201	4174	256	4079	550	2083	806	200	454	1642	448	52	760	1122	103	444	1266	502
2048	1300	39	216	4532	266	4426	579	2237	857	208	480	1772	477	55	811	1199	108	467	1349	524
2049	1385	41	231	4922	277	4803	610	2403	911	216	508	1912	508	57	865	1281	112	492	1437	548
2050	1477	43	248	5344	288	5212	642	2582	969	225	537	2063	540	59	923	1369	118	519	1531	573

Table A4.	Energy	production	obtained	from	forecasting	analy	vsis:	scenario r	ı. 1	(GR_{PhV-1})	
140101111	Licity	production	obtanica	mom	iorecability	, and y	1010. 1	occitatio i		(Ortrny-I)	•

1—Piemonte, 2—Valle d'Aosta, 3—Liguria, 4—Lombadia, 5—Trentino Alto Adige, 6—Veneto, 7—Friuli Venezia Giulia, 8—Emilia Romagna, 9—Toscana, 10—Umbria, 11—Marche, 12—Lazio, 13—Abruzzo, 14—Molise, 15—Campania, 16—Puglia, 17—Basilicata, 18—Calabria, 19—Sicilia, and 20—Sardegna.

Ta	ab	le	A5	. Enerş	gy proc	duction	obtained	from	forecasting	analysis:	scenario	n. 2	(Gl	R _{PhV-2}).

N									Na	tional	Regio	ons								
Years	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2016	210	9	27	387	86	399	127	281	153	68	104	206	82	19	131	193	35	118	252	170
2017	231	10	31	435	100	446	136	321	173	80	123	241	105	22	150	244	39	138	294	195
2018	222	10	31	440	97	457	138	312	164	74	114	232	99	20	144	229	36	128	281	177
2019	246	11	31	484	99	477	140	343	178	81	124	251	107	22	157	245	38	140	300	194
2020	237	11	34	500	95	519	150	344	176	81	121	269	103	22	162	241	38	137	304	191
2021	247	10	36	533	92	559	152	353	182	76	117	262	97	20	161	227	35	133	291	180
2022	249	11	34	504	99	517	148	351	183	81	124	264	104	22	162	243	39	140	305	193
2023	264	11	38	576	101	571	160	376	186	80	120	266	98	20	163	222	35	128	272	173
2024	283	11	41	625	106	618	168	404	198	84	127	287	103	20	175	235	37	135	288	181
2025	302	12	44	677	111	669	178	435	211	88	134	311	109	21	188	247	39	143	305	189
2026	323	12	47	735	116	724	188	469	224	93	142	336	115	22	202	261	40	151	324	198
2027	345	13	50	797	121	784	198	505	239	97	150	364	121	23	216	275	42	159	343	207
2028	369	14	54	864	126	848	209	543	254	102	159	393	127	24	232	291	44	169	363	217

N									Na	tional	Regio	ons								
Years	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2029	394	15	58	937	132	918	221	585	270	108	168	425	134	25	249	307	46	178	385	227
2030	421	15	62	1016	138	994	233	630	288	113	178	460	141	25	267	323	48	189	408	237
2031	450	16	66	1101	144	1076	246	678	306	119	189	498	149	26	287	341	50	199	432	248
2032	481	17	71	1194	150	1165	259	730	326	125	199	538	157	27	308	360	53	211	457	259
2033	514	18	76	1295	157	1261	274	786	347	132	211	582	165	29	330	380	55	223	485	271
2034	549	19	82	1404	164	1365	289	846	369	139	223	630	174	30	355	401	58	236	513	284
2035	587	20	88	1522	171	1478	305	911	393	146	236	681	183	31	380	423	60	249	544	297
2036	627	21	94	1651	179	1600	322	981	418	154	250	737	193	32	408	446	63	263	576	311
2037	670	22	101	1790	187	1732	340	1056	445	162	264	797	204	33	438	471	66	279	610	325
2038	716	24	109	1941	195	1875	359	1137	473	170	280	862	215	34	470	497	69	295	647	340
2039	766	25	117	2104	204	2030	379	1224	504	179	296	933	226	36	504	524	72	311	685	355
2040	818	26	125	2282	213	2197	400	1318	536	188	313	1009	238	37	541	553	75	329	726	372
2041	874	28	134	2474	223	2379	422	1419	570	198	331	1091	251	38	581	583	79	348	769	389
2042	935	29	144	2683	233	2575	445	1528	607	208	351	1180	264	40	623	615	83	368	815	407
2043	999	31	155	2909	243	2788	470	1645	646	219	371	1276	278	41	669	649	86	389	863	425
2044	1067	33	166	3155	254	3018	496	1771	687	230	393	1381	293	43	718	685	90	412	914	445
2045	1141	35	178	3421	265	3267	524	1906	731	242	415	1493	309	45	770	723	94	435	969	465
2046	1219	36	191	3709	277	3536	553	2052	778	255	439	1615	325	46	826	762	99	460	1026	487
2047	1303	38	205	4022	290	3828	584	2210	828	268	465	1747	343	48	887	804	103	487	1087	509
2048	1392	41	220	4361	303	4144	616	2379	881	282	492	1890	361	50	951	849	108	515	1152	533
2049	1488	43	236	4729	316	4486	650	2561	938	297	521	2044	380	52	1021	895	113	544	1220	557
2050	1590	45	253	5128	330	4857	686	2758	998	312	551	2211	401	54	1095	945	118	575	1292	583

1—Piemonte, 2—Valle d'Aosta, 3—Liguria, 4—Lombadia, 5—Trentino Alto Adige, 6—Veneto, 7—Friuli Venezia Giulia, 8—Emilia Romagna, 9—Toscana, 10—Umbria, 11—Marche, 12—Lazio, 13—Abruzzo, 14—Molise, 15—Campania, 16—Puglia, 17—Basilicata, 18—Calabria, 19—Sicilia, and 20—Sardegna.

Table A6. Energy production	obtained from fore	ecasting analysis:	scenario n. 3 (GR _{PhV-3}	₃).
-----------------------------	--------------------	--------------------	------------------------------------	-----------------

Maria									Na	tional	Regio	ons								
rears	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2016	210	9	27	387	86	399	127	281	153	68	104	206	82	19	131	193	35	118	252	170
2017	231	10	31	435	100	446	136	321	173	80	123	241	105	22	150	244	39	138	294	195
2018	222	10	31	440	97	457	138	312	164	74	114	232	99	20	144	229	36	128	281	177
2019	246	11	31	484	99	477	140	343	178	81	124	251	107	22	157	245	38	140	300	194
2020	237	11	34	500	95	519	150	344	176	81	121	269	103	22	162	241	38	137	304	191
2021	247	10	36	533	92	559	152	353	182	76	117	262	97	20	161	227	35	133	291	180
2022	250	11	34	508	100	522	149	353	184	81	125	266	108	22	163	253	39	141	311	195
2023	267	11	38	586	103	582	160	379	189	81	122	268	106	20	164	240	37	129	283	176
2024	287	11	41	641	109	636	170	409	203	86	130	292	115	21	177	264	39	137	306	186
2025	309	12	45	700	115	696	179	443	217	91	138	317	126	22	190	289	41	146	330	196
2026	332	13	48	766	121	761	190	479	233	97	147	345	137	24	205	317	44	155	356	207
2027	357	14	52	838	127	832	201	517	250	103	157	375	150	25	220	348	47	164	385	218
2028	383	15	56	916	134	910	213	559	268	109	167	407	164	26	237	382	50	175	416	230
2029	412	16	61	1001	141	995	225	605	287	116	178	443	179	28	255	419	53	186	449	243
2030	443	17	65	1095	149	1087	238	654	308	123	189	481	195	29	274	459	57	197	485	256
2031	476	18	71	1197	157	1189	252	707	330	130	201	523	213	31	295	504	60	210	524	270
2032	511	19	76	1309	165	1300	266	764	354	138	214	569	233	32	318	553	64	223	566	285
2033	550	20	82	1431	174	1421	282	826	379	147	228	619	254	34	342	606	68	237	611	301
2034	591	21	89	1565	183	1554	298	893	407	156	243	672	278	36	368	665	73	252	660	317
2035	635	23	96	1711	193	1699	315	966	436	165	259	731	303	38	396	729	77	267	712	335
2036	682	24	104	1871	203	1858	334	1044	467	176	276	795	331	40	426	800	82	284	769	353
2037	733	26	112	2046	214	2031	353	1129	501	186	294	864	362	42	458	877	87	302	831	373
2038	788	28	121	2237	226	2221	374	1220	537	198	313	939	395	44	493	962	93	321	898	393
2039	847	29	131	2446	238	2428	395	1319	576	210	333	1021	431	47	530	1056	99	341	969	415
2040	910	31	141	2675	251	2655	418	1426	617	223	355	1110	471	49	571	1158	105	362	1047	437

25 of 28

Table A5. Cont.

N									Nat	tional	Regio	ons								
rears	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2041	978	33	152	2925	264	2903	442	1542	662	237	378	1206	514	52	614	1270	112	385	1131	462
2042	1051	36	165	3198	278	3174	468	1667	710	251	403	1312	561	55	661	1393	119	409	1221	487
2043	1130	38	178	3497	293	3470	495	1803	761	266	429	1426	613	57	711	1529	127	435	1319	514
2044	1214	40	192	3824	309	3794	524	1949	816	283	457	1550	669	61	765	1677	135	462	1424	542
2045	1305	43	207	4181	325	4149	554	2107	874	300	486	1685	731	64	824	1839	144	491	1538	572
2046	1403	46	224	4572	343	4536	587	2278	938	319	518	1832	798	67	886	2017	153	522	1661	603
2047	1508	49	242	4999	361	4960	621	2463	1005	338	552	1991	871	71	954	2213	163	555	1794	636
2048	1620	52	261	5466	380	5423	657	2663	1078	359	588	2165	952	75	1026	2428	173	589	1938	671
2049	1741	55	282	5977	401	5929	695	2879	1155	381	626	2353	1039	79	1104	2663	184	626	2093	708
2050	1871	59	304	6535	422	6483	735	3112	1239	404	666	2558	1135	83	1188	2921	196	666	2261	747

1—Piemonte, 2—Valle d'Aosta, 3—Liguria, 4—Lombadia, 5—Trentino Alto Adige, 6—Veneto, 7—Friuli Venezia Giulia, 8—Emilia Romagna, 9—Toscana, 10—Umbria, 11—Marche, 12—Lazio, 13—Abruzzo, 14—Molise, 15—Campania, 16—Puglia, 17—Basilicata, 18—Calabria, 19—Sicilia, and 20—Sardegna.

Table A7. Energy production obtained from forecasting analysis: scenario n.	. 4 (GK _{PhV-4}	ı).
---	--------------------------	-----

Years									Na	tional	Regio	ons								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2016	210	9	27	387	86	399	127	281	153	68	104	206	82	19	131	193	35	118	252	170
2017	231	10	31	435	100	446	136	321	173	80	123	241	105	22	150	244	39	138	294	195
2018	222	10	31	440	97	457	138	312	164	74	114	232	99	20	144	229	36	128	281	177
2019	246	11	31	484	99	477	140	343	178	81	124	251	107	22	157	245	38	140	300	194
2020	237	11	34	500	95	519	150	344	176	81	121	269	103	22	162	241	38	137	304	191
2021	247	10	36	533	92	559	152	353	182	76	117	262	97	20	161	227	35	133	291	180
2022	246	11	34	501	97	513	148	349	181	79	123	262	102	21	160	238	38	139	302	192
2023	259	10	37	569	98	563	158	369	183	75	118	261	95	19	159	214	34	125	267	170
2024	274	11	40	614	101	606	165	395	193	77	124	280	98	20	168	221	35	131	280	176
2025	290	11	42	661	103	652	173	421	203	79	130	300	102	20	178	229	36	137	294	182
2026	306	12	45	713	106	701	182	450	214	81	136	322	105	21	189	237	37	143	309	189
2027	324	12	48	768	109	754	191	480	225	83	143	346	109	21	200	245	38	150	324	196
2028	342	13	51	828	112	811	200	513	237	85	150	371	113	22	211	254	38	157	341	203
2029	362	13	55	893	115	872	210	548	250	87	157	397	117	23	224	262	39	164	357	210
2030	383	14	58	962	118	938	220	585	264	89	165	426	121	23	237	272	40	172	375	218
2031	405	14	62	1037	121	1009	231	625	278	91	173	457	125	24	251	281	41	180	394	226
2032	428	15	66	1118	124	1085	242	667	293	93	181	490	130	24	266	291	43	188	413	234
2033	453	16	71	1205	128	1167	254	713	309	95	190	526	134	25	281	301	44	197	434	242
2034	479	16	75	1299	131	1256	266	761	325	98	199	564	139	26	298	311	45	206	456	251
2035	506	17	80	1400	135	1351	279	813	343	100	209	605	144	26	315	322	46	216	478	260
2036	535	18	86	1509	138	1453	293	868	361	102	219	649	149	27	334	333	47	226	502	269
2037	566	19	91	1626	142	1563	307	927	381	105	230	696	155	28	354	345	48	236	527	279
2038	599	19	97	1753	146	1681	322	990	401	107	241	746	160	29	374	357	49	247	553	289
2039	633	20	104	1889	149	1808	338	1057	423	110	253	800	166	29	396	369	51	259	581	299
2040	670	21	111	2036	153	1944	355	1129	446	113	265	858	172	30	420	382	52	271	609	310
2041	708	22	118	2195	158	2091	372	1205	470	115	278	921	178	31	444	396	53	284	640	321
2042	749	23	126	2366	162	2250	390	1287	495	118	291	987	184	32	470	409	55	297	671	333
2043	792	24	134	2550	166	2420	409	1374	522	121	306	1059	191	33	498	423	56	311	705	345
2044	837	25	143	2748	171	2602	429	1468	550	124	320	1136	197	34	527	438	57	325	740	357
2045	886	26	152	2962	175	2799	450	1567	579	127	336	1218	204	35	558	453	59	340	777	370
2046	937	27	162	3193	180	3011	472	1674	610	130	352	1306	212	35	591	469	60	356	815	383
2047	990 1047	28	173	3441	185	3238	495	1787	643	133	370	1401	219	36	626	486	62	373	856	397
2048	1047	29	184	3709	190	3483	520	1909	678	136	388	1503	227	37	663	502	63	390	898	412
2049	1108	31	197	3998	195	3747	545	2038	715	139	407	1612	235	38	701	520	65	408	943	426
2050	1171	32	210	4309	200	4030	572	2177	753	143	426	1728	243	39	743	538	67	427	990	442

1—Piemonte, 2—Valle d'Aosta, 3—Liguria, 4—Lombadia, 5—Trentino Alto Adige, 6—Veneto, 7—Friuli Venezia Giulia, 8—Emilia Romagna, 9—Toscana, 10—Umbria, 11—Marche, 12—Lazio, 13—Abruzzo, 14—Molise, 15—Campania, 16—Puglia, 17—Basilicata, 18—Calabria, 19—Sicilia, and 20—Sardegna.

Table A6. Cont.

References

- 1. European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. 2019. Available online: https://eur-lex.europa.eu/legal-content/IT/TXT/?uri=CELEX:52019DC0640 (accessed on 10 November 2022).
- Italian Institute for Environmental Protection and Research. Efficiency and Decarbonization Indicators of the National Energy System and the Electricity Sector. 2022. Available online: https://www.isprambiente.gov.it/files2022/pubblicazioni/rapporti/r3 63-2022.pdf (accessed on 10 November 2022). (In Italian)
- 3. Ministry of Ecological Transition. Annual Report on the National Energy Situation. Data 2021. Available online: https://dgsaie.mise.gov.it/pub/sen/relazioni/relazione_annuale_situazione_energetica_nazionale_dati_2021.pdf (accessed on 10 November 2022). (In Italian)
- 4. ENEA. Annual Report on Energy Efficiency over the Country. 2021. Available online: https://www.efficienzaenergetica.enea.it/ component/jdownloads/?task=download.send&id=511&catid=40&Itemid=101 (accessed on 23 November 2022). (In Italian)
- 5. National Institute of Statistics. National Census of the Population, Buildings, Energy Consumptions. 2011. Available online: http://dati.istat.it/ (accessed on 10 November 2022). (In Italian)
- 6. National Electricity Network S.p.A. Report on Electric Energy Consumption in Italy: The Year 2014. Available online: https://download. terna.it/terna/0000/0642/35.pdf (accessed on 10 November 2022). (In Italian)
- National Electricity Network S.p.A. Report on Electric Energy Consumption in Italy: The Year 2015. Available online: https://download. terna.it/terna/0000/0837/41.pdf (accessed on 10 November 2022). (In Italian)
- 8. National Electricity Network S.p.A. Report on Electric Energy Consumption in Italy: The Year 2016. Available online: https://download. terna.it/terna/0000/0964/23.pdf (accessed on 10 November 2022). (In Italian)
- 9. National Electricity Network S.p.A. Report on Electric Energy Consumption in Italy: The Year 2017. Available online: https://download. terna.it/terna/0000/1089/69.pdf (accessed on 10 November 2022). (In Italian)
- 10. National Electricity Network S.p.A. Report on Electric Energy Consumption in Italy: The Year 2018. Available online: https://download. terna.it/terna/6-CONSUMI_8d726f170b61362.pdf (accessed on 10 November 2022). (In Italian)
- 11. National Electricity Network S.p.A. Report on Electric Energy Consumption in Italy: The Year 2019. Available online: https://download. terna.it/terna/6-CONSUMI_8d9cfa23d9b95aa.pdf (accessed on 10 November 2022). (In Italian)
- 12. National Electricity Network S.p.A. Report on Electric Energy Consumption in Italy: The Year 2020. Available online: https://download. terna.it/terna/6-CONSUMI_8d9cecfdb0ebb54.pdf (accessed on 10 November 2022). (In Italian)
- 13. National Electricity Network S.p.A. Report on Electric Energy Consumption in Italy: The Year 2021. Available online: https://download. terna.it/terna/6%20-%20CONSUMI_8dae443b9f610d6.pdf (accessed on 10 November 2022). (In Italian)
- 14. Energy Services Manager. Statistical Report of the Solar Photovoltaic System: The Year 2016. Available online: https://www.gse.it/ documenti_site/Documenti%20GSE/Rapporti%20statistici/Solare%20Fotovoltaico%20-%20Rapporto%20Statistico%202016.pdf (accessed on 10 November 2022). (In Italian)
- Energy Services Manager. Statistical Report of the Solar Photovoltaic System: The Year 2017. Available online: https://www.gse.it/ documenti_site/Documenti%20GSE/Rapporti%20statistici/Solare%20Fotovoltaico%20-%20Rapporto%20Statistico%202017.pdf (accessed on 10 November 2022). (In Italian)
- Energy Services Manager. Statistical Report of the Solar Photovoltaic System: The Year 2018. Available online: https://www.gse.it/documenti_site/Documenti%20GSE/Rapporti%20statistici/Solare%20Fotovoltaico%20-%20Rapporto%20Statistico%202018.pdf (accessed on 10 November 2022). (In Italian)
- Energy Services Manager. Statistical Report of the Solar Photovoltaic System: The Year 2019. Available online: https://www.gse.it/ documenti_site/Documenti%20GSE/Rapporti%20statistici/Solare%20Fotovoltaico%20-%20Rapporto%20Statistico%202019.pdf (accessed on 10 November 2022). (In Italian)
- Energy Services Manager. Statistical Report of the Solar Photovoltaic System: The Year 2020. Available online: https://www.gse.it/ documenti_site/Documenti%20GSE/Rapporti%20statistici/Solare%20Fotovoltaico%20-%20Rapporto%20Statistico%20GSE%2020 20.pdf (accessed on 10 November 2022). (In Italian)
- Energy Services Manager. Statistical Report of the Solar Photovoltaic System: The Year 2021. Available online: www.gse.it/ documenti_site/Documenti%20GSE/Rapporti%20statistici/Solare%20Fotovoltaico%20-%20Rapporto%20Statistico%202021
 .pdf (accessed on 10 November 2022). (In Italian)
- 20. International Energy Agency. Renewables 2020. *Analysis and Forecast to* 2025. Available online: https://iea.blob.core.windows. net/assets/1a24f1fe-c971-4c25-964a-57d0f31eb97b/Renewables_2020-PDF.pdf (accessed on 23 November 2022).
- 21. Kampik, M.; Fice, M.; Pilśniak, A.; Bodzek, K.; Piaskowy, A. An Analysis of Energy Consumption in Small- and Medium-Sized Buildings. *Energies* **2023**, *16*, 1536. [CrossRef]
- 22. Lillo-Bravo, I.; Lopez-Roman, A.; Moreno-Tejera, S.; Delgado-Sanchez, J.M. Photovoltaic energy balance estimation based on the building integration level. *Energy Build.* 2023, 282, 112786. [CrossRef]
- G. Landera, Y.; C. Zevallos, O.; Neto, R.C.; Castro, J.F.D.C.; Neves, F.A.S. A Review of Grid Connection Requirements for Photovoltaic Power Plants. *Energies* 2023, 16, 2093. [CrossRef]
- Kuczynski, W.; Chliszcz, K. Energy and exergy analysis of photovoltaic panels in northern Poland. *Renew. Sustain. Energy Rev.* 2023, 174, 113138. [CrossRef]

- 25. Yao, W.; Kong, X.; Xu, A.; Xu, P.; Wang, Y.; Gao, W. New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions. *Renew. Sustain. Energy Rev.* **2023**, *173*, 113119. [CrossRef]
- 26. Jiao, J.; Yang, M.; Li, J.; Xiong, D.; Li, H. A novel high reflective glass-ceramic ink with Bi2Ti2O7 nanocrystals used for the photovoltaic glass backplane. *J. Eur. Ceram. Soc.* 2023, *in press.* [CrossRef]
- 27. Chirwa, D.; Goyal, R.; Mulenga, E. Floating solar photovoltaic (FSPV) potential in Zambia: Case studies on six hydropower power plant reservoirs. *Renew. Energy Focus* 2023, 44, 344–356. [CrossRef]
- 28. Mannino, G.; Tina, G.M.; Cacciato, M.; Merlo, L.; Cucuzza, A.V.; Bizzarri, F.; Canino, A. Photovoltaic Module Degradation Forecast Models for Onshore and Offshore Floating Systems. *Energies* **2023**, *16*, 2117. [CrossRef]
- 29. Li, G.; Wei, X.; Yang, H. Decomposition integration and error correction method for photovoltaic power forecasting. *Measurement* **2023**, *208*, 112462. [CrossRef]
- 30. Bezerra Menezes Leite, H.; Zareipour, H. Six Days Ahead Forecasting of Energy Production of Small Behind-the-Meter Solar Sites. *Energies* 2023, 16, 1533. [CrossRef]
- Dolara, A.; Leva, S.; Manzolini, G. Comparison of different physical models for PV power output prediction. Sol. Energy 2015, 119, 83–99. [CrossRef]
- Borunda, M.; Ramírez, A.; Garduno, R.; Ruíz, G.; Hernandez, S.; Jaramillo, O.A. Photovoltaic Power Generation Forecasting for Regional Assessment Using Machine Learning. *Energies* 2022, 15, 8895. [CrossRef]
- 33. Mohamad Radzi, P.N.L.; Akhter, M.N.; Mekhilef, S.; Mohamed Shah, N. Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting. *Sustainability* **2023**, *15*, 2942. [CrossRef]
- Cabezón, L.; Ruiz, L.G.B.; Criado-Ramón, D.; J. Gago, E.; Pegalajar, M.C. Photovoltaic Energy Production Forecasting through Machine Learning Methods: A Scottish Solar Farm Case Study. *Energies* 2022, 15, 8732. [CrossRef]
- 35. Polo, J.; Martín-Chivelet, N.; Alonso-Abella, M.; Sanz-Saiz, C.; Cuenca, J.; de la Cruz, M. Exploring the PV Power Forecasting at Building Façades Using Gradient Boosting Methods. *Energies* **2023**, *16*, 1495. [CrossRef]
- Huang, Y.; Wu, Y. Short-Term Photovoltaic Power Forecasting Based on a Novel Autoformer Model. Symmetry 2023, 15, 238. [CrossRef]
- Lim, S.-C.; Huh, J.-H.; Hong, S.-H.; Park, C.-Y.; Kim, J.-C. Solar Power Forecasting Using CNN-LSTM Hybrid Model. *Energies* 2022, 15, 8233. [CrossRef]
- 38. Woźniak, M.; Badora, A.; Kud, K.; Woźniak, L. Renewable Energy Sources as the Future of the Energy Sector and Climate in Poland—Truth or Myth in the Opinion of the Society. *Energies* **2022**, *15*, 45. [CrossRef]
- Hermoso, V.; Bota, G.; Brotons, L.; Morán-Ordóñez, A. Addressing the challenge of photovoltaic growth: Integrating multiple objectives towards sustainable green energy development. *Land Use Policy* 2023, 128, 106592. [CrossRef]
- 40. President of Italian Republic. Law Decree 1st March 2022, n. 17. Urgent Measures to Contain the Electric Energy and Natural Gas Costs, for the Development of Renewable Energy Sources, and for Industrial Policies Relaunch. Available online: https://www.gazzettaufficiale.it/eli/gu/2022/03/01/50/sg/pdf (accessed on 10 November 2022). (In Italian)
- 41. Energy Services Manager. Solar Atlas and Weather Forecast (sunRISE). Available online: http://sunrise.rse-web.it/ (accessed on 23 March 2023). (In Italian)

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.