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As for the consistency, or variability, both the models showed a good performance,
and, as also underlined by the time-series plots, substantial agreement between the two
copies of the same models can be observed in Table 3, which highlights the high correlation
between them. As a matter of fact, all the values reported in this table are very close to 1,
indicating very good intra-model consistency.

Table 3. Coefficient of correlations related to the sensors involved in the experiment.

PMS5003(2) PMS5003(1) SPS30(2) SPS30(1)

PMS5003(2) 1.000 0.999 0.790 0.819

PMS5003(1) 0.999 1.000 0.785 0.813

SPS30(2) 0.790 0.785 1.000 0.997

SPS30(1) 0.819 0.813 0.997 1.000

The ability of each sensor to reflect the reference measurements could also be evaluated
by examining the plots presented in Figure 6. They show that the PMS5003 model correlated
slightly better with the reference device than the SPS30 sensors. As a matter of fact, the R2

was 0.61 for both copies of the PMS5003 model, while the SPS30 sensors had an R2 equal
to 0.57 and 0.55. The slope of the linear fit line computed for the two models explained
both the tendency of the PMS5003 model to overestimate the PM10 concentrations and
the fact that the SPS30 model tended to underestimate them. The plots in Figure 6 show
that the slope of the PMS5003 model was roughly threefold the slope of the SPS30 sensors;
however, the most important aspect is represented by the position of the linear fit line,
which lies over the 1:1 reference line in the case of the PMS5003 model, and underneath it
in the case of the SPS30 model. It is useful to recall that the slopes of linear fit lines close to
unity and bias values near 0 denote the good performance of the device under evaluation.
From Figure 6, it can also be noted that the values related to the slope and bias were very
similar for the two copies of the same models. This finding, in conjunction with the values
reported for the intra-model correlation, confirmed the consistency of both LCS models.
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Figure 6. (a) PMS5003(1); (b) PMS5003(2); (c) SPS30(1); (d) SPS30(2). Comparison between the four
copies of the PM sensors involved in this research and the reference device. The solid line represents
a linear regression fit computed through the ordinary least squares method, while the dashed line
indicates the 1:1 reference line. In the corners of the figures, the statistics are reported. The slope and
bias are related to the slope and the intercept of the linear fit.

The complete overview of the sensor performance is provided in Table 4, where the
values of the R2, MAE, RMSE, MNB, and CV indicators are presented. Concerning R2,
MAE, and RMSE, the performance of the two models was quite similar, while a substantial
difference was observed only in the MNB values. A possible explanation for this difference
can be found by analyzing Figure 6. In the plots of this figure, one can note that both the
linear fit lines of the PMS5003 model are very close to the 1:1 reference line, or rather, there
is an intersection around the 10 µg/m3 concentration level. On the contrary, in the case of
the SPS30 model, the fit lines lie underneath the reference line in a more distant position.

Table 4. Performance indicators of each copy of the sensors in relation to the reference measurements.
The MNB and CV values are in relation to the two sensor models considered in this research.

Sensor R2 MAE RMSE Slope Bias MNB CV

PMS5003(2) 0.61 9.56 12.09 1.41 −4.06
0.14 1.96%

PMS5003(1) 0.61 9.3 11.63 1.38 −4.34

SPS30(2) 0.55 9.19 11.02 0.60 −0.79
−0.44

2.76%

SPS30(1) 0.57 9.47 11.26 0.59 −1.0



Sensors 2023, 23, 3976 12 of 18

5.2. Results after Applying the Correction Factor for the Humidity Effects

As explained earlier, an algorithm to correct the negative effect of humidity was ap-
plied to the sensor measurements to evaluate potential improvements in their performance.
For this reason, the relative humidity (RH) was measured and logged along with the other
sensor data to compose the final dataset. Figure 7 shows the levels of relative humidity
registered during the period of the experiment.
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The RH values were used to compute the corrected measurements of the sensors
as indicated in Equations (6) and (7). Once we had performed the correction, the daily
averages were subsequently calculated for comparison with the reference data. From
Figure 7, it can be noted that the range of RH values was between 22% and 88%. This
finding gave us an idea of the variability in the conditions during the experimental period
in terms of humidity levels, while the average was equal to 62%.

Table 5 summarizes the performance indicators of the sensors considering the humidity
effect and compares them with their uncorrected measurements to quantify the effectiveness
of the correction algorithm.

Table 5. The performance indicators of the sensors under evaluation. The rows indicating PMS5003(1),
PMS5003(2), and so on, show the data related to the uncorrected measurements, while the labels k
= 0.5 and k = 0.62 indicate the data calculated by setting k = 0.5 and k = 0.62 in Equation (7). Data
reported in bold characters denote the best performance.

Sensor R2 MAE RMSE Slope Bias

PMS5003(2) 0.61 9.56 12.09 1.41 −4.06

PMS5003(2) (k = 0.5) 0.65 6.59 8.24 0.81 −11.48

PMS5003(2) (k = 0.62) 0.65 7.21 8.84 0.74 −12.62

PMS5003(1) 0.61 9.3 11.63 1.38 −4.34

PMS5003(1) (k = 0.5) 0.65 6.81 8.5 0.75 −12.59

PMS5003(1) (k = 0.62) 0.65 7.21 8.84 0.81 −11.48

SPS30(2) 0.55 9.19 11.02 0.60 −0.79
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Table 5. Cont.

Sensor R2 MAE RMSE Slope Bias

SPS30(2) (k = 0.5) 0.50 13.31 15.03 1.42 −7.23

SPS30(2) (k = 0.62) 0.48 13.85 15.6 1.52 −6.81

SPS30(1) 0.57 9.47 11.26 0.59 −1.0

SPS30(1) (k = 0.5) 0.52 13.56 15.24 1.50 −6.72

SPS30(1) (k = 0.62) 0.51 14.1 15.8 1.62 −6.28

The data summarized in the above table reflect the trends of the sensor measurements,
which are more extensively illustrated in Figure 8.
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Figure 8. (a) PMS5003(1); (b) PMS5003(2); (c) SPS30(1); (d) SPS30(2). Time series of the sensor
measurements compared with the reference device (thick black line). The dotted line is relative to the
sensor data without the application of Equations (6) and (7). The straight thinner lines indicate the
sensor measurements after applying the correction to include the humidity effect. The labels k = 0.5
and k = 0.62 indicate the different values of the “k” parameter in Equation (7).

The analysis of the data presented in Table 5 showed that the corrective formulas
to include the humidity effects produced an improvement in the performance of the
PMS5003 sensor model. This finding was corroborated by the increase of R2 values, and
the decrease of MAE and RMSE values with respect to the case of the uncorrected sensor
measurements (denoted in the table as PMS5003(2) and PMS5003(1)). This phenomenon
characterized both copies of the PMS5003 model (PMS5003(2) and PMS5003(1)), even
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though the PMS5003(2) model corrected using the 0.5 value for the “k” parameter showed
a slightly better performance compared with the other cases.

Table 5 also reports that, in the case of the SPS30 model, the corrective algorithm could
not provide an improvement for both copies of the sensor. The decrease in R2 values, the
increase in MAE and RMSE, and the widening of the gap between the slope parameter and
the unity value indicated the worsening of their performance.

To understand the reasons for the different outcomes after applying the correction to
the two sensor models under evaluation, it is necessary to consider that the effect of the
humidity was the hygroscopic growth of the aerosol particles due to the condensation of
water vapor. This phenomenon led to an overestimation of the PM concentration by the
sensors, which could not distinguish the real dimensions of the particles. To counterbalance
this effect, the concentration read by the sensor was divided by the “C” factor (see Equation
(6)), which is linked to the ambient relative humidity: the greater the RH value, the higher
the value of the “C” factor is. As can be seen in Figures 5, 6 and 8, the uncorrected
measurements of the PMS5003 sensors tended to overestimate the real PM concentration
provided by the reference; thus, the application of the Equations (6) and (7) decreased
the values of the readings performed by these sensors, making them closer to the real
PM concentrations. On the contrary, the uncorrected measurements of the SPS30 model
underestimated the real PM concentrations (see Figures 5, 6 and 8); therefore, the application
of the correction factor contributed to further lowering the value of the sensor readings,
causing a widening of the gap between the real concentration levels and those provided by
the sensors.

6. Discussion
6.1. Analysis of Results

The results concerning the performance of the models evaluated in this study can be
better understood by comparing them with the data found in previous, similar works. We
mentioned earlier that a comparison with several existing studies was not an easy task due
to the different conditions surrounding the various experiments and the different metrics
used for assessing the LCM/LCS performance. Nevertheless, we selected two such studies
with very similar characteristics to the present experiment.

In their research, Vogt and Castell [23] performed an on-field evaluation of three LCM
models. Two of the devices under evaluation were the Ensense and the Airly LCM model,
commercially available at the current date. The operation of the Ensense model is based
on the PMS5003 sensor, while the Airly monitor uses an SPS30 sensor. The duration of
their research (53 days) was shorter than the one of the experiment described in the present
study, but similar to it. They assessed the performance of the LCMs using gravimetric and
optical reference instrumentations and by considering the hourly and daily averages of the
measurements. In Table 6, the results related to the sensors involved in the present study
are compared with the results from Vogt and Castell’s study by considering only the daily
averages.

In the same table, the performance indicators determined by the AQ-SPEC pro-
gram [18] are presented for comparison with this research. In this work, a notable number
of LCMs and LCSs were evaluated on-field using both optical and beta-attenuator reference
instrumentations. The assessment of the devices was performed by considering 5 min,
hourly, and daily averages; however, in accordance with the present study, only the results
related to the daily averages are summarized. Another element in common with the present
work characterizing the AQ-SPEC program was the duration of the LCS/LCM tests, which
was roughly equal to two months for each device under evaluation.

By inspecting the table above, one can note a marked heterogeneity in the values of
almost all the indicators related to the same sensor model. The reasons for these wide ranges
are ascribed to various factors, mainly, different reference types, and PM concentration
ranges used in the evaluations. The table also shows that data completeness could be found
only for the R2, slope, and bias parameters.
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Table 6. A summary of the performance indicators determined in this work and previous studies
related to LCMs using the SPS30 and PMS5003 sensors. Data refer to the PM10 concentration
measurements. The ranges of the indicators express the minimum and maximum values found,
considering that, in the same study, several copies of the same model were evaluated using different
types of reference devices.

LCS Model LCM Model R2 RMSE MAE CV Slope Bias Reference

PMS5003 SentinAir 0.61 11.63–12.09 9.3–9.56 1.96% 1.38–1.41 −4.06/−4.34 This study

PMS5003 Airly 0.27–0.47 20.5–21.4 16.4–17.8 1.3% 1.17–1.24 −23.4/−46.3 AQ-SPEC [18]

PMS5003 Airly 0.71–0.89 3.79–11.29 - - 0.64–0.7 −0.11/−1.61 Castell [23]

PMS5003 Airquality
Egg 2022 0.27–0.62 23.1–24.9 16.3–18.6 4.2% 1.01–1.72 −24.6/−29.14 AQ-SPEC [18]

PMS5003 PurpleAir
PA-II 0.68–0.74 - - ∼= 0% 1.21–1.70 −0.6/−20.2 AQ-SPEC [18]

PMS5003 Redspira 0.35–0.52 31.2–35.3 28–32.6 5.8% 1.02–1.37 −37.1/−41.4 AQ-SPEC [18]

PMS5003 Smart citizen
kit II 0.10–0.17 - - 6% 2.61–3.05 −157.0/−198.6 AQ-SPEC [18]

PMS5003 Lunar outpost 0.06–0.08 - - 4.3% 2.63–3.38 −124.3/−140.9 AQ-SPEC [18]

SPS30 Ensense 0.9 1.92–2.26 - z- 0.26–0.32 −9.39/−9.79 Castell [23]

SPS30 TSI Bluesky 0.28–0.34 - - 11% 0.33–0.53 −4.5/−11.6 AQ-SPEC [18]

SPS30 Atmotube Pro 0.31–0.39 - - 5.6% 0.83–0.98 −17.0/−31.4 AQ-SPEC [18]

SPS30 - 0.18–0.30 - - 2.4% 0.77–1.61 −18.3/−19.9 AQ-SPEC [18]

SPS30 SentinAir 0.55–0.57 9.19–9.47 11.02–11.26 2.76% 0.59–0.60 −0.79/−1.0 This study

If we consider the LCMs using the SPS30 sensor separately from those employing the
PMS5003 model, we can see that the ranges of R2 were 0.18–0.9, and 0.06–0.89, respectively.
Therefore, the values found in this work for PMS5003 (R2 = 0.61) and SPS30 (R2 = 0.55–0.57)
indicate better performance in relation to the median value of R2 found by the previous
studies (R2 = 0.41 for PMS5003 and R2 = 0.36 for SPS30).

Table 6 also indicates that the ranges of the RMSE for SPS30 and PMS5003 were,
respectively, 1.92–9.47 µg/m3 and 3.79–35.3 µg/m3. If we compare these ranges with
the data found in this experiment (RMSE = 9.19–9.47 µg/m3 for SPS30, RMSE = 11.63–
12.09 µg/m3 for PMS5003), we can note that the SPS30 displayed a worse performance,
even though it has to be said that there was just one record in the table to compare it with;
meanwhile, in the case of the other sensor model, the RMSE values were placed in the
middle of the range found by the previous studies.

The other indicator presenting a completeness of data was the slope of the linear fit
(see also Figure 6). As shown in Table 6, the ranges were equal to 0.26–1.61 for the SPS30
model and 0.64–3.38 for the PMS5003 model. In this regard, by considering that the ranges
found in this study were, respectively, 0.59–0.60 and 1.38–1.41 for the SPS30 and PMS5003
models, we could conclude that the SPS30 model evaluated in this study showed lower
slopes with respect to the overall median value (equal to 0.93), while the PMS5003 model
was characterized by slopes more in line with the overall median value (equal to 1.37).

The coefficient of variation (CV) is the indicator that provides quantitative information
about the consistency of the sensors or devices belonging to the same model. The values
found by this work (1.96% for PMS5003 and 2.76% for SPS30) were much lower than the
maximum CV found by the previous study (equal to 5.8% for PMS5003 and 11% for SPS30).

Unfortunately, we could not find MAE values for the SPS30 sensor in any previous
works, but in the case of the PMS5003 model, they ranged from 9.3 µg/m3 to 32.6 µg/m3.
Thus, the PMS5003 model evaluated in this study showed a better performance in terms of
MAE values.

As shown in Tables 1 and 4, the PMS5003 model featured an MNB of 0.14 and a CV
of 1.96%, which fall in the range of the values characterizing Tier III. Thus, according



Sensors 2023, 23, 3976 16 of 18

to the classification proposed by the EPA guidelines, this sensor model can be used for
supplemental monitoring to complete the data provided by the regulatory monitoring
network and achieve a better spatio-temporal resolution for pollutant maps. In the case
of the SPS30 model, we found that it presented an MNB of 0.44 and a CV of 2.76%, which
assigned this model to Tier I. The possible uses of this sensor model are therefore related to
the informal indication of pollutant presence.

6.2. EPA Guidelines Limits

The guidelines proposed by the EPA offer a practical tool that is useful for supporting
the understanding of the most appropriate use, or application area, of an LCS or LCM,
especially considering that the performance indicators related to the same sensor can
present a wide range of values, as can be found in Table 6. The algorithm responsible for
the “tier” selection proposed in the guidelines is based on the computation of the MNB
and the CV. The first parameter takes into account the measurement discrepancies between
the device under evaluation and the reference, while the CV provides a quantification of
the consistency of the devices. Both these parameters are expressed by non-dimensional
values, preserving the generality of the guidelines.

However, it can also be noted that the decision process for the selection of the different
“tiers” lacks an indicator through which the grade of the correlation of the device with
the reference is taken into account. This suggests that the addition of such an indicator
to the mechanism at the basis of the tier selection could improve the effectiveness of the
guidelines. The most suitable candidates could be the R2 and the slope of the linear fit line,
because they are both non-dimensional parameters.

Nevertheless, a more detailed analysis of these indicators showed that the coefficient
of determination (R2) depends on the range of reference measurements and the duration of
the on-field evaluation. In particular, the wider the range of the pollutant concentration
values registered by the reference device, the higher the probability of obtaining R2 values
close to unity [11] is. This suggests that the selection of the slope of the linear fit line
(see Figure 6) could be an additional indicator to use together with the MNB and the CV
for “tiers” determination, but such a decision must be corroborated by targeted, detailed
studies, which was beyond the limits of this work. Another limit of this research was
the number of LCSs evaluated, the type of reference device considered, and the temporal
frequency of the records comprising the measurement database (e.g., 5min, daily, or hourly
averages). More specifically, this preliminary investigation performed an evaluation on the
basis of daily averages but did not clarify if the application area (“tier”) of the evaluated
sensors may be assigned to different “tiers” by changing the temporal average of the
measurements (e.g., by considering hourly averages) or by changing the reference type.

7. Conclusions

The EPA guidelines offer a useful tool for assessing the most suitable application area,
or use, of an LCS/LCM for air quality monitoring. To the best of our knowledge, until now,
the performance of the PM sensor models considered in this work had not been analyzed
in light of the EPA guidelines by other studies. Therefore, the SPS30 sensor produced by
Sensirion and the PMS5003 sensor produced by Plantower were tested in this study using
the SentinAir device as a LCM. Their performance in measuring PM10 concentrations was
evaluated through an on-field test using a gravimetric reference providing daily averages
of PM10.

We found that including the effects of the humidity by applying a correction algorithm
proposed in previous works could improve the performance of the PMS5003 sensor models.
We also found that, as prescribed by the guidelines, considering the MNB and CV indicators,
the PMS5003 sensor could be used for supplementing regulatory monitoring networks,
while the SPS30 sensor could be used to provide informal information about the presence
of pollutants. However, even though the EPA guidelines represent without a doubt an
efficient tool to guide the user through the jungle of the low-cost devices for air quality
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monitoring available on the market, we found that some improvements to the selection
criteria characterizing the guidelines are necessary.

In our opinion, adding an indicator that takes into account the grade of correlation
between the reference and the device under evaluation could make the guidelines more
efficient in providing indications about the most appropriate application area. However, a
rigorous analysis to confirm this aspect could represent a matter for future studies.
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