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Abstract: In this work, we investigate an Information Fusion architecture based on a Factor Graph in
Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic
framework and the information related to the different features are represented as messages that flow
in a probabilistic network. In this way we build a sort of context for observed features conferring to
the solution a great flexibility for managing different type of features with wrong and missing values
as required by many real applications. Moreover, modifying opportunely the messages that flow into
the network, we obtain an effective way to condition the inference based on the different reliability of
each information source or in presence of single unreliable signal. The proposed architecture has
been used to fuse different detectors for an identity document classification task but its flexibility,
extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly
received or completely missing.

Keywords: Data Fusion; bayesian networks; belief propagation; factor graph

1. Introduction

Data Fusion techniques are becoming increasingly important in many application
contexts, such as defence, energy, biomedicine, manufacturing, etc. Fusion methods lead to
better understanding of a phenomenon and of the decisions to be taken, especially in terms
of robustness and accuracy with respect to what we would obtain using separate sources
of information [1].

We can identify three increasing abstraction levels of Data Fusion models: Data Level,
Feature Level and Decision Level. Dasarathy [2] has proposed five fusion modes : Data
In–Data Out (DaI-DaO) Fusion, Data In–Feature Out (DaI-FeO) Fusion, Feature In–Feature
Out (FeI-FeO) Fusion, Feature In–Decision Out (FeI-DeO) Fusion, Decision In–Decision
Out (DeI-DeO) Fusion.

In this work, we investigate the application of a Bayesian approach to the FeI-DeO
Fusion, which can be considered one of the most common fusion paradigms. The input
features, coming from different sensors, are merged to produce a more informed decision.
The data, retrieved from each sensor, can have missing, or wrong values, and the proposed
Bayesian approach permits to manage them in a robust and flexible way.
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In the following, we apply the Bayesian Data Fusion methodology to the Classification
of Documents in a Maritime Port scenario, limiting our attention to documents such as
Passports, Identity Cards and Fiscal Codes from different countries.

The general architecture of such system is similar to Automated Border Control
(ABC) [3], which is a self-service barrier that permits the identification of the passengers
through the comparison between biometrics information stored in the passport’s chip and
the face, fingerprint, or iris (or a combination of them). These automatic systems have
improved the efficiency, rapidity and security of the identification process. A simplified
scheme of an ABC is presented in Figure 1.

In our applications, each document is scanned in its front and back, and three special-
ized detectors extract face, text, and barcode, possibly present in it. The related content is
also stored for a Document Verification, or for other steps of the overall Border Control as:
Authenticity Check, Identity Verification, etc.

Scanned 
Document

Read
Chip

Taken
Picture

Document
Verification

Biometric
Verification

Checking
Blacklist

Admission
Decision

Figure 1. Automatic Border Control (ABC) Schematic Representation.

The document classification has been emerging as an important task for its application
in several real scenarios where a huge number of documents has to be managed. In this
context, many different solutions have been proposed that use the layout, the contained
text, the visual contents or a combination of them as the more recent solutions [4,5]. In
the recent years some approaches based on the Graph Convolutional Networks have
demonstrated to be very promising [6,7] given their capability to describe the relations
among different part of the document.

The identity document classification can be considered a particular type of more
generic document classification task but the layout is not discriminant enough because the
identity documents have similar layouts, the textual information is not so easy to extract
and the available datasets are small and with critical privacy and legal issues. In the years
the identity document classification task has been tackled using different approaches. Some
solutions have used the visual features extracted from the document image itself in order to
train a classifier [8,9]; other works have used the template matching approach comparing
the observed document with some reference models [10]; finally different deep learning
approaches have been investigated as [8,11,12].

In our work, instead of focusing on the strength and weakness of the particular classi-
fiers and/or features, we describe a general architecture where information from different
detectors (in general feature extractors or different classifiers), are fused together in order to
infer the type of the presented document. The technique is based on the Naive Bayes model
represented as Factor Graph in Reduced Normal Form (FGrn) [13]. Even though there
is a vast literature on the application of Naive Bayes to the classification task and for the
decision fusion [14,15], the usage of FGrn paradigm, confers to the proposed architecture
more flexibility, extendibility and robustness in an unified probabilistic framework.

This work has been inspired by works on probabilistic context analysis [16,17]. In one
of our previous works [18], we demonstrated that the context is a very valuable information
to help complete or correct some available evidence. In this work we demonstrate that the
presented model builds a sort of context for the measures, which reduces the uncertainty
and improves the robustness of the overall system.
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2. Materials and Methods
2.1. Model Architecture

For each document, we have at maximum one image for each side: front and back.
Each image is presented to three detectors: Face Detector, Text Detector and Barcode
Detector. Each detector returns, if it exists, the bounding box containing the object of
interest: face, text and barcode.

We focus on simple features, i.e., the ratio between Area in Detected Bounding Box
and the Area of the complete image. More complex features as CNN Features, SIFT or
feature based on words extracted from the documents, could be used, but here we are
focusing on the general fusion model and not so much on the best single features.

Moreover, the proposed approach permits to treat some situations that can occur in
a real scenario, when some detections can be missing or wrongly transmitted and when
some detectors, or detections, are more reliable than others.

2.1.1. Face Detector

The face detection has been implemented using YOLOv3 model [19], i.e., a deep neural
network of 106 layers where the first 53 layers, called Darknet-53 and derived by Darknet-19
introduced in [20], are used as feature extractor. The major novelty of the YOLOv3, respect
to the previous versions, is the capability of making detection on three different scales
following the idea behind the feature pyramid paradigm [21]. YOLOv3 predicts 3 bounding
boxes for each cell into which the image is divided. Each bounding box is described by
5 + YC parameters: two center coordinates, two dimensions, the objectness score (that
express how confident is the model that that box contains an object) and a classification
vector that describes the classification confidence for each of YC considered class.

For our face detection problem, we used weights of a pretrained architecture on
WIDER FACE Dataset [22] available at [23], where the only class of interest is “face”.

2.1.2. Text Detector

Text detection has been implemented using the East model [24] with the pretrained
weights available at [25]. East’s peculiarity is its ability to perform accurate detection
on images that are not perfectly centered and rotated. The model is composed by three
parts: the feature extractor, the feature merger and the predictor. The detected geometry
is represented as a rotated box (R-BOX), consisting of four distances from the top, right,
bottom, left boundaries of the rectangle and a rotation angle. The final step is the Non-
Maximum Suppression algorithm, which avoids multi-detections of the same object.

2.1.3. Barcode Detector

Barcode detection was implemented using the Computer Vision algorithm adapted
from [26]. The detector does not work with all existing barcodes, but it works well with
those with a striped spectrum as ones present on identity cards and maritime documents.
The input image is converted in grayscale and filtered using Scharr operator (with a
3× 3 kernel) to detect the second derivative in the horizontal and vertical direction. The
gradient image is filtered with a 9× 9 blurring filter and a binary thresholding algorithm is
applied in order to create a black and white image, where the white region contains the
barcode. Morphological operations are also applied to make the candidate region more
regular. Finally, if a detection exists, the boundaries of the barcode region are determined
and the detector returns the coordinates of the bounding box.

2.2. Feature Fusion Model

The proposed feature fusion architecture is based on the Naive Bayes model where N
observed categorical variables {X1, X2, ..., XN} are connected to a single class variable C.

Each observed variable represents the output of a sensor, detector or, more in general,
an information source that need to be fused together with the other ones. It assumes values
in a discrete alphabet: Xi = {ξ i

1, ξ i
2, ..., ξ i

Li
}; where the dimension Li is the number of values
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that each variable can assume, if discrete, or the number of levels we use to quantize it
(and which is therefore generally different for each variable). For the continuous variables
several quantization schemes may be used, but here we propose a simple approach: the
values assumed by each Xi are clipped in [mXi , MXi ], where mXi and MXi are, respectively,
the minimum and maximum permitted value for variable Xi. The range is then divided
uniformly using Li levels, so that the generic continuous value v is associated with level l if
(l − 1) < v ≤ l.

It should be noted that in an Internet of Things (IoT) context, the number of levels used
to quantize the sensor measure may be an important design parameter. In fact, generally,
the trade-off between accuracy and available hardware resources need to be evaluated, for
every specific application, also in terms of overall system energy consumption [15].

Finally, in the training phase, each variable Xi is represented through a discrete
distribution obtained using a smooth one-hot encoding. More specifically, for representing
the k-th value of Xi (ξ i

k), instead of use a sharp distribution δδδi
k (an Li size vector representing

the Kronecker delta, i.e., with all zero and only a one at the k-th position), we use a smoother
distribution:

δ̃̃δ̃δi
k =

Li︷ ︸︸ ︷[
ε

(Li − 1)
, . . . , 1− ε, . . . ,

ε

(Li − 1)

]
k-th entry

where ε is a small positive number.
Since the values assumed by the detections are always positive, we set the minimum

value mXi =
MXi

Li
in order to “use” all Li levels. Differently, with mXi = 0, the first

quantization level will be underused since there are no negative values.
Furthermore, we assume that all observed variables are connected to one class variable

C that assumes values in the discrete alphabet C = {γ1, γ2, ..., γLc}.
The relationship between each observed and class variable, is formalized by a Con-

ditional Probability Table (CPT): P(Xi|C) = [Pr{Xi = xi|C = c}]xi∈Xi
c∈C . This model is the

classical Naive Bayes, shown in Figure 2 together with its FGrn representation, which
represents the joint probability distribution:

pX1,X2,...,XN ,C(x1, x2, . . . , xN , c) = πC(c)
N

∏
i=1

pXi |C(xi|c) (1)

where πC is the prior on C.

(a) (b)

Figure 2. The Naive Bayes model as a Bayesian graph (a) and as a Factor Graph in Reduced Normal
Form (b).

Please note that in the FGrn formulation the CPTs in Figure 2b are represented as Single
Input-Single Output (SISO) blocks, making the model more flexible [13,27,28] with respect
to other factor graph representation [29]. Learning each CPT is performed locally through
backward and forward messages using the optimized Maximum Likelihood algorithm as
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described in [30]. The usage of FGrn provides us with a formal probabilistic framework for
learning and allows easy handling of classification, error correction, missing values, etc.

In every single inference phase, when all observed variables are instantiated, the
backward messages bXi = δδδi

ki
are injected into the network, where ki is the index position

of the instantiated value xi := ξ i
ki

for the variable Xi. In functional notation the backward
message would be bXi (xi) = δ(xi − xi)|xi∈Xi , with i = 1, . . . , N. The class label is not
observed and its forward message, fC, is set to a uniform distribution over class alphabet C.

After message propagation, the product of the backward and the forward messages at
the class label (bC(c) fC(c)) is proportional to the posterior probability of the class given
all the other instantiated observed variables, i.e.: bC(c) fC(c) = pX1,...,XN ,C(x1, . . . , xN , c) ∝
pC|X1,...,XN

(c|x1, . . . , xN).
Suppose that all observed variables except one (e.g., X1) are instantiated and that the

class variable is unknown. Once we injected the messages in the network properly, after
the message propagation we obtain:

fX1(x1) = ∑c pX1|C(x1|c)pX2|C(x2|c) . . . pXN |C(xN |c)πC(c)
∝ pX1|X2,...,XN

(x1|x2, . . . , xN)
(2)

in other words, the forward distribution of the non-instantiated variable is proportional to
its posterior probability given all the other instantiated observed variables.

If also the class label is instantiated, the forward distribution of the non-instantiated
variable (e.g., X1), is proportional to its posterior probability given the class variable, i.e.:
fX1(x1) ∝ pX1|C(x1|c). This is coherent with the Naive Bayes model where each observed
variable is conditionally independent from other variables given the class label.

The forward messages that we can collect at the observed variables represent the
most probable configuration given the evidence and the learned model. Injected messages
consistent with the forward values are considered plausible, while when this accordance is
low an error, or a strange behavior, may have occurred.

We can also try to condition the behavior of the system based on the reliability (esti-
mated or assumed) of each detector. If we have low confidence on a particular observed
variable, Xe, we can try to reduce its contribution raising the message bC(e) to an expo-
nent 0 < ν < 1 and normalizing the resulting message. The effect of this operation is to
make

(
bC(e)

)ν more and more uniform with ν → 0, a sort of smoothing for the message.
A uniform message does not make any contribution in the element-by-element product
performed in the replicator block and successive normalization of the resulting message.

All the other messages bC(i) , with i ∈ {1, . . . , N} \ {e}, can remain raised to 1 (no
effect), or can be slightly augmented (raising to an exponent ν > 1) to weight more their
contribution since the distribution thickens around the most probable value, a sort of
sharpening for the message.

2.3. Model Evaluation
After the training phase, we can obtain classification results together with other

inference over observed variable. Usually, in the classification problems, a confusion matrix
that summarizes the classification performance of the trained model is computed. To take
better into account the uncertainty in the answer, we present also the Jensen-Shannon
divergence and Conditional Entropy on the class variable.

2.3.1. Likelihood

The likelihood for each example (observed variables) is available anywhere in the
network. For example, the Likelihood for the n-th example of the X1 variable is:

LX1 [n] = ∑c pX1,X2,...,XN ,C(x1, x2, . . . , xN , c)
= pX1,X2,...,XN (x1, x2, . . . , xN)δ(x1 − x1)
∝ fX1(x1)bX1(x1)

(3)
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The previous equation is true for each observed variable and it is always identical in
every point of the network. The Likelihood computation can be performed for all examples
of Training set and Test set.

2.3.2. Conditional Entropy

The capability of the system to provide sharp responses on class variable, given all
observed variables, can be obtained considering the conditional entropy of C given all the
others [31], which quantifies the uncertainty we have on C given the evidence:

H(C|X1, . . . , XN)
= −∑

x1,...,xN ,c
pX1,...,XN ,C(x1, . . . , xN , c) log pC|X1,...,XN

(c|x1, . . . , xN)

:= −∑xxx,c pXXX,C(xxx, c) log pC|XXX(c|xxx)
(4)

Considering the n-th example, we can therefore compute the conditional entropy of C
using messages as follows:

H(C|X1 = x1, . . . , XN = xN)
= −∑

c
pX1,...,XN ,C(x1, . . . , xN , c) log pC|X1,...,XN

(c|x1, . . . , xN)

:= −∑c pXXX,C(xxx, c) log pC|XXX(c|xxx)
= −∑c pXXX,C(xxx, c) log pXXX,C(xxx,c)

pXXX(xxx)
= −∑c pXXX,C(xxx, c) log pXXX,C(xxx, c) + ∑c pXXX,C(xxx, c) log pXXX(xxx)
= −∑c bC(c) fC(c) log bC(c) fC(c) + log pXXX(xxx)∑c bC(c) fC(c)

if fC(c) is uniform
= − 1

|C| ∑c bC(c) log bC(c) + 1
|C| (log pXXX(xxx) + log |C|)∑c bC(c)

since bC(c) is normalized
= − 1

|C| ∑c bC(c) log bC(c) + 1
|C| log pXXX(xxx) + 1

|C| log |C|
∝ −∑c bC(c) log bC(c) + log pXXX(xxx) + log |C|

(5)

Since log pXXX(xxx) and log |C| are constant respect to c, we focus only on the first term.
As Likelihood, we can average Conditional Entropy over the Training and the Test Set.

2.3.3. Jensen-Shannon Divergence

Since the confusion matrix is based on the MAP (Maximum a Posteriori) rule, some
interesting behaviors (how wrong are the results, what are the situations where the out-
put is completely uniform, etc.) may be invisible. For this reason, we evaluated the
Jensen-Shannon (JS) divergence between bC(c) and fC(c). The JS divergence is based on
Kullback Laibler (KL) divergence but has the advantage to be symmetric. Suppose we
have two distribution P and Q over the same set X , then the JS divergence is defined as
JS(P, Q) = 1

2 KL(P, M) + 1
2 KL(Q, M); where M = 1

2 (P + Q), and KL(P, M) and KL(Q, M)
are respectively the KL divergence between P and M and Q and M.

3. Results

In this work, we test the Fusion Model for the identity documents classification task.
We selected simple features that model the predominance of a particular object (Face, Text,
Barcode) in a document. Each feature is the ratio between area of the detection and total
area of the document. The six categorical random variables are: Face Front (XFF), Face
Back (XFB), Text Front (XTF), Text Back (XTB), Barcode Front (XBF), Barcode Back (XBB).
Each variable represents and takes values in its discrete alphabets: XFF, XFB, XTF, XTB,
XBF, XBB of dimension, respectively, LFF, LFB, LTF, LTB, LBF, LBB. The dimension of each
dictionary is the number of levels we use to quantize the ratios of interest and, generally, is
not the same for all variables.



Appl. Sci. 2021, 11, 1934 7 of 14

The continuous and positive values obtained from each detector has to be properly
quantized in order to be treated from our model where each observed variable X ∈
{XFF, XFB, XTF, XTB, XBF, XBB} is categorical.

3.1. Dataset Preparation

Since privacy and legal issues, it is extremely difficult to access to a public dataset of
identity documents. For this reason, we collected several identity documents from Internet
adding 50 documents recorded in [32] and 36 private documents of some volunteers. The
“other” documents are collected from Internet considering documents that could be related
to the context of our interest and from RVL-CDIP Dataset [33], in particular from “invoice”
and “form” categories.

In this way, we built a private dataset composed of 412 images representing personal
documents: Fiscal Codes, Identity Documents, Driving License, Passports, and Other
Images that can occur in the maritime application domain. The Driving License are then
fused in the more general Identity Documents category.

Figure 3. Some examples extracted from the Dataset. For privacy motivations, personal data has
been obfuscated.

For many documents (298) only the front pages are available and all the “back” vari-
ables (XBB, XFB, XTB) are missing. These examples have been excluded from the training
process. The resulting 114 documents are distributed as follows: 29.8% are Fiscal Codes (fc),
9.6% are Identity Documents (id), 32.5% are Passports (pa) and 28.1% are Other documents
(other). Since the document distribution is not related to the probability that a document is
shown to the desk, the prior probability πC has not been learned and set to uniform over
the 4 possible values. Table 1 contains the main characteristics of the considered dataset
and the Figure 3 shows some examples.

Table 1. Characteristics of the dataset.

Total Images: 412

Only front: 298

fc: 1.0%

id: 26.2%

pa: 17.4%

other: 55.4%

Front and back: 114

fc: 29.8%

id: 9.6%

pa: 32.5%

other: 28.1%
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Following what is described in Section 2.2, we set MXi to 95th percentile of the values
present in the Training Set, LXi = 10 and mXi = MXi /10 for each observed variable Xi,
except for the variable XBB which it is set to 75th percentile of the values present in the
Training Set. The ε value is set to 10−5.

After the quantization process a 5-fold Stratified Cross Validation procedure has been
performed to assess the Classification Accuracy of the learned model. To have a fair
evaluation of the model’s performance, at each split (after the quantization process based
on the parameters defined from Training Set as described above), all duplicated records
and records also present in the Training Set are removed from the Test Set. At this point
we have backward messages for the observed variables and the same number of forward
messages for the class variables. At each epoch the flow of messages in the network is used
to learn the SISO blocks, with Ns = 3 cycles and following the rules described in [13,28].
The learning process is stopped when all CPTs are unchanged and for a maximum of
Ne = 50 epochs. In Table 2 the confusion matrix for the dataset is shown together with per
class precision, recall and F1-Score [34]. The overall classification accuracy is 82.7% and the
macro-average F1-Score (harmonic mean of the average precision and recall) is 0.8073.

Table 2. Confusion Matrix, per class precision, recall and F1-Score without missing values.

Predicted

fc id pa Other Precision Recall F1-Score

Actual

fc 95.0% 0 0 5.0% 0.8636 0.9500 0.9048

id 0 63.6% 36.4% 0 0.6364 0.6364 0.6364

pa 3.5% 13.8% 79.3% 3.4% 0.8214 0.7931 0.8070

other 9.5% 0 4.8% 85.7% 0.9000 0.8571 0.8780

3.2. Inference

In the following paragraphs we present the results of some inference tasks based
on a model trained on 80 records and tested on 22. The inference is performed injecting
into the network the backward messages for the observed variables and collecting the
backward messages at the class variable, comparing the resulting bC with the ground truth
for the current example. Moreover the model responds with forward messages on the
observed variables that is proportional, for each variable, to the posterior probability of the
considered observed variable given all the other instantiated variables (Equation (2)). This
is a sort of probability induced from the measure’s context represented by all evidences
injected in the network.

Figure 4 shows the model’s answer when we inject the evidence related to an example:
when the injected value is correct (upper row), when there is an error on XTF variable
(middle row) and when the XTF variable is completely missing (lower row). It should be
noted that both in missing and wrong cases, the model responds with the correct class,
providing also with fXTF , that tries to correct, or complete the injected value since the
suggested values are more consistent with the measure’s context.

3.2.1. Measure’s Context

Figure 5 shows the model’s answer when we inject the evidence on the class variable
(fC) and collect the forward messages on the observed variables (fXi ) that represent the
pXi |C(xi|c). The distributions shown could be considered to be a context that can help
the system in situation of high uncertainty, permitting, for example, to detect strange
disagreement between the injected evidence and the system knowledge.
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Figure 4. Upper Row: Injected Variable and model’s answer. Middle Row: Injected Variable with
Error on Variable XTF and related answer. Lower Row: Injected Variable with the completely missing
variable XTF and related answer.
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Figure 5. Induced distribution on the observed variable from the Class.

3.2.2. Missing Values’ Management

One of the most important characteristics of the Bayesian approach is its capability
to treat missing values. In Figure 6 the effect of the absence of some detections on the
classification performance is shown. All detections are correctly injected in the network
except for k of them that are completely missing, and for which uniform distributions are
injected in the network.

For increasing number of missing variables, we compute all the possible missing
variables’ combinations and average the obtained metrics: classification accuracy, Jensen-
Shannon Divergence and Conditional Entropy.

In Figure 6d we show also the number of completely uncertain classification that is
always zero except for high number of missing variables. With all variable missing, we
have a completely uncertain classification for all presented examples.
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Figure 6. (a) Classification accuracy, (b) Jensen-Shannon divergence on Class Variable, (c) Conditional
Entropy of Class Variable and (d) the number of completely uncertain classifications varying the
number of missing variables.

The graph demonstrates that, in the average, also with three completely missing
detections (e.g., XFF, XFB, XTB or XFF, XTB and XBB, etc.) the classification accuracy
decreases less than 10% and also other metrics confirm the robustness of this model to the
missing values. Please note that the Conditional Entropy describes an increasing in the
uncertainty, in other words the classification becomes less sharp.

To emphasize the capability of the model to treat missing values, following the same
procedure described in Section 3.1, we performed a 5-fold Stratified Cross Validation but,
now, including the records with missing values in the Training Set and in the Test Set at
each split (also in this case all duplicated records and records also present in the Training
Set are removed from the Test Set). In Table 3 the confusion matrix is shown together with
per class precision, recall and F1-Score. The overall classification accuracy is 76.2% and the
macro-average F1-Score is 0.7474.

In the same configuration, if we do not take in account missing values in Training
Set, we obtain a decrease in the accuracy classification (62.6%) and of the macro-average
F1-Score (0.6506). This could suggest of including missing values also in the Training Set to
increase the accuracy in presence of the missing values. Unfortunately, we can’t conclude
this because the dimension of the effective Test Set for two simulations are different since,
in the first case, several records in the Training Set are present also in the Test Set and hence
are removed from it.

Moreover, we trained the model using all 114 records without missing values and
performed a classification task only on the unique 80 records that contain missing values
for the “back” variables (XBB, XFB, XTB). The classification accuracy for these records
is 58.8% and the macro-average F1-Score is 0.6274. These simulations confirm the high
flexibility and robustness of the model to manage missing values.
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Table 3. Confusion Matrix, per class precision, recall and F1-Score including missing values.

Predicted

fc id pa Other Precision Recall F1-Score

Actual

fc 78.9% 0 0 21.1% 0.8333 0.7895 0.8108

id 0 54.5% 36.4% 9.1% 0.5455 0.5455 0.5455

pa 2.1% 20.8% 77.1% 0 0.7872 0.7708 0.7789

other 6.1% 0 6.1% 87.8% 0.8286 0.8788 0.8529

3.2.3. Errors Management

In Figure 7 the effect of the wrong detections on the classification performance is
shown. In this simulation all detections are injected in the network but k of them are
assumed to be completely wrong. For increasing number of wrong variables, we compute
all the possible variables’ combinations and, for each combination, we insert 5 random
detections for each variable using the smooth deltas. We let the messages flow in the net-
work and average the obtained metrics: classification accuracy, Jensen-Shannon Divergence
and Conditional Entropy. In Figure 7d we show also the number of completely uncertain
classification. The graph shows how the system performance does not decrease too much
for one wrong detection, but it decreases dramatically when more errors are inserted.
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Figure 7. (a) Classification accuracy, (b) Jensen-Shannon divergence on Class Variable, (c) Conditional
Entropy of Class Variable and (d) the number of completely uncertain classifications varying the
number of wrong values.
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3.2.4. Reliability Test

As described in Section 2.2, the information coming from different devices has a
reliability dependent on the confidence of the related detector. This reliability value can be
assigned globally to a particular detector, or to a particular example, if we have evidence
that the current one is not so accurate. In Figure 8 the effect of raising the messages bC(e)

related to detectors containing errors, with an exponent νe is shown. The exponent of
messages related to other observed variables, i.e., not affected by errors, are indicated as
ν∼e and are set to 1 (no effect) or “normalized”, in a way that the sum of all exponents is 6
with a sharpening effect on these variables:

ν∼e := νi|i 6=e =
N − νe

N − 1
=

6− νe

5

As expected, with values of νe extremely low (1e− 7) the trends are the same that
in Figure 6, because the effect of such a small value for νe is to delete completely the
information related to a particular detector. The intermediate values of νe instead, reduce
the effect of the error improving the performance of system in terms of Classification
Accuracy and Jensen-Shannon divergence.
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Figure 8. (a) Classification accuracy, (b) Jensen-Shannon divergence on Class Variable, (c) Conditional
Entropy of Class Variable varying the number of wrong values and setting different combination of ν.

4. Conclusions

In this work, we described an Information Fusion architecture using the Factor Graph
in Reduced Normal Form paradigm.

The proposed approach permits learning a sort of measure’s context that, in presence
of high uncertainty, helps to detect disagreement between the injected evidence and the
system knowledge, giving to overall system great flexibility and robustness in the handling
missing and wrong values. The proposed architecture, in fact, also in presence of missing
values and errors, continues to have a good classification performance.

We also demonstrated how it is possible to condition the system in the presence of
information sources with different reliability or in presence of single unreliable detection.
This is another demonstration of the flexibility of the paradigm that can manage several
information sources taking into account their peculiarities.

Even though the approach is completely general and applicable to several contexts
where it is required to fuse information from several sources, the framework has been
applied to a classification problem of identity documents, where different detectors are
fused into a unique classifier.
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