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ESTIMATING THE C-FACTOR OF USLE/RUSLE BY MEANS OF NDVI TIME-SERIES IN 
SOUTHERN LATIUM 
An improved correlation model

S. Grauso,  V. Verrubbi, A. Peloso, A. Zini, M. Sciortino

Riassunto

Il presente lavoro, incentrato sull'area del Lazio meridionale comprendente le province di Latina e Fro-
sinone, ha avuto come oggetto la ricerca di un modello di correlazione per la previsione del fattore di
gestione e copertura del suolo (fattore C del modello USLE/RUSLE) a partire da dati satellitari sinte-
tizzati nell'indice di vegetazione NDVI (Normalized Difference Vegetation Index). A tal fine sono state
utilizzate le serie di immagini, con risoluzione spaziale di 250 m, raccolte nel periodo 2001-2016 dalla
piattaforma MODIS (Moderate Resolution Imaging Spectroradiometer). In assenza di dati osservativi
diretti, relativamente alle condizioni di copertura del suolo nell'area investigata, sono stati utilizzati i
valori riportati nella carta del fattore C dell'Unione Europea, con risoluzione di 100 m, realizzata dal
JRC (Joint Research Center) sulla base di dataset pan-europei (CORINE Land Cover, NUTS, MERIS).
L'analisi di regressione ha evidenziato come un semplice modello lineare non è in grado di prevedere
con adeguata precisione i valori del fattore C relativi ai diversi tipi di coperture ed usi del suolo, in
funzione dell'NDVI. Diversamente, una funzione logistica sigmoide consente una maggiore precisione
nel riprodurre le relazioni tra le due variabili (R2 = 0.989, RMSE = 0.015). Il confronto tra la distribuzione
dei valori del fattore C ottenuti nell'area di studio tramite la suddetta funzione e quelli riportati nella
mappa del JRC ha evidenziato un buon accordo nonostante alcune incertezze, soprattutto nelle aree
soggette a seminativi, dovute alle diverse tecniche utilizzate nei due casi. Il maggior beneficio deri-
vante dall'applicazione del modello di correlazione qui proposto consiste nella possibilità di aggiornare
la mappa, e di conseguenza i valori di C, in funzione dei dati spettrali raccolti negli anni successivi,
anche con riferimento a diverse scansioni temporali (annuale, stagionale, mensile).

Parole chiave: telerilevamento, NDVI, uso del suolo, RUSLE, analisi di regressione.

Abstract

A correlation analysis between mean Normalized Difference Vegetation Index (NDVI), derived from
250m-resolution MODIS-imagery time-series (2001-2016), and mean long-term cover management (C-
factor) data from the available 100m-resolution raster map, provided by the EU-JRC at the European
scale, is here presented. The aim was to find out a regression model helpful to easily estimate the
land cover management factor of the RUSLE, for future applications at different timescales and sub-
regional level, by using the remotely sensed vegetation index as predictor. The regression analysis
suggested that a sigmoid logistic function can fit well with the relationship between the two variables
(R-square = 0.989, RMSE = 0.015). The model function was employed to draw the long-term C-factor
map of southern Latium test-area (central Italy) which resulted in good agreement with the EU map.
Some uncertainties were likely due to differences in raster resolution and technique adopted in the
two approaches. Examples of simulations at annual and seasonal timescale are also provided, proving
the versatility of the proposed model to estimate the C-factor at differently refined timescales and to
easily draw updated maps basing on the availability of NDVI data-series.

Keywords: remote sensing, NDVI, land cover, RUSLE, regression analysis.
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PREFACE 

This report ends a study started in 2013 concerning the soil erosion risk assessment of Southern 

Latium. A first part was published in the ENEA Technical Reports series in 2015 

(RT/2015/22/ENEA). As already specified in the former report, the present study was inspired by 

the wide investigations that ENEA and some Dutch pedologists have being carried out in the area 

during the 80s, which allowed to gather a considerable database concerning the physical and 

chemical characteristics of soils. 

This second part, as well as the first part of the study, did not benefit from grants, which is why no 

field data check was possible which would have allowed a suitable validation of the results. The 

expectation is that the whole work presented could be useful to the management of soil resource 

both in Latium and in the other Italian Regions. 

 

 

PREMESSA 

Con il presente Rapporto si conclude uno studio avviato nel 2013 riguardante il rischio di erosione 

del suolo nel Lazio meridionale, di cui una prima parte è stata pubblicata dagli stessi autori nella 

serie dei Rapporti Tecnici (RT) ENEA nel 2015 (RT/2015/22/ENEA). Come è stato precisato nel 

primo Rapporto, lo studio ha preso le mosse dalle vaste indagini condotte in quest'area dall'ENEA e 

da alcuni pedologi olandesi, nel corso degli anni '80, che hanno consentito di raccogliere una 

consistente base di dati relativi alle caratteristiche chimico-fisiche dei suoli. 

Anche questa seconda parte non ha goduto di supporti finanziari, per cui, anche in questo caso, non 

è stato possibile raccogliere dati osservativi sul campo che avrebbero consentito una piena 

validazione dei risultati. L'auspicio è che il lavoro condotto, nella sua globalità, possa dimostrarsi 

utile per la gestione e la guida delle politiche regionali riguardanti la risorsa suolo non solo del 

Lazio, ma anche delle altre regioni italiane. 
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 1. Introduction 

The Universal Soil Loss Equation USLE (Wischmeier  & Smith 1978) and its revised 

version RUSLE (Renard et al. 1991, 1996) is one of the most widely used empirical models in soil 

erosion assessment. The model estimates the long-term yearly rate of soil loss in mass units per unit 

area by the product of six major parameters representing the main natural agent (rainfall erosivity 

R) and the soil predisposing factors to erosion (soil erodibility K and terrain morphology given by 

the product of slope lenght L and slope steepness S) combined with land use effects (soil cover 

management C and supporting practices P) : 

A=R∙K∙LS∙C∙P          (1) 

Although the USLE was initially calibrated for single plots on gentle slopes in agricultural 

fields, based on long series of observations in eastern USA, this empirical parametric model have 

been applied worldwide on various areal extents. Soil erosion maps at continental and national level 

using the RUSLE approach have been drawn in latest years in Europe (van Camp et al. 2004, 

Panagos et al. 2015a). In Italy, applications have been performed at national and regional scale (van 

der Knijff et al. 1999; Grimm et al. 2003; Guermandi et al. 2006; Rusco et al. 2007; ARPAV 2008; 

Bagarello et al. 2008; Terranova et al. 2009; Binetti 2011; Piccini et al. 2012; Giovannozzi et al. 

2013).  

The main question in using the USLE/RUSLE model at regional or sub-regional scale 

concerns the use of simplified estimates and interpolation techniques for the spatial analysis of 

model parameters. This is the case for rainfall erosivity and soil erodibility whose estimate is made 

possible by means of different techniques and methodologies which have been proposed to solve 

the limitations due to the geographic area scale. Correlation formulae and spatial interpolation 

algorithms have been developed to allow the calculation and mapping of these variables basing on 

available datasets, e.g., published soil texture data and rainfall amounts at different time-steps 

(yearly, monthly and daily). Moreover, the variability and the uncertainty in these estimates have 

been discussed by various authors (Römkens et al. 1986; Young et al. 1990; Borselli 1993; Torri et 

al 1997; Wang et al. 2001; Lark et al 2006; Salvador Sanchis et al. 2008; Angulo-Martínez 2009; 

Braunović et al. 2010; Buttafuoco et al 2011; Borselli et al. 2012; Jamshidi et al 2014).  

Simplified solutions have been also provided for the calculation of the topographic factor 

(LS). This can be easily computed by means of programs running in GIS environment that are 

based on digital elevation models with suitable terrain resolution (Moore and Wilson 1992; Hickey 

et al 1994; Desmet and Govers 1996; Mitasova et al 1996; Hickey 2000; Van Remortel et al 2001, 

2004). 

 With regard to the anthropic variables of the RUSLE, the supporting practices factor (P) has 

been generally neglected so far at the scales cited above, given its very local value and the difficulty 

to assess it for large areas. Recently, a study attempted to model the P-factor at the European Union 

scale by taking into account the Common Agricultural Policy implementation on the basis of field 

observations carried out in each of the member states (Panagos et al., 2015b). The study provided a 

list of the average estimated P-factor for each EU Country and two maps showing its distribution at 

the Union and regional level. 

Lastly, the quick and simplified estimate of the cover management factor (C) remains an 

open question. C is a rather complex factor to evaluate in order to parameterize the effect of actual 
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land cover and management on soil erosion. It is function of different sub-factors, such as: previous 

land-use, canopy-cover, surface cover, surface roughness, and soil moisture (Renard et al., 1996). 

These sub-factors should be estimated for each time period of the year over which the single sub-

factors is assumed to be constant, taking into account the seasonal variations due to crop rotation or 

other natural effects (climate variability, plant health conditions etc.). However, this procedure is 

rather onerous when applied on large areal extents. For this reason, an alternative technique was 

introduced by exploiting the ability of remote sensing technology to detect vegetation and its 

condition. This capability can help to minimize the field work and allows to estimate the C-factor 

with a spatial detail comparable to the geometric resolution of remotely sensed imagery which, in 

last generation sensors, can achieve a detail smaller than 1 m on ground. The most well-known and 

used index for this purpose is the Normalized Difference Vegetation Index (NDVI) obtained from 

the near-infrared and red spectral bands of the solar radiation: 

 

     
          

          
        (2) 

 

The NDVI is an indicator of plant reflectance in the red and near-infrared spectral region 

helpful to identify vegetated and non-vegetated areas from airborne or satellite imageries. Its values 

range between -1 and 1, where negative and very low positive values up to 0.1 denote water bodies, 

snow, bare soil and built-up areas, whereas values larger than 0.1 are typical of vegetated areas. 

As discussed below, many studies in different parts of the world have been focused on the 

relationship between NDVI and C-factor. However, a universal model has not been achieved yet 

due to the variability of conditions affecting both natural vegetation and cultivations in different 

geographic settings and to the lack of field observations. Nevertheless, the methodology to derive 

the land cover factor from remote Earth observation platforms still appears promising and very 

useful in applications at large areas.  

 In the present work, a correlation analysis of NDVI data derived from MODIS (Moderate 

Resolution Imaging Spectroradiometer) time-series of southern Latium (central Italy) and C-factor 

data available in the literature is presented. The final aim will be to provide a regional model for 

future applications of remotely sensed vegetation data helpful to compute the average land cover 

management factor of the RUSLE at different time-scales. 

 

 2. Background framework 

The correlation between C-factor and NDVI was firstly investigated by De Jong et al. (1994) 

on the basis of field data from 33 plots (10m x 10m) in a semi-natural vegetation area with 

Mediterranean climate, located in the Ardèche province of southern France. After revisions (De 

Jong et al., 1998) the model function assumed the form: 

 

                           (3) 

 

This linear model, however, was affected by a weak correlation index ( = - 0.64). In order 

to improve this relation, Van der Knijff et al. (1999, 2000, 2002) suggested an exponential curve 

whose equation is : 
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         (4) 

 

Where  and  are arbitrary scaling constants to which the authors assigned values of 2 and 

1, respectively. The robustness of this model was not statistically proved and the authors themselves 

acknowledged the lack of field evidence to justify the extended use of their equation. Nevertheless, 

it seemed to produce more realistic C values than those estimated assuming a linear relationship. 

Actually, since its publication, this equation has been widely used in different studies worldwide 

(van Leeuwen and Sammons 2003, Angeli et al. 2007, Kouli et al 2009, Prasannakumar et al. 2011, 

Perović et al. 2012, Parveen and Kumar 2012, Bayramov and Jabbarli 2013). Moreover, different 

sensors with different ground resolution, like Landsat TM or others, have been used in these studies 

despite the equation (4) was obtained on the basis of a low-resolution satellite platform (NOAA-

AVHRR, about 1 km pixel size) which makes downscaling unreliable (Cartagena 2004).  

Other authors have searched new modeling solutions by utilising different satellite platforms 

able to produce images with better ground resolution than AVHRR. Depending on the extent of the 

investigated area and on the availability of observed C-factor data, different approaches have been 

used. One of such approaches was based on the assumption of a linear correlation between C-factor 

and NDVI. It considers the theoretical extreme C values for forest and bare soil (0 and 1, 

respectively) coupled with actual NDVI values of forest and bare soil sample pixels which are taken 

as reference. This was to build a simple linear model whose equation is then used to derive 

intermediate C-factor values, for the pixels belonging to other land cover types in the same area. 

Obviously, the correlation coefficient of the linear regression model obtained in such a way was 

very high (approaching 100%). Erencin (2000) and Karaburun (2010) followed this methodology in 

areas of 240 km
2 

in Thailand and 630 km
2 

in Turkey, respectively, by utilising Landsat TM images. 

In the first case, where a mono-temporal satellite image was utilized, the NDVI-derived C-factor 

map revealed a low degree of correlation with the map derived by means of visual land cover 

classification utilizing C-factor values from literature data for similar geographical contexts. 

However, that result might be affected by the non-homogeneous series of data utilised, being the 

NDVI-derived C values referred to a one-month image whilst the C data from literature were 

referred to an annual basis.  

Another approach consists in investigating the relationship between NDVI and actual C-

factor determined by field descriptions. Employing such methodology is obviously more onerous 

and implies that the study area may not be very large. An application can be cited in Bolivia 

(Cartagena 2004), on a catchment area of 59 km
2
, where both MODIS and Spot 5 were used. These 

two sensors differ in spatial resolution and recurrence frequency, the first being characterized by 

high recurrence frequency (16 days) but low spatial resolution (250 m) and the second providing 

high resolution images (5 m) with lower frequency (26 days). Moreover, a time series of MODIS 

imageries covering a period of one year was employed in the study, while only one Spot day-scene 

was used. C-factor observations from 26 plots were compared with NDVI values in corresponding 

pixels. An interesting outcome of this study was that the Spot NDVI gives better results than 

MODIS, for C-factor estimate. The Spot NDVI model equation: 

 

                          (5) 
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confirms both the negative correlation between C-factor and NDVI and the reliability of the 

exponential model (R
2 

= 0.90). Using the NDVI values from MODIS images, distinct equations, 

one for each monthly scenery, were found having the same exponential form of the Spot model but 

lower correlation index (maximum value for R
2
 = 0.55). Another interesting result was given by the 

spectral comparison, on a pixel basis, between MODIS- and Spot-derived NDVI: a double 

operation of downscaling/upscaling the MODIS to the Spot pixel size and vice versa, showed that 

vegetation values derived from MODIS were greater than those from Spot and that the relationship 

between the two sensors was weak and affected by a systematic bias. This result demonstrates that 

the NDVI determination is very sensitive to the resolution power of the sensor employed. In any 

case, the relationship between the land cover factor and the NDVI derived from the two different 

sensors appeared in both cases satisfactory and useful to obtain the C-factor directly from satellite 

data. 

Another investigation to be cited was once again carried out in Thailand by Suriyaprasit and 

Shrestha (2008) based on field estimate of C-factor in 138 locations covering an area of 67 km
2
. A 

mono-temporal Landsat TM image was used to derive NDVI data which were plotted against C-

factor observed data. The regression function showed a good exponential relationship (adjusted R
2
 

= 0.78):  

 

                           (6) 

 

This equation was used to generate the C-factor map of the area which was validated by 

means of field observations confirming the reliability of the model. 

A more recent work was carried out considering a 86 km
2
 Atlantic rainforest watershed in 

Brazil by Durigon et al (2014), making use of a long TM Landsat 5 time-series covering a 24-year 

time span. Given the land cover type, the average NDVI in all of the images was quite close to 1. 

Consequently, a mean C-factor close to 0 was expected. The authors first applied the model 

equation (4) by Van der Knijff et al. but the C-factor they obtained was too low, as stated by the 

authors, with respect to the expected C values under tropical conditions. Thus, a  new formulation 

was proposed by means of rescaled NDVI: 

 

     
      

 
          (7) 

 

The C values so obtained resulted one order of magnitude higher than those obtained by eq. 

(4), but strongly correlated with them as shown in a plot where both series of data follow the same 

identical trend over the considered time period (see Fig. 3 in Durigon et al, 2014). In their 

conclusions, the authors emphasized the better accuracy and sensitiveness of their model if 

compared to equation (4), mostly considering the different geographic conditions where it was 

obtained, but no validation data were reported. The results underlined interestingly how the 

precipitation rate in the six month period antecedent the image acquisition can affect the NDVI 

being associated with variations in land cover. Therefore, similar C-factor variations can be 

expected as consequence of rainfall variability. 

Notwithstanding the initial emphasis given to NDVI as vegetation indicator and the 

numerous applications during the last 20 years, in latest research, carried out at the European scale 

in a framework study aimed to develop a new soil erosion model alternative to RUSLE, other 
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vegetation indices were ultimately preferred to NDVI (Panagos et al 2012, 2014a, 2014b, 2015c). 

Following Vrieling (2006) and De Asis and Omasa (2007), in fact, this latter would be conditioned 

by soil reflectance and vitality of vegetation which affect its correlation with vegetation attributes. 

Nevertheless, other authors continued to consider the NDVI suitable even in regions with strong 

soil interference like dry-lands, with the recommendation that applying NDVI is not an advisable 

option where its average value is less than 0.1 (Higginbottom & Symeonakis, 2014). Moreover, 

considering a time-series long enough to find a general correlation law, it will allow to mask and 

minimize such effects. 

 

 3. Test-area description 

The selected testing area is the southern portion of Latium (central Italy), located between N 41° 30' 

and N 41° 15' latitude and  E 12° 30' - E 13° 50' longitude, with an extent of about 3,800 km
2
. 

 
The 

main landscape treats are given by a series of parallel plains and mountain ridges, structurally 

stretched along NW-SE direction (Fig. 1); in succession: the coastal plains facing the Tyrrhenian 

Sea (Agro Pontino, Fondi plain and the Garigliano river plain) and bordering the low mountain 

ridge formed by the Lepini, Ausoni and Aurunci mounts (max elevation: 1,500 m above sea level);  

the Valle Latina intermountain basin, formed by the Sacco and Liri river valleys, and the sub-

Apennine ridge formed by Mts. Ernici (about 2,000 m a.s.l.), and Mt. Cairo massif (about 1,700 m 

a.s.l.).   

 

 
Fig. 1  Map of the area (blue lines: main rivers; white lines: regional borders)  

The climate is Csa Mediterranean with mean annual total rainfall around 1,000 mm. The 

Mediterranean character weakens with altitude and landscape variability. The coastal plains show 

narrow temperature range during the year, with annual averages around 17 °C, and low annual 
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rainfall (750-1,000 mm). The mountains and the intermountain valley are characterized by colder 

and more rainy conditions (mean annual temperature around 10 °C and rainfalls from 1,250 to 

2,000 mm per year). 

Prevalent land use is agricultural but many small- and medium-size industrial settlements 

have developed, during the last fifty years, in the coastal plains and the Valle Latina plain. In the 

latest years, farming has shifted toward vegetables, orchards, specialized vineyards and new 

cultivations such as kiwi and exotic plants. Animal husbandry is also an important activity in the 

coastal plains, with quality dairy production from buffalo livestock. Extended greenhouse 

cultivations are present at the southern edge of the Agro Pontino, between the city of Terracina and 

the National Park of Circeo. 

 

Table 1  CLC2012 classes mapped in the area. 

CLC2012  

3rd level 
Description 

Area 

(Km
2
) 

Area 

(%) 

11x;12x;13

x 

Continuous/ Discontinuous urban 

fabric; Industrial or commercial units; 

Road and rail networks and associated 

land; Port areas; Airports; Mineral 

extraction sites; Dump sites; 

Construction sites 

177.3 4.65 

142 Sport and leisure facilities 2.8 0.07 

211 Non-irrigated arable land 1140.3 29.88 

221 Vineyards 3.3 0.09 

222 ; 223 
orchards and berry plantations; Olive 

groves 
269.8 7.07 

231 Pastures 7.8 0.20 

242 Complex cultivation patterns 454.4 11.91 

243 

Land principally occupied by 

agriculture, with significant areas of 

natural vegetation 

323.0 8.46 

31x 
Broad-leaf forest; Coniferous forest; 

Mixed forest; 
779.3 20.42 

321 Natural grassland 321.1 8.41 

322;323;32

4 

Moors and heathland; Sclerophyllous 

vegetation; Transitional woodland-

shrub 

290.6 7.62 

331;332 
Beaches, dunes, and sand plains; Bare 

rock 
2.5 0.06 

333 Sparsely vegetated areas 7.7 0.20 

334 Burnt areas 12.0 0.31 

411 Inland marshes 3.0 0.08 

511 Water courses 2.1 0.05 

512 Water bodies 19.1 0.50 
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Areas over 600 m altitude are covered with forests and shrubs, commonly susceptible to 

wildfires during summer. Urban settlements are small and scattered throughout the whole area. The 

most populated town (Latina) does not exceed 150,000 inhabitants. Many natural parks and 

protected areas are present in the area, amounting to a total extent of more than 44,000 hectares.  

The 3rd-level layer of the Corine Land Cover 2012 provides a land cover/management 

classification of the area (Table 1). Twenty-eight of the 44 CLC land cover classes are present, with 

largely different extents. Roughly, 58 % of the area is occupied by agriculture, 37 % is covered by 

natural green areas and 5% by built areas. 

 

 4. NDVI Data analysis  

To the aim of the present work, the MODIS sensor data from the Terra satellite platform 

(EOS AM-1) were downloaded from the NASA website (see acknowledgments). MODIS data are 

available starting from March 2000, but we preferred to consider the complete yearly data series 

starting from 2001. Thus, the time interval from 2001 to 2016 is here concerned. 

Although it shows a not very refined ground resolution (250 m), if compared to other 

satellite sensors, the MODIS platform has the advantage to guarantee a rather continuous coverage 

on long-term observations. Therefore, basing on the 15-days radiometric measurements, the mean 

annual NDVI layers were firstly generated in GIS environment for each year. Afterwards, a unique 

layer was created where each cell or pixel contains the mean NDVI averaged over the whole 

considered time-span (Fig. 2). To accomplish that, the raster calculator tool was utilized. In the 

figure, built areas and water bodies (coastal lagoons and lakes)  are recognizable by reddish colors 

as well as the greenhouse area southward of the forest quadrangle of the National Park of Circeo. 

 

 
Fig. 2 - Mean 2001-2016 NDVI distribution. 
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Incidentally, it is interesting to examine whether significant changes have occurred in NDVI 

during the considered period. Figure 3 shows the diagram of the mean areal NDVI (yearly NDVI 

averaged on the whole study area) from 2001 to 2016. Fluctuations are limited within a narrow 

interval between 0.580 and 0.630 with a standard deviation close to zero , proving that 

no meaningful changes have occurred in NDVI, on average. Nonetheless, the diagram shows a clear 

growing trend of mean areal NDVI, within the aforementioned limits, which can be paired with the 

greening trend of natural vegetation, due to the increase of biomass and carbon in vegetation over a 

large part of the Italian territory. This trend was acknowledged in recent studies (Mancino et al 

2014, Castellari et al 2014) and also confirmed by the last national forestry and agriculture 

inventories (INFC 2015; ISTAT 2013).  

 

 
 

Fig. 3 - Diagram of mean NDVI and annual trend (dashed line). 

 

Trying to understand the possible causes of this trend is not the main scope of the present 

work, nevertheless, it can be of interest to verify the range of possible climate changes occurred in 

the same period. Given the relationship of NDVI with vegetation cover, in fact, it follows that an 

indirect relationship can exist between NDVI and climate whose variations can affect vegetation 

conditions. To this aim, rain and temperature data from 2001 to 2016 year have been collected from 

gauging stations located at elevations ranging from 2 to 850 m a.s.l. and distances from the coast 

from 1 to 63 km (Fig. 4)  
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Fig. 4 - Location of rain gauges and thermometric stations  

 

 

In Figure 5, a comparative diagram of average rainfalls and temperatures versus NDVI is 

shown. As can be seen, on an average annual basis, no significant correlation holds between NDVI 

and temperature whilst a slightly more significant match with the rainfall trend can be recognized 

(Pearson's r = 0.444, p = 0.085 significant at 0.01 level). The slight growing trend of NDVI could 

be conceptually coupled with the increasing trend of rainfall, but it cannot be claimed on a 

statistical basis.  

Another relationship can be investigated with land cover changes. The presence in the area 

of numerous scattered artifacts, i.e., farm houses, barns, warehouses, greenhouses and secondary 

roads can perturb the ground spectral response in adjacent natural vegetation and cultivation areas. 

By analyzing the frequency distribution of NDVI data in relation to the spatial distribution of 

artifacts in the area, it resulted that the NDVI values of 0.5 and 0.6 mark the limits between three 

main groups of land cover: total artificial and bare areas, with NDVI lower than 0.5; natural or 

cultivation areas with no or little artifacts, with NDVI higher than 0.6; mixed areas (natural or 

cultivation areas with significant presence of artifacts), with NDVI comprised between 0.5 and 0.6 

(Fig. 6). In this latter interval, as previously shown in Fig. 3, small fluctuations of mean NDVI, 

averaged on the whole area, have occurred until 2012. After 2012, the mean NDVI increases over 

0.61 which could be explained by a relative increase of natural areas surface, in agreement with the 

greening trend cited before.  
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Fig. 5 - Trend of mean annual NDVI, rainfall and air temperature in the period 2001-2016 

(data series normalized by mean and standard deviation). 

 
Fig. 6 - NDVI classification of the study area based on artifacts presence (red: total artificial 

and bare/water areas; blue: natural or cultivation areas with no or little artifacts; olive-green: 

mixed areas). 
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 5. Model analysis and application  

The rationale of the present analysis is based on the consideration that the NDVI reflects the 

land cover variations in a one-to-one correspondence. This means that, as C-factor changes in space 

(from one cover-type to another or through the same cover-type) and time (from a minimum to a 

maximum during the year and from year to year), due to natural vegetation or crop and management 

variations, so does the NDVI, consequently.  

 Given the lack of C-factor data from long-term field observations in the area here 

considered, our approach in searching for a correlation model between NDVI and C-factor is based 

on correlating the mean NDVI from long-term satellite imagery with mean long-term C-factor data 

provided in the literature for different land cover types with  reference to the same time-interval. 

This approach is justified by the proven low variability of mean area-NDVI in the considered period 

as shown in the previous section of present work. With these preliminary remarks, correlating 

average NDVI and C-factor data will allow to find a general law describing the statistical 

relationship between the two variables that will help to derive the C-factor from NDVI at different 

time-scales (yearly, seasonal and monthly).  

 The C-factor data here considered as baseline are those reported for Italy in the C-factor map 

of the European Union by Panagos et al. (2015c), representing average estimates derived from 

literature review, high spatial resolution remote sensing and statistical data on agricultural and 

management practices gathered in different pan-European databases such as Corine Land Cover, 

NUTS and MERIS.  

In the present work, the effort was addressed to find the accurate correspondence between 

the data from the EU C-factor map and the NDVI data from MODIS by overlaying the two raster 

layers in GIS environment (the ArcGIS10®  release has been used to this aim). To achieve that, 

given the different resolutions by the two layers (100 m the one and 250 m the other) it was 

necessary to make a downscaling in order to match them. Unfortunately, the different systems (RS) 

the two layers were are referred to (ETRS89 for the EU C-factor map and WGS84 for the NDVI) 

did not allow to obtain a perfect pixel overlay, after the RS transformation and homogenization, due 

to the persistence of errors and planar deformations. Therefore, it was preferred to compare the two 

raster layers on the basis of extended areas belonging to selected land cover classes, rather than cell 

by cell of the grid, in order to minimize the errors due to map offsets. By analyzing the C-factor 

frequency histogram, ten groups of values were identified by which the EU C-factor map was 

reclassified in homogeneous areas each of them was labeled with the corresponding C-factor 

average value. The area contours for each class were then overlaid on the NDVI map in order to 

capture the vegetation index data ranging within each class and calculate the corresponding mean 

value. Then, by the "extract by mask" tool available in the Spatial Analyst of the ArcTool box, the 

two series of objects were matched to obtain a unique attribute table containing the C-factor and 

NDVI mean values pairs. The data pairs were then put on a diagram, with NDVI on the x-axis 

versus the C-factor on the y-axis, in order to find the best interpolation model function.  

Hypothesizing a linear relationship, as envisaged by De Jong (1994, 1998), the C-factor 

would decrease proportionally with increasing NDVI. However, as shown in Fig. 7, a linear model 

will tend to underestimate the C-factor in the central part of NDVI data distribution and to 

overestimate it when NDVI tends to the extremes of the same distribution, suggesting that a non-

linear model would better approximate the observed data. Moreover, according to the linear model, 

NDVI values very close to 1 (0.8-0.9) would produce C-factor values less than zero, that is 
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physically inconsistent, according to the definition of the C-factor itself  (Wischmeier & Smith 

1978). Actually, when the NDVI gets closer to its maximum value 1 the C-factor is very close to 

zero but never null. This can be observed in an area under homogeneous forest cover such as the 

forest included in the National Park of Circeo, at the south-western edge of the study-area, where 

the C-factor is ranging from 0.0006 to 0.002 (Panagos et al., 2015c).  

 

 
 Fig. 7 - Linear model showing deviations  from observed data. 

 

 

Therefore, a correction factor must be introduced by which the regression model would be 

not represented by a straight line but by a curve better approximating the actual data trend. 

Moreover, a conditional constraint must also be introduced, fixing C = 0 for NDVI = 1,  to avoid 

negative values. Furthermore, in the present case, the curve may be truncated at NDVI = 0.4 since, 

in the investigated area, lower values correspond to artificial and bare/water areas (Fig. 6) for which 

estimating the C-factor would not make sense. All things considered, a logistic sigmoid curve will 

represent the best interpolation line. The resulting model function has the form:  

 

   

   
 

      
      

 
 
                                      (8) 

 

 

In the present case-study, the equation parameters show the values:  

 a = 0.3439; b = 0.6137; c = - 0.0295. 
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Fig. 8 - Modeled function of C-factor vs. NDVI (dashed lines: 95% confidence interval).  

 

 

 

Fig. 9 - C-factor map of the area derived by equation (8). Urban areas and water bodies (in grey 

color) are excluded. 

 

Figure 8 shows the fitted curve where none of the observed points lies outside the confidence 

interval. The model function so obtained was applied to the study-area, basing on the mean 2001-2016 

year NDVI layer, in order to show the distribution of estimated mean long-term management factor in 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.4 0.5 0.6 0.7 0.8 0.9 1 

C
 

NDVI 

R2 = 0.989 
Std. err. = 0.015 

Sigmoid 
function 
Observed 

95% confidence 
bounds 



20 
 

the area, with 250 m - spatial resolution (Fig. 9). In the figure, the estimated C-factor is classified 

following the same class-intervals as in the base-map by Panagos et al. (2015c) (Fig. 10) in order to 

compare the results. 

 

 

Fig. 10 -  C-factor map extracted from the EU map by Panagos et al. (2015c). Urban areas and 

water bodies (in grey color) are excluded. 

By a quick look, compared to the EU-map, a major diffusion of medium-high classes seems to 

be evident in the map derived by applying equation (8). This differentiation appears more noticeable in 

large plain areas (Agro Pontino, Fondi plain and Valle Latina), meaning that, as far as croplands are 

concerned, the proposed model would overestimate the C-factor with respect to the EU-map. 

Elsewhere in the area, e.g., on the central mountain ridge and other areas of Valle Latina, slight 

underestimates can be observed. In Table 2, a direct comparison on statistical basis is shown. The 

correlation appears good for C-factor values lower than 0.1482, corresponding to forest and semi-

natural areas (NDVI higher than 0.622). It worsens for values from 0.1482 to 0.2954 (agricultural 

areas) and get slightly better for greater values up to 0.369 (vineyards, olive groves and natural 

grasslands). These latter, however, show a very lesser areal extent than other land-use categories. 

Analyzing the two maps in detail, if we consider the boundaries of the CLC2012 classes, one 

can see that the areas classified as arable lands show a data ranging very similar in the EU map and the 

map modeled by the eq. (8) (from 0.001 to 0.358 with standard deviation of 0.036 in the first, and from 

0.001 to 0.344 and standard deviation of 0.097 in the second). Consequently, the corresponding 

average values for arable lands are very close (Table 3).  
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Table 2 - Correlation degrees between model results and EU-map for different C-factor class 

groups. 

 Lower bound Upper bound Spearman's coefficient 

1 [0.001, 0.0746[ 0.53 

2 [0.0746, 0.1482[ 0.62 

3 [0.1482, 0.2218[ -0.04 

4 [0.2218, 0.2954[ 0.04 

5 [0.2954, 0.369] 0.27 

 

 

 

Table 3 - Comparison between EU-map and model results averaged for CLC12 land cover 

classes 

CLC2012 

3rd level 
Description EU map Model eq. (8) 

211 Non-irrigated arable land 0.212 0.183 

222-223 orchards and berry plantations; Olive 

groves 

0.182 0.113 

242 Complex cultivation patterns 0.140 0.171 

243 Land principally occupied by agriculture, 

with significant areas of natural vegetation 

0.118 0.092 

31x Broad-leaf forest; Coniferous forest; 

Mixed forest; 

0.013 0.045 

321 Natural grassland 0.174 0.191 

322-23-24 Moors and heathland; Sclerophyllous 

vegetation; Transitional woodland-shrub 

0.133 0.097 

 

 

Actually, the C-factor assigned to arable lands in the EU map has a uniform value of 0.221 for 

94% of the cells composing that land-cover class, while the eq. (8) model values show a wide range 

around the average (Fig. 11), probably more realistically mirroring the varying cover degrees of 

different kinds of cultivations. To this aim, it must be pointed out that the C-factor for arable lands 

reported in the EU map is the result of C-factor estimates from literature review, averaging different 

crop types, combined with the effects of management practices. 

With regard to forested areas (CLC2012 class 31x), the EU map shows a data ranging from 

0.001 to 0.310 with standard deviation of 0.04 and average value of 0.013. The model eq. (8) gives for 

the same areas values from 0 to 0.344 with standard deviation of 0.067 and average value of 0.045. 

Also in this case, the difference between observed and estimated data is not substantial.  

Ultimately, the diagram shown in Fig. 12, correlating the average C-factors reported in Table 3, 

allows to conclude that the EU-map and the map derived from eq. (8) show a good agreement (R
2
 = 

0.64). 
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Fig. 11 - Frequency diagram of C-factor values for arable lands from model equation (8) 

 

The uncertainties between the two maps may be explained considering the different techniques 

used, in the two model approaches, for deriving and representing the data. As an example, besides the 

different resolution, already recalled, the influence of artifacts on the NDVI spectral response in the 

"mixed areas", as pointed out above, can entail some deviations from the EU map reference values.  

 

 

Fig. 12 - Correlation diagram between EU map average data and data from eq. (8) for CLC12 

classes 

 

All things considered, the estimates obtained by means of eq. (8) do not strongly conflict on 

average with the EU map. The most significant difference is that while the EU map provides a static 

value for C-factor,  depicting the long-term effect of land cover (as it was detected in that considered 

time-interval), on the contrary, the proposed model will be able to catch the changes of the same 

variable with time.  
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Fig. 13 - C-factor map relative to 2007 (a) and 2013 (b) year. 
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Fig. 14 -  C-factor maps relative to Autumn 2005 (a) and 2006 (b). 
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For example, considering a couple of critical years, for the area here examined, such as 2007 

and 2013 year, characterized, respectively, by the lowest and the highest yearly total rainfall in the 

whole 2001-2016 time span, the corresponding values assumed by the annual C-factor can be 

estimated (Fig.13). Consequently, the soil loss degree may also be assessed in those specific 

conditions. As can be seen, the C-factor in 2007 appears much higher than in 2016, on average, 

indicating a major proneness to soil erosion as consequence of minor vegetation growth under lower 

moisture conditions.   

In the same way, a suitable C-factor can be assessed on a seasonal basis too. As an example, 

considering Autumn as the most critical season for croplands in the Mediterranean area, since soils are 

coverless and most vulnerable, in this part of the year, while rainfalls are heaviest, the C-factor maps 

are here reported for Autumn 2005 and 2006, when the maximum and the minimum rainfall have been 

recorded for that season in the studied area (Fig. 14). Actually, the resulting C-factor in the first case is 

lower than in the second, on average, as consequence of major vegetation development and soil 

coverage under higher moisture conditions. 

 

 6. Conclusions 

An improved non-linear correlation model was developed to estimate the soil cover 

management factor of USLE/RUSLE basing on NDVI satellite observation data. Notwithstanding 

some uncertainties in the estimate, the model provided good results. The main benefit deriving from 

the model here developed will consist in the possibility to estimate the C-factor for large areas at 

differently refined time scales (from 15-days to yearly) and draw updated maps when needed, 

basing on the availability of NDVI data-series. 

The choice of utilizing moderate-resolution satellite images, such as those provided by the 

MODIS platform, can be the origin of uncertainties between observed and derived C-factor values. 

However, the advantage in using such data is in their optimum coverage and temporal resolution 

with free availability. Most likely, satellite platforms with higher resolution could allow better 

results. This issue will be a topic for further research. On the other hand, high-resolution imageries 

could be economically onerous, which is a key-factor for many  public administrations requiring to 

utilize satellite data as planning and management tool.  
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