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SOIL EROSION ESTIMATE IN SOUTHERN LATIUM (CENTRAL ITALY) USING RUSLE AND 
GEOSTATISTICAL TECHNIQUES 
 
S. GRAUSO, V. VERRUBBI, A. ZINI, A. PELOSO, C. CROVATO, M. SCIORTINO 
 
 
 
Abstract 
The present work aims to provide an assessment of soil erosion by means of the RUSLE model combined with different 
interpolation methods, in a Region of Italy where soil information is lacking and soil erosion risk is overlooked in land 
policies.  The work concerns an area 4,000 km2 wide in the southern part of Latium (central Italy) and is based on 
simplified procedures for RUSLE factors calculation and on available rainfall, soil, land-cover and elevation data 
archives. The model results are shown in a map displaying that most of the area is characterized by very low or 
negligible soil erosion rates, on the average. Major soil loss affects areas on the central mountain ridge and inland 
areas with strong relief. On the average, the soil loss rate amounts to 44.4 Mg ha-1 year-1. Given the lack of field 
observations to validate the modelled erosion rates, the map just can give an idea of the potential impact of erosion 
processes. Notwithstanding this limitation, the present work can support policy making in regional management and 
planning. The map will be updated once new information and details will be available. 
 
 
Keywords: soil, erosion, spatial interpolation, GIS. 
 
 
STIMA DELL'EROSIONE DEL SUOLO NEL LAZIO MERIDIONALE MEDIANTE IL 
MODELLO RUSLE E TECNICHE DI INTERPOLAZIONE GEOSTATISTICA 
 
 
Riassunto 
Il Lazio risulta ancora carente nell'informazione pedologica. Nonostante la frammentarietà dei dati tuttora disponibili, 
col presente lavoro abbiamo inteso testare l'operabilità del modello RUSLE e di alcune tecniche di interpolazione e 
simulazione geostatistica nell'area del Lazio meridionale p.p., per un'estensione areale di circa 4000 km2, nella 
prospettiva di poter estendere la stessa metodologia all'intera regione e contribuire alla messa a punto di strumenti 
conoscitivi utili per la pianificazione regionale. Il lavoro si è basato su dati pluviometrici, pedologici, plano-altimetrici e 
di uso e copertura del suolo contenuti in pubblicazioni scientifiche e database disponibili sul web. È stata anche 
condotta una campagna speditiva di campionamento dei suoli nell'area dei monti Lepini, Ausoni ed Aurunci al fine di 
colmare la carenza di dati in quell'area. La carta finale della perdita di suolo, intesa come valore medio su scala 
pluriennale, ottenuta dalla combinazione dei layer cartografici corrispondenti ai singoli fattori della RUSLE, mostra 
valori contenuti nei limiti di accettabilità (< 10 Mg ha-1 anno-1) nelle aree delle pianure costiere e intermontane mentre 
evidenzia valori crescenti e maggiormente significativi sui versanti delle aree collinari e montane, dove assumono valori 
superiori a 200 Mg ha-1 anno-1. Il valore medio dell'erosione riferito all'intera area risulta pari a 44.4 Mg ha-1 anno-1. 
Pur in mancanza di osservazioni dirette con le quali tentare di effettuare una validazione dei risultati ottenuti, i valori 
riportati sono comunque indicativi per una valutazione di prima approssimazione alla scala sub-regionale. Ulteriori 
approfondimenti ed aggiornamenti della carta prodotta saranno possibili una volta disponibili nuove informazioni e 
dettagli.  
 
 
Parole chiave: suolo, erosione, interpolazione spaziale, GIS. 
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PREMESSA 

Negli anni '80 l'ENEA era impegnato in ricerche sulla analisi e qualificazione geologica e 

sismologica dei siti interessati dalla presenza di impianti nucleari. In particolare, alcuni studi 

erano incentrati sull'area del Lazio meridionale e Campania adiacente, data la presenza delle 

centrali di Borgo Sabotino (Latina) e del Garigliano (Sessa Aurunca, CE). Per tale motivo, 

l'indagine svolta nei decenni precedenti dai pedologi olandesi Sevink, Remmelzwaal e 

Spaargaren sui suoli della stessa area, i cui risultati erano già stati pubblicati in lingua 

originale in una rivista dell'Università di Amsterdam, apparve di estremo interesse per le 

finalità dell'ENEA che decise di ripubblicare il lavoro in inglese, in un proprio Rapporto 

Tecnico, nel 1984.  

La grande quantità di dati, presentati con estremo dettaglio, ha ispirato e consentito il presente 

lavoro, condotto senza alcun supporto finanziario, sopperendo all'impossibilità di effettuare 

estese indagini di campagna per un campionamento sistematico dei suoli. Il lavoro è quindi la 

semplice applicazione di un modello di previsione e stima attraverso l'elaborazione, effettuata  

su base GIS e con l'utilizzo di tecniche geostatistiche, dei dati pedologici tratti da quella 

indagine, insieme con i dati pluviometrici, planoaltimetrici e di uso e copertura del suolo 

rinvenuti presso varie fonti bibliografiche.  

Data l'ubicazione dell'area, si è cercato di coinvolgere e suscitare l'interesse da parte della 

Regione Lazio, ai fini di un supporto operativo e finanziario, ma senza successo. Pertanto, il 

lavoro ha sicuramente sofferto della mancanza di dati osservativi sul campo che avrebbero 

consentito una piena validazione dei risultati. 

Con il presente Rapporto Tecnico, gli Autori auspicano comunque di aver dato un contributo 

alla conoscenza dei processi geomorfologici che potenzialmente interessano i suoli di una 

porzione del Lazio, in continuità, ma ben più modestamente, con l'enorme ed irripetibile 

lavoro del 1984. 
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1. INTRODUCTION 

Soil is an important natural resource to be preserved given its function in regulating water runoff 

and infiltration and in supporting both natural and agricultural vegetation. Soil weathering and erosion 

are natural processes leading to the evolution of landscape, but they may undergo acceleration as a 

consequence of land management or climate extremes. Land use changes that have occurred 

worldwide in the last century have extensively affected life quality and the environment [1]. Moreover, 

climate change in the Mediterranean region is leading to a rainfall regime characterized by an 

increased frequency of high-intensity rainstorms [2,3,4]. These facts could imply, as a consequence, a 

growth in rainfall erosivity and soil vulnerability. For these reasons, suitable agricultural strategies and 

soil conservation measures should be implemented. In order to plan such measures, it is necessary to 

be provided with information data and suitable tools to identify the most susceptible areas to erosion 

and  predict the soil loss potential.  

Latium Region is still lacking in soil information apart from few areas [5]. The soil survey program 

currently being carried out by the Regional Administration is expected to complete the soil description 

and mapping for the whole region by the end of the year 2015 at a scale of 1:250,000 [6]. 

In order to partially fill the current gap, the present work is aimed at supplying a first-approximation 

soil erosion assessment at regional scale in the southern part of Latium using the RUSLE prediction 

model [7,8] combined with different interpolation methods. The work is based on simplified 

procedures for RUSLE factors calculation and available rainfall, soil, land-cover, and elevation data 

with the addition of supplementary topsoil textural data gathered in a cursory field survey.  

The methodology here employed is not new, but since decades the RUSLE has been proved to work 

very well at various scales worldwide [9]; moreover, it represents by now a common reference 

modeling methodology by which results in different geographical areas may be compared. In the 

recent past, a small-scale map of the soil erosion risk assessment in Italy was produced by the 

European Soil Bureau (ESB) [10-11]. This map, however, was affected by low-resolution data sources. 

Actually, the main purpose of the present work is to obtain, simply using GIS facilities with better 

resolution data sources and updated algorithms, a medium-scale map of soil erosion in a Region of 

Italy where soil erosion risk is overlooked in land policies and where specific studies are lacking. 

Extended field activities aimed to verify the model results were not carried out due to financial 

restrictions. Notwithstanding this limitation, the present work can provide a helpful information tool 

for regional management and planning. 

 

2. AREA DESCRIPTION 

Latium is an administrative region of central Italy with an area of about 17,000  km
2
, facing the 

Tyrrhenian Sea.  The area considered in the present work is located in the southern portion of the 

region between N 41° 30' and N 41° 15' latitude and  E 12° 30' - E 13° 50' longitude, with an extent of 

about 4,000 km
2 

(Fig. 1). 
  

Main landforms in the study area, from the coastline toward the inner land, are: the coastal plains of 

Agro Pontino, Fondi and the Garigliano river plain; the central calcareous mountain ridge formed by 

the Lepini, Ausoni and Aurunci mounts (1,500 m above sea level); and the "Valle Latina", a large 

intermountain basin formed by the Sacco and Liri river valleys, bordered on the north by the Apennine 

ridge (mounts Ernici, 2000 m, and Monte Cairo massif, 1669 m). All of these landforms show a NW-

SE direction, following the main regional tectonic structure.  

Main lithologies present in the area are Mesozoic-Paleogene carbonate rocks (central mountain 

ridge, Monte Cairo), Miocene-Pliocene flysch series (Valle Latina and Garigliano basin) and 

Pleistocene-Holocene lacustrine, fluviatile and marine-eolian sedimentary deposits (conglomerates, 

sands and clays in varying successions accumulated in the coastal and intermountain plains). 
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Figure 1.  Map of the area 

 

The climate is Csa Mediterranean with mean annual total precipitation around 1,000 mm. However, 

the Mediterranean character weakens with altitude and landscape variability. The coastal plains show 

slightly narrower temperature ranges during the year, with mean annual temperatures around 17 °C and 

low annual rainfall (750-1,000 mm), with respect to the inner zones characterized by colder and more 

rainy conditions (mean annual temperature around 10 °C and precipitations from 1,250 to 2,000 mm 

per year). 

During the last fifty years prevalent land use has changed from agricultural to industrial through the 

development of small and medium size industrial settlements spread throughout the territory. This 

change has been sustained by the abundance of water resources. Farming has shifted toward 

vegetables, orchards, specialized vineyards, and new cultivations such as kiwi and exotic plants. 

Animal husbandry is still an important activity in the coastal plains, with quality dairy production from 

buffalo livestock. Areas over 600 m altitude are covered with forests and shrubs, commonly 

susceptible to wildfires during summer months. Urban settlements, mainly historical villages of pre-

Roman and Medieval origin, are small and dispersed. Main towns are the modern city of Latina (about 

120,000 people) founded in 1932 in the Agro Pontino coastal plain, and Frosinone (46,000 people), 

located in the Valle Latina. Many natural parks and protected areas are present, with a total extent of 

more than 44,000 hectares.  

Soil types in the area can be roughly classified, according to the Soil Regions of Italy, as Cambisols 

- Leptosols with Luvisols and Fluvisols [12]. Andosols and Regosols are also present in the 
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northwestern and southeastern edges of the area, due to the proximity of main volcanic structures 

(Vulcano Laziale and Roccamonfina). 

An extended description of soils of southern Latium was carried out in the framework of a project 

of the Faculty of Physical Geography and Soil Science of the University of Amsterdam between 1966 

and 1977. The project results were published in a detailed report edited by ENEA (the current Italian 

National Agency for New Technologies, Energy and Sustainable Economic Development), also 

including a 1:100,000-scale soil map, with descriptions of soil profiles provided with analytical data 

[13]. More recently, a soil map of the Sacco river-valley (northwestern part of Valle Latina, 580 km
2
) 

was published, derived from a field survey carried out 20 years before aimed at soil classification and 

land capability evaluation [14]. A soil erodibility assessment was also performed in the same study 

[15].  Lastly, the earlier Dutch study [13] was integrated and reorganized in order to achieve a 

systematic soil inventory database covering the entire Province of Latina (2,250 km
2
) [16]. 

 

3. DATA ANALYSIS AND MODEL IMPLEMENTATION 

Soil erosion rates can be assessed by means of different techniques and models. The Revised 

Universal Soil Loss Equation - RUSLE , derived from the former USLE [17], is one of the most 

widely used empirical models in soil erosion assessment. The reason for its widespread use lies in the 

RUSLE model's ability to couple simple form with reliable prediction accuracy. The model estimates 

the long-term yearly rate of soil loss in mass units per unit area (in SI units: Mg ha
-1

 y
-1

). Soil loss is 

obtained as the product of six major factors grouped into two sets representing, respectively, the 

natural and the human elements acting in soil erosion processes. The first set of factors accounts for: 

the energy input by rainfall, i.e. the erosive power or erosivity (R factor, MJ mm ha
-1

 h
-1

 y
-1

); the soil 

erodibility, i.e. the soil susceptibility to erosion per rain erosivity unit (K factor, Mg h MJ
-1

 mm
-1

); and 

the terrain shape expressed by the product of slope length and steepness (LS factor, dimensionless). 

The other set accounts for the effects of human activity on soil stability and conservation, through the 

soil cover management and the supporting practice factors (C and P, dimensionless):  

)()( PCLSKRA    (1) 

Although the USLE empirical model was initially calibrated for single plots on gentle slopes in 

agricultural fields, based on long series of observations from about 50 experimental sites in the USA, 

the worldwide applications that followed its introduction have proved its functionality even in very 

different environments and areal extents [18-24]. Soil erosion maps at continental and national level 

using the USLE/RUSLE approach have been drawn in Europe [25]. In Italy, many regional 

applications can also be cited [26-32]. In these applications, GIS-based (Geographic Information 

System) spatial processing techniques are employed to convert RUSLE factor point-values (R and K, 

essentially) into surface polygons. Single maps displaying the areal distribution of R, K, LS, C and P 

factors are then combined by running the RUSLE model through the specific GIS operator tool to 

ultimately provide the map of soil erosion rate distribution. 

As explained above, rainfall, soil, elevation and land use/cover data are needed to allow application 

of the RUSLE model. All these data can be obtained from readily available datasets. However, the P 

factor, related to supporting practices, is generally neglected when dealing with large geographic areas, 

i.e. regional and national scales, since it is a very local factor whose effects can be significant for plots 

or small catchment scale assessments. 

In the present work the long-term average annual soil erosion rate is estimated, regardless of 

seasonal and inter-annual variations affecting most of RUSLE factors. Actually, the variables 

considered in the model equation are subject to variation with time and space. Rain erosivity obviously 

changes with rainfall throughout the year and from one year to another, due to seasonal and climate 

variability affecting rainstorm frequency, duration and intensity [33-34]. Soil erodibility changes as a 
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function of soil properties [35,36,37] and climate conditions [38-39]. Nonetheless, intrinsic and time 

invariant properties such as soil texture and mineralogical composition may be distinguished from 

dynamic and transient or man-induced properties such as organic matter and water content or surface 

roughness [40]. Thus, to a first approximation, the K factor could be related to the invariant soil 

properties only, provided that a sufficiently long period of observation is considered.   

Intra- and inter-annual changes are also important, mainly in croplands, with regard to land cover 

and management factor  C as well. Changes are due to management practices, natural growing cycles, 

or other natural effects affecting plant canopy or health status.  

In summary, soil erosion should be estimated at the finest possible detailed time-scale, from 

monthly to daily or at event-scale, in order to catch the time variability potentially affecting the 

RUSLE factors. Nevertheless, for the purpose of present work, time variability is here neglected and 

average yearly reference values for each of the RUSLE factors are estimated and taken into account. 

Spatial variability and its implications will be discussed. 

 

3.1. Soil erodibility 

The K factor was here determined by means of the correlation formula developed by Römkens et al. 

on the basis of a global soil database [41]. This formula only requires the soil texture as input data: 

             

                   (2) 

 

where: 

     ii mfDg ln01.0exp              (3) 

Dg represents the geometric mean of soil particle sizes, expressed through the fi percentage of the 

corresponding primary grain-size fraction (sand, silt or clay) and the arithmetic mean mi of the extreme 

values for that grain-size fraction [42]. In the above-mentioned correlation formula, other soil 

characteristics such as organic matter content, structure and permeability, as required by the former 

USLE model and computed by means of the soil erodibility nomograph or its simplified solving 

equation, are neglected. 

The soil textural data utilized here were those published by Sevink et al. [13]. The authors provide a 

general description of soil types following a subdivision mainly based on landscape and parent 

material (physiographic units, see Table 1). Each description is accompanied by the detailed 

characterization of soil profiles, classified according to the FAO/Unesco "Key to Soil Units for the Soil 

Map of the World" (1974), and their textural and physical-chemical properties. A total of 87 soil 

profiles and related analytical data were therefore available for use in the present work.  

Based on the provided grain-size data related to the topsoil layer, the corresponding K factor was 

calculated here for each of the 87 described soils by means of the equation (2). In order to proceed 

with further spatial data processing, the soil profile locations were georeferenced and labeled with the 

corresponding computed K values in GIS environment.  

The spatial distribution of sample points in relation to the overall extent of the considered area was 

acceptable, apart from a lack of observations in the central calcareous mountain ridge. For this reason, 

a cursory sampling survey was carried out at the end of 2013 with the aim of filling the gaps in the 

information available and to provide a more complete database. In this survey, 27 additional topsoil 

samples were collected in the area of Lepini, Ausoni and Aurunci mountains. Given the extent of the 

area (about 700 km
2
), the sampling campaign was mainly planned according to access and logistical 

economy. This was done by crossing two GIS layers representing the soil map and the road atlas, 
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respectively, in order to select a minimum number of representative sampling points easily reachable 

by vehicle. A complete pedologic profile description of sampled soils was not performed during the 

field survey, given that only textural data were needed for determining the soil erodibility through the 

equation (2). Statistical point pattern analysis suggests a satisfying sampling design, since there is no 

evidence to reject the null hypothesis of spatial random distribution all over the area (
2
 for Poisson 

distribution = 0.095; df = 2; p-value = 0.953). 

In Table 1, the grain-size compositions and computed K of soil samples are averaged on the basis of 

the physiographic unit membership, according to [13].  

By the USDA classification diagram (Fig. 2) almost half of the analyzed soils (46 %) fall in the clay 

and sand fields, whereas the remainder (54 %) fall in the fields of variously composed loams. The K-

values here obtained outline a soil erodibility from very low to moderate: they vary from a minimum 

of 0.007 Mg h MJ
-1

 mm
-1

 for a sandy soil on a dune deposit at 9 m a.s.l., to a maximum of 0.044 Mg h 

MJ
-1

 mm
-1

 for clay-loam soil types found atop various bedrocks (limestone, shales, lavas, lagoonal 

clays, lacustrine deposits, meandering stream deposits, alluvial fan deposits, colluvial deposits) at 

different elevations. Soil samples show an average erodibility of 0.034 Mg h MJ
-1

 mm
-1

 and a low 

dispersion around this value (Table 2). 

 

 

Table 1. Average textural data and K values in soil samples grouped according to 

physiographic units  

Physiographic units  SAND > 50 m SILT CLAY < 2  m Dg K 

Fluvial  25 40 35 0.032 0.038 

Colluvial  21 32 47 0.019 0.037 

Lacustrine  15 44 41 0.014 0.039 

Littoral-eolian  81 8 11 0.390 0.013 

Lagoonal  40 22 38 0.109 0.026 

Conglomerates 48 30 22 0.082 0.034 

Sandstones 57 29 14 0.153 0.025 

Shales 29 40 31 0.027 0.044 

Limestones 18 43 39 0.024 0.036 

Volcanic (Roccamonfina) 38 37 24 0.070 0.036 

Volcanic (Vulcano Laziale) 16 23 61 0.007 0.033 

Volcanic (Ernici and tuffs of various origin) 33 37 30 0.048 0.037 

 

Table 2. Statistics  of soil grain-size fractions and K 

variable 
Mean  

(%) 

Min  

(%) 

Max  

(%) 

Median 

 (%) 

SD  

 

sand (2mm - 50 m) 29.5 2.5 95.8 24.2 22.5 

silt (50 m - 2m 35.2 2.2 66.0 35.6 14.3 

clay (< 2m 35.3 2.0 83.5 32.0 19.9 

K 0.034 0.007 0.044 0.037 0.010 
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Figure 2.  USDA soil classification diagram. Filled triangles: soil data from Sevink et al. [13]; open 

triangles: data from field soil survey (2013) 

 

The K values here obtained are in agreement with those reported in the cited study on the valley of 

Sacco river [15], where a soil erodibility assessment was performed on the basis of 190 soil profiles by 

means of three different regression model equations, namely, the EPIC formula [43], the equation also 

utilized in the present work [41], and the formula proposed by Torri et al. [44]. The authors evidenced 

that the estimates obtained by the EPIC model, considering the overall samples number comprehensive 

of all the texture classes, were significantly different and higher than those by the other two methods, 

whose performances did not deviate too much the one from the other. 

In order to derive the erodibility map for the whole area, one method is assigning K values 

computed for single point locations to the corresponding major soil types represented as area-fields in 

the available pedological map. However, this point-in-polygon method can lead to biased estimations 

[37,45], given the spatial variability of soil properties. In recent years, different geostatistical 

techniques have been introduced in order to predict soil erodibility in non-sampled locations [37,46-

49].  

In the present work, three different interpolation models have been selected and tested: 1) the 

Empirical Best Linear Unbiased Predictor based on Residual Maximum Likelihood (REML-EBLUP) -

[50]; 2) the Neural Network with refinement [51]; 3) the Kriging with Local Variogram [52-54].  

The REML-EBLUP analysis was performed using the SAS/STAT software, version SAS 

University Edition Software 9.4. Copyright © 2014 SAS Institute Inc. Cary, NC, USA. This technique 

is a special application of variance component analysis. It is different from the traditional maximum 

likelihood method as it makes use of a restricted information area in order to search the likelihood 

function. To the aim of the present work, it can be used as a geostatistical method since the estimated 

variance components give the parameters to fit the empirical semivariogram. The first part of the 

analysis, the REML step, aims to detect the model that is least distant from the observed data, i.e. the 
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smallest –2 residual log-likelihood index; while the second part, the EBLUP step, builds the model of 

spatial covariance that was previously detected, and performs the interpolation at non-observed 

locations. The strength of REML-EBLUP is in its ability to produce unbiased estimates of the fixed 

effects, which represent the trend surface, and of the random effects, which capture the local spatial 

variation. Its validity over other geostatistical methods such as regression kriging has been discussed in 

the literature [46, 48,55-57].  

The Neural Network with refinement model also consists of a two-step procedure. The first step is 

somewhat similar to regression kriging, but it makes use of neural network analysis (multilayer 

perception) instead of regression. The second step, identical to regression kriging, is a simple kriging 

interpolation applied to the derived residuals. The results of the two steps are summed in order to 

estimate the spatial structure of the statistical variable. 

The third model, based on local variogram, is a kriging technique based on a flexible semivariogram 

model based on the neighborhood structure of each point and it has been implemented by VESPER 

software [55]. 

In order to choose the best performing model among the three briefly described just above, testing 

their stabilities is an essential task . A split sample design has been adopted. A random sample of 80 

observations, a subset of the total of 114 K factor values, was arranged in order to build the model, 

while the remaining 34 observations were used for validation. This procedure tends to avoid 

overestimation of the goodness of fit and in this respect it appears to function more effectively than 

others such as the leave-one-out technique. Table 3 presents characteristics of some of the indices 

commonly employed to deal with this matter. Mean absolute error (MAE), along with mean absolute 

percentage error (MAPE) and mean squared error (MSE) are measures of total average error. Mean 

biased error (MBE) takes into account the algebraic residuals instead of the absolute ones (MAE) and 

it reflects systematic error rather than random error. Furthermore, in order to explore the partition 

between systematic and random errors, we followed Wilmott's technique of mean squared error (MSE) 

decomposition in MSEs and MSEu [58,59]. The s and u suffixes stand for the systematic and the 

stochastic component, respectively. The 95% bootstrap confidence interval of residuals should ideally 

show a negative sign at the lower limit and a positive sign at the upper limit which indicates a zero 

centering. Finally, as measure of concordance, the Wilmott D agreement index is displayed. It should 

ideally approach unity and its strength is its immunity to being affected by outliers. Upon initial 

inspection of Table 3 no one of single tested methods appears clearly preferable to the others. Model 2 

is the only one which satisfies the confidence interval bound limits (from -0.0009 to 0.0035) and it 

shows a relatively small general error (MAPE = 19%). However, it is not performing in a purely 

systematic way, as its MBE (0.0013) and MSEs (0.000038) are higher than in model 3 (0.0008 and 

0.000032 respectively). Moreover, when transferring this model to descriptive mapping, the visual 

impact of representation is plagued by excessive spikes and rough edges. In addition, it shows a very 

high variation coefficient with regard to the other two (Table 3). In short, this model seems precise but 

inaccurate. From a comparative point of view, Model 1 seems to perform worse than the others, even if 

the stat indices are generally satisfactory. Finally, model 3 seems preferable to the others because of its 

systematic error component control (MSEs = 0.000032). It is possibly less precise than Model 2, but is 

undeniably more accurate. The Willmott D (0.81) supports this interpretation [58,59]. 

The map obtained by interpolating the K point-values by means of model 3 is shown in Figure 3a. It 

can be seen that soil erodibility shows a trend related to the main landform traits of the study area. The 

map depicts a progressive trend from the coastal plains towards the mountainous and inner zones. The 

highest K values are found on the highest relief portions of the area (Lepini and Ausoni-Aurunci 

mountains and Mt. Cairo). Lower values in the middle Valle Latina basin correspond to colluvial 

deposits in karst basins. These results mirror the higher vulnerability of thin soils covering steep rocky 

hillsides versus mature and deep soils on unconsolidated rocks in flat areas. 
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Table 3.  Comparison of goodness of fit indices using validation datasets 

  
Mod. 1 

REML-EBLUP 

Mod. 2 

Neural Network 

with simple Kriging 

refinement 

Mod. 3 

Local variogram 

Min  0.0130 0.0098 0.0170 

Max  0.0430 0.0390 0.0410 

Std. dev.  0.0052 0.0100 0.0047 

Mean  0.0323 0.0304 0.0322 

Variation coeff.  0.1598 0.3289 0.1460 

MAE  0.0072 0.0066 0.0076 

MAPE  0.2100 0.1900 0.2200 

MBE  0.0023 0.0013 0.0008 

 lower 0.0003 - 0.0009 0.0002 

Bootstrap residuals *     

 upper 0.0042 0.0035 0.0041 

MSE  0.000068 0.000057 0.000042 

MSEs  0.000047 0.000038 0.000032 

MSEu  0.000022 0.000019 0.000010 

Wilmott's D  0.7000 0.7400 0.8100 

* 95% residuals confidence interval, based on 10.000 samples bootstrap analysis 

 

 
Figure 3. Modeled patterns for RUSLE factors: a) soil erodibility K (black triangles: soil sampling 

locations); b) rainfall erosivity R (red triangles: rainfall gauging stations); c) topographic factor LS; d) cover 

management C 



 

15 

 

3.2. Rain erosivity 

A data-set covering the years since 1950 to 1997 was compiled on the basis of available rainfall 

data from 20 gauging stations located at different elevations from 1 to 850 m above sea level (Table 4). 

Data are from the Hydrological Annals published by the former National Hydrographic Service and 

the current Regional Hydrographic Services of Latium and Campania Regions. For each gauging 

station the average annual R value has been calculated with reference to the entire observation period:  

 

     
N

annualEI
N

R
1

30

1
                        (4) 

where N is the number of years with observations and EI30 is the rain erosivity given by the product of 

the total kinetic energy E of a single storm (MJ ha
-1

) and the storm's maximum 30-minute intensity I30 

(mm h
-1

) [17]. The calculation of EI30 requires availability of pluviographs for each single discrete 

storm with uniform intensity. To compensate for gaps in such records, annual rainfall erosivity has 

been calculated by means of the correlation formula by Diodato [60]: 

 

        6446.0

30 142.12 cbaEI annualR                         (5) 

where a, b, and c are, respectively, the total annual rainfall, the annual maximum daily rainfall, and the 

annual maximum hourly rainfall, all expressed in centimeters. This formula has been proven to be 

more effective than other correlation models in reproducing the erosive power of rainfall in the Italian 

peninsular geographic background [60]. The rationale of this formula is that variable a is 

representative of less erosive rainfall events, with a cumulative effect over  long periods, whereas 

variables b and c describe the very erosive effects of extreme rainfall events such as storms and heavy 

showers. Moreover, these variables are easily accessible and generally available in long time series. 

The R factors computed by means of eq. (5) for the 20 gauging stations point out a moderate rain 

erosivity ranging from a minimum of 1560 to a maximum of 3694 MJ mm ha
-1

 h
-1

 y
-1

 (on average: 

2259 MJ mm ha
-1

 h
-1

 y
-1

). In most of the observed cases, erosivity shows a relatively low time-

variability around the long-term average in the observed period, as indicated by the standard deviation 

and coefficient of variation (CV). With regard to the spatial variability, a case-study in the French 

Alps, where the statistical relationships between heavy rainfall and topography (elevation, exposure 

and slope steepness) have been investigated,  showed that heavy rainfall events measured on short time 

steps (less than 3 hours) are significantly linked to relief characteristics [61]. As it is defined, the 

erosivity R applies mainly to heavy rainfall of short duration, therefore, one can expect that R has 

some relationship with elevation. Nevertheless, no relationship can be identified between R and 

elevation in southern Latium, basing on available data, as the plot in Fig. 4 clearly shows (r
2
 = 0.168). 

Given the low number of observations, attempting a data analysis by more detailed statistical methods 

is not suitable. However, three subsets may be geographically distinguished within the database, 

corresponding to the main morphological traits recognized from SW to NE in the investigated area: 

one groups the rain gauging stations located along the Agro Pontino coastal plain, at an average height 

of 5 m asl, showing an average R < 2000; the second subset can be identified in the rain gauging 

stations on the central mountain ridge (average height: 364 m; average R > 3000); the third is given by 

the rain gauging stations along the Valle Latina (average height: 414 m; average R between 2000 and 

3000). The distribution of R values according to this scheme highlights the increase of erosivity from 

the coastal plain to the first mountain ridge - which can be explained by the barrier effect on wet air 

masses moving inland from the sea and there discharging the maximum rain energy -  and its relative 

lowering proceeding toward the inter-mountain valley. 
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Table 4.  List of rain gauging stations (coordinates in decimal degrees) and average annual 

R values with statistics 

Observatory Latitude  Longitude 

Height   

(m 

a.s.l.) 

Length of records 

(Years) 

R 

(MJ 

mm ha
-1

 

h
-1

 y
-1

) 

Standard 

deviation 
CV 

Alvito 41.68 13.73 475 28 2339 972 0.4 

Anagni (Osservatorio) 41.73 13.16 430 20 2368 1550 0.7 

Atina 41.61 13.80 520 39 2875 1524 0.5 

Casamari 41.66 13.48 300 28 2029 971 0.5 

Cassino (Genio Civile) 41.49 13.82 60 26 2528 1217 0.5 

Ceccaccio 41.29 13.19 1 19 1839 924 0.5 

Esperia inf. 41.38 13.68 272 22 3694 1863 0.5 

Fiuggi (Fonte Vecchia) 41.79 13.22 621 31 2704 1638 0.6 

Foro Appio (Borgo Faiti) 41.46 13.00 7 27 1560 725 0.5 

Frosinone (Genio Civile) 41.63 13.35 192 25 1899 751 0.4 

Latina 41.46 12.90 12 36 1860 903 0.5 

Lenola 41.40 13.46 470 20 2651 1293 0.5 

Ponte Ferraioli 41.46 13.09 2 25 2093 1121 0.6 

Pontinia 41.41 13.05 6 25 1626 631 0.4 

Roccamonfina 41.28 13.98 815 20 2340 1038 0.4 

San Biagio Saracinesco 41.61 13.92 850 25 2207 954 0.4 

Sessa Aurunca 41.23 13.93 204 25 1791 793 0.4 

Sora 41.71 13.61 281 19 2374 1012 0.4 

Subiaco S. Scolastica 41.91 13.11 511 37 2117 757 0.4 

Terracina 41.28 13.25 2 25 1700 794 0.5 

Tivoli 41.95 12.80 238 30 1635 796 0.5 

Vallecorsa 41.45 13.40 350 30 3463 1535 0.5 

 

 

 

With regard to rain erosivity mapping, due to the scarcity of observational data, the interpolation of 

R factors was not performed by a geostatistical method, as it was done in the case of K factor. The use 

of a minimum curvature spline surface interpolation is clearly preferable in place of other deterministic 

techniques. Nonetheless, the estimates based on this technique have been validated both in a statistical 

way and by visual comparison with historical rainfall maps available on the Regional Integrated 

Agrometeorological Service website, not shown here for copyright reason 

(http://www.arsial.it/portalearsial/agrometeo/index.asp). About this topic, different interpolation 

methods, from global (GLS Generalized Least Squares multiple regression) to local (Inverse Distance 

Weighting IDW and splines) and geostatistical interpolation models (Ordinary Kriging, Universal 

Kriging and Co-Kriging), have been compared with the aim to map the rainfall erosivity expressed by 

the R factor and the EI30 index in the Ebro basin (NE Spain) [62]. The study pointed out that all 

interpolation methods were able to capture the main spatial pattern of both indices with narrow 

differences between models under the validation ranking and robustness of predictions. Local 

interpolation methods yielded the best results but the resulting maps were affected by excessive 

weights given to local observations. 
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Figure 4.  Plot of  the relationship between R factor and altitude. In the circles, subsets of rainfall 

observatories cited in the text  

 

Table 5 shows the results of leave-one-out validation. The indices reported in this table are 

encouraging, although this kind of validation is generally considered too optimistic. Above all, the 

Willmott’s D is close to maximum  agreement, whereas mean absolute percentage error (MAPE) is 

just 6%. The 95% bootstrap confidence interval contains the zero value and the systematic error source 

is undersized (6530, which is only 20% of the total estimated error) . 

 

 

Table 5. Leave-one-out validation of  R factor interpolation by means of minimum 

curvature spline 

  Minimum curvature spline 

MAE  138.2 

MAPE  6% 

MBE  -64 

 lower -147.7 

Bootstrap residuals*   

 upper 10.4 

MSE  39763 

MSEs  6530 

MSEu  33234 

Wilmott's D  0.96 

* 95% residuals confidence interval, based on 10.000 samples bootstrap analysis 
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The rain erosivity map obtained by the interpolation of single-point R values is shown in Figure 3b 

where blue-colored bands of iso-erosivity are modeled by taking into account the entire listed rainfall 

dataset (Table 4) comprehensive of some rain gauging stations located outside of the investigated area. 

The map depicts the presence of a split nucleus of high erosivity, located on the central mountain ridge 

and centered on the rain gauging stations where heaviest rainfall has been recorded, surrounded by 

lower erosivity belts corresponding to the coastal plains and the interior valleys.   

3.3. Slope length and steepness 

The LS topographic factor was computed on the basis of a 20 m resolution DEM, using a public 

processing code [63,64] running algorithms based on raster grid cumulation and maximum downhill 

slope angle methods. The executable program for LS calculation is downloadable at the link:  

http://www.iamg.org/documents/oldftp/VOL30/v30-09-11.zip. In this way, differently from the 

previous factors, the LS factor was directly computed for each of the 20 m cells of the DEM grid 

covering the whole area.  

The resulting map shows that LS values are generally very low (mean: 5.57), but with high 

variability (SD = 8.81), the lowest values being obviously localized on the flat portions of the area and 

the highest ones on the hillsides. LS values less than 2 cover 58% of the whole area, while the extreme 

values (>19) affect 9% only (Fig. 3c). 

3.4. Land  cover management 

Factor C is rather complex to evaluate. Many sub-factors must be estimated, according to the 

RUSLE handbook [8], in order to parameterize the effect of actual land cover on soil erosion. Such 

sub-factors are: previous land-use, canopy-cover, surface cover, surface roughness, and soil moisture. 

Moreover, these sub-factors should be estimated for each time period of the year over which the single 

sub-factors can be assumed to remain constant, considering the seasonal variations due to crop rotation 

or other natural effects (climate, plant health conditions etc.). Thus, adopting average values for the 

various land cover categories that can be recognized over a given area is a rough approximation.  

However, the scale of investigation of the present work does not allow to make more accurate 

estimates. Therefore, very general C values were here adopted in order to roughly quantify the effect 

of land cover management on soil erosion due to natural agents.  

The C factor was attributed on the basis of the 3rd level classification of the Corine - Land Cover 

2000 map of Latium. Due to the unavailability of observed data for the study area, the C values 

assigned to the CLC classes here recognized are those provided by the European Soil Data Centre at 

the European scale [65]. The correspondence between land cover classes and C factor is shown in 

Table 6. As shown in the table and in Figure 3d, the most represented land cover class in the 

investigated area is given by arables and cultivations (~ 60 %) whose C values are varying from 0.1245 

to 0.3454, whereas forested and scrub or herbaceous vegetated areas, having a C factor from 0.0013 to 

0.055, are 30% of the area. All things considered, the map of C factor was here drawn by means of a 

point-in-polygon method, differently from the grid-based method used for the other RUSLE factors 

maps. 

An alternative method for deriving and mapping the C factor in a distributed way (at grid-cell level)  

is utilizing the Normalized Difference Vegetation Index (NDVI), helpful to quickly identify vegetated 

and non-vegetated areas from airborne or satellite imageries. The NDVI is an indicator of plant 

reflectance in the red and near-infrared spectral region and varies between -1 and 1, where negative 

and very low positive values (up to 0.1 - 0.2) are typically characteristic of water bodies, snow, bare 

soil and built-up areas, whereas vegetated areas have NDVI values larger than 0.1. A linear correlation 

between the C factor and the NDVI was found by De Jong [66]: 

    NDVIC  805.0431.0                        (6) 
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Table 6.  CLC2000 classes mapped in the area and assigned C values 

CLC2000 

3rd level 
Description 

Area 

(Km
2
) 

Area 

(%) 

Factor C 

(Panagos et al., 

2015) 

11x;12x;13x Continuous/ Discontinuous urban fabric; 

Industrial or commercial units; Road and 

railnetworks and associated land; Port areas; 

Airports; Mineral extraction sites; Dump sites; 

Construction sites 

126.61 3.72 n.d. 

141;142 Green urban areas; Sport and leisure facilities 2.19 0.06 n.d. 

211 Non-irrigated arable land 1105.28 29.02 0.211 

221 

222 

223 

Vineyards 

orchards and berry plantations  

Olive groves 

27,40 

46,06 

228,76 

0.72 

1.21 

6.01 

0.3454 

0.200 

0.2163 

231 Pastures 13.54 0.36 0.0988 

242 Complex cultivation patterns 455.11 11.95 0.1478 

243 Land principally occupied by agriculture, with 

significant areas of natural vegetation 

373.14 9.80 0.1245 

311;312;313 Broad-leaf forest; Coniferous forest; Mixed 

forest; 

765.35 20.09 0.0013 

 

321 

322;323 

 

324 

Natural grassland  

Moors and heathland; Sclerophyllous 

vegetation;  

Transitional woodland-shrub 

22,07 

154,07 

 

219.26 

0.58 

4.04 

 

5.76 

0.0416 

0.055 

 

0.0242 

331;332 Beaches, dunes, and sand plains; Bare rock 51.59 1.35 n.d. 

333 

334 

Sparsely vegetated areas 

Burnt areas 

109.05 

86.19 

2.86 

2.26 

0.2509 

0.325 

411 Inland marshes 3.63 0.10 n.d. 

511 Water courses 2.08 0.05 n.d. 

512 Water bodies 17.71 0.46 n.d. 

 

 

However, this relation was characterized by a weak coefficient (r = - 0.64).  In order to improve this 

relation, an exponential equation was thereafter suggested by Van der Knijff et al. [67]: 

    











NDVI

NDVI
C

1
2exp                        (7) 

This equation has been used in different studies worldwide since its publication, although the 

authors themselves acknowledged the lack of  field evidence to justify the use of their equation. 

Moreover, equation (7) was obtained on the basis of a low-resolution satellite platform (NOAA-

AVHRR, 1-km pixel size) that makes up-scaling unreliable.  

As an attempt to test the validity of the method, available time-series of average annual NDVI from 

MODIS images (250 m resolution) covering the years from 2000 to 2013 was here utilized with the 

aim of deriving the land management factor by means of equation (7). The analysis was limited to the 

extremes of the period under consideration, thus, two maps of NDVI pattern were drawn for years 

2000 and 2013 (Fig. 5a-b). Incidentally, the comparison between the two maps highlights a greening 

trend of natural vegetation areas, in agreement with vegetation studies in other parts of Italy [68]. This 

trend is probably linked to the temperature and precipitation changes that have occurred since the year 

2000 in central-southern Italy [69]. The difference between the two vegetation indices is also reflected 

in the corresponding land management factor (C') maps. On the other hand, as can be seen in figures 

5c-d, the application of equation (7) produced C' values quite different from those provided by the 



 

20 

 

ESDC and adopted here. In fact, the NDVI-derived factors show a wider range (from 0  to 0.8 ) than 

the CLC2000-based factors reported in Table 6. Moreover, within the same land-cover category, 

differences can be up to one or two orders of magnitude. Differently from what was pointed out by 

Van der Knijff et al. [67] about unrealistically high land cover factor produced by equation (7), 

especially for woodland and grassland, the MODIS-based NDVI-derived C' factor here obtained 

appears to be consistent with generally accepted values for woodlands. Some correspondence between 

C and C' maps can be recognized on forested areas. On the contrary, no match can be found on other 

categories such as non-irrigated arable land and complex cultivation patterns or vineyards, orchards, 

and olive groves actually showing NDVI-derived C' values generally lower than 0.1. 

Similar inconsistencies were proved in the framework of a research project recently carried out in 

Thailand [70]. This study compared the results obtained by applying the prediction models cited above 

[66,67], and a specific model calibrated on local fieldwork data, revealing wide differences in 

magnitude and relative spatial pattern of derived C values. 

These uncertain results suggest that it is advisable, in the present phase, to avoid utilizing the 

NDVI-based methodology in the studied area and to await further investigation for a more critical 

analysis. 

 

 

Figure 5.  NDVI and derived land cover management factor (C') maps: (a,c) year 2000; (b,d) year 2013  
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4. RESULTS AND DISCUSSION 

 

Combining the layers related to the different RUSLE factors in GIS environment, according to the 

model equation (1), the soil loss map of southern Latium is obtained. One can distinguish between the 

potential soil loss, only due to the natural components of the model (K, R and LS layers) and the 

actual soil loss by introducing the C factor taking into account the effect of land cover management on 

natural erosion. 

The map of the average yearly potential soil loss (A') (Fig. 6a) shows a sharp difference in potential 

soil loss rate between flat areas and steep mountain zones. This evidence would suggest that the 

landscape relief, quantified by the LS factor, strongly affects the erosion potential more than either rain 

erosivity or inherent soil erodibility. 

The effect of the C factor on calculation produced different soil erosion amounts and patterns (A) in 

comparison with the potential soil loss estimate, pointing out the key-role played by land cover 

management (Fig. 6b). The resulting actual soil loss map shows that most of the area is characterized 

by very low or negligible soil erosion rates (< 10 Mg ha
-1 

year 
-1

). Coastal plains and intermountain 

valleys, as expected, but also hilly gently-sloping areas are comprised in this erosion class. Major soil 

loss affects many areas on the central mountain ridge and the reliefs bordering the Valle Latina. 

Extreme values ( > 200 Mg ha
-1 

year 
-1

) are prevalent in these sectors. The average soil loss rate 

referred to the overall area is about 44 Mg ha
-1 

year 
-1

. As explained before, in the present work, the C 

factor was not derived from field observations but from general data available in the literature. For this 

reason, the impact of this factor on estimated soil erosion rates in the investigated area can be 

considered merely approximate. 

 

 
Figure 6a.  Map of potential soil loss  
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Figure 6b.  Map of actual soil loss  

 

In order to validate the erosion rates here supplied, a comparison between observed and predicted 

data could be helpful. Unfortunately, direct measurements are not available. Moreover, given the 

extension of the area here investigated (about 4,000 km
2
), observations should be carried out in several 

points scattered throughout the area. Furthermore, the same observations should be referred to a long 

time-span, enough to obtain a significant average soil loss rate. The only observations available in 

Latium have been carried out for few years in the past, on a few plots located in the country around the 

city of Rome, outside of the studied area [71,72,73].  

A comparison may be attempted with the map previously produced by the European Soil Bureau 

[11] at the national scale, cited in the introduction, both from a trend and a class-by-class point of 

view, notwithstanding the differences in data sources and scale resolution. From the first point of view, 

the erosion rate assessed in southern Latium in the present work appears overestimated of about 30 ha
-1 

year 
-1

, on average, compared to the map by ESB in the same area. Nevertheless, the statistical 

correlation between the two raster maps, on a cell resolution of 250 m, points out a good agreement in 

soil loss pattern (Spearman's rank correlation coefficient  = 0.58). To visualize the differences on a 

statistical basis, a map of p-values (significance level) for the algebraic differences, has been drawn by 

means of a simulation technique based on 9,999 permutation. This map, shown in Figure 7, points out 

the areas showing p-values ≤ 0.05 and marked in red and ochre colors where differences, whether 

positive or negative, are statistically significant. As can be seen, a good consistency between the two 

maps can be recognized, since the cells marked by non-significant difference are the largest majority. 

More critical appears the consistency between the two maps from a class-by-class point of view as can 

be seen from Table 7 showing the sharing percentage of cells for each erosion class. In general, the 

diagonal cells express the full classification agreement, while the off-diagonal cells point out different 

seriousness of disagreement according to their distance from the ideal diagonal cells. Actually, while a 
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good similarity is held in the lowest class (more than 80% of the cells assigned to the class 0-10 Mg 

ha
-1 

year 
-1

 in our map falls in the homologue class in the ESB map), the agreement worsens moving 

toward the highest class (> 200 Mg ha
-1 

year 
-1

) where just 0.2% of the cells of our map is consistent 

with the ESB estimate, the majority being included in lower classes. 

Table 7. Agreement between southern Latium and ESB map by cells distribution in 

erosion classes 

  Southern Latium (present work)   

ESB 2003 0 - 10 10 - 20 20 - 75 75 - 200 > 200 Totale 

0 - 10 81.4 54.6 42.1 27.5 13.0 66.2 

10 - 20 7.7 19.3 18.2 19.9 9.0 10.9 

20 - 75 9.3 22.1 32.8 42.1 51.8 18.4 

75 - 200 1.6 4.0 6.8 10.3 26.0 4.6 

> 200 0.0 0.0 0.0 0.1 0.2 0.0 

Totale 100 100 100 100 100 100 

  

 

 

 

Figure 7  Map of significance level (p-values) for the difference between the ESB and the present work 

model estimates. 
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This circumstance can be interpreted as due to a scale-factor whose effect is amplified with growing 

estimated erosion but not to such an extent to invalidate the general trend.  Given the lower spatial 

resolution of the ESB map (250 m) compared with the 20 m resolution here utilized, it is likely that the 

topographic factor LS could affect the result. Further investigations will allow us to better understand 

the role played by the LS factor in determining the final result at different geographic scales.  

 

After all these considerations, when validation data are unavailable, theoretical assessments can just 

give an idea of the potential and impact of erosion processes. Anyway, they can help to address 

suitable land policies. So, the map of soil loss here obtained can provide a useful snapshot of soil 

erosion potential in southern Latium. Moreover, it can be reclassified in terms of soil erosion severity 

in order to represent different degrees of risk and provide a more usable tool for policy makers. To this 

aim, no standards are yet established in the scientific literature.  

The concept of soil loss tolerance is widely accepted, implying a maximum threshold established at 

10~13 Mg ha
-1

 year
-1

 [17,74], but this limit can be lower in the case of shallow soils or slower 

pedogenesis processes, as occur in the Mediterranean environment [75, 28]. The cited limit can help to 

univocally define the lower ranges of soil erosion (very slight to slight), but no criteria are commonly 

recognized to establish the number and the intervals for the other ranges. Different classifications and 

techniques have been suggested and employed in recent literature [21, 23, 24, 28, 29], often without 

justification for the adopted class intervals. To avoid the introduction of subjectivity in soil erosion 

classification and allow the comparison in small-scale erosion risk maps, the fuzzy mathematics and 

class membership has been suggested as supporting techniques [44,76,77]. More specifically, a 

classification system more oriented towards policymakers in designing conservation programs for 

croplands was proposed [78]. The erosion potential is categorized into four classes, from non-erosive 

to highly erosive with two intermediate classes, avoiding arbitrary and qualitative designation of 

erosiveness. After separating the physical (RKLS) and management (CP) components of the RUSLE, 

the hinge-numbers of the proposed scheme are the following: the value of the tolerable soil loss rate 

(T) - established by the U.S.D.A. at 11 Mg ha
-1

 year
-1

 (5 ton acre
-1

 in U.S. Customary Units) for 

cropland; the maximum CP recorded in the U.S. National Resources Inventory of 1977 (0.7); and the 

minimum CP for intensive row crop agriculture (set equal to 0.1). From these numbers, the lower and 

the upper bounds for RKLS were obtained to define the classes of erosion [78]. 

The classification described above is specifically agronomic and management-oriented and is based 

on available CP data records. An alternative system was proposed by Zachar for the classification of 

soil removal processes based on six-level intensities [79]. According to this classification, originally 

expressed in volumetric units, the soil loss estimates in southern Latium can be summarized as shown 

in Table 8 where erosion classes are expressed in mass of soil loss by considering an average soil bulk-

density of 1.2 g/cm³. 

 

Table 8. Erosion classes and areal distribution 

Erosion class 

 

Soil loss 

(Mg ha
-1

 y
-1

) 

Area 

Km
2
 

Area 

% 

Nil or negligible erosion 0.0–0.6 1968 52.2 

Slight erosion 0.6–6 493 13.1 

Moderate erosion 6.0–18 241 6.4 

Severe erosion 18–60 476 12.6 

Very severe erosion 60–240 414 11.0 

Catastrophic erosion > 240 181 4.8 
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5. CONCLUSIONS  

The soil erosion map of southern Latium has been drawn thanks to the suitability of the RUSLE 

model for applications at small-medium scale using few available data. The RUSLE model was run in 

GIS environment by combining different maps (or layers), each representing one of the model's 

factors. Limits and uncertainties in interpolating and mapping the RUSLE factors have been discussed. 

The main question in using RUSLE as well as other models at small (i.e. regional or sub-regional) 

scale, concerns the extrapolation of quantities, e.g. soil erodibility and rainfall erosivity measured at 

single points, to surrounding space. Another question is the assessment of uncertainty in the estimates. 

To this aim, the robustness and reliability of algorithms and correlation models utilized in the present 

study for calculation of K and R factors have already been discussed by others here cited. Moreover, 

the employment of statistical tools, as performed in the present work, is helpful in testing the reliability 

and in assessing the spatial uncertainty of estimates in the study area.  

In summary, the soil erodibility map of southern Latium was obtained by interpolating 114 

sampling points, where the K factor was calculated on the basis of soil textural data, using Kriging 

with Local Variogram. This latter proved to be better than other techniques such as the REML-EBLUP  

and the Neural Network with refinement. The map shows a progressive trend in K values distribution 

from the coastal plains towards the mountainous and inner zones, reflecting the higher vulnerability of 

thin soils covering steep rocky hillsides versus mature and deep soils on unconsolidated rock in flat 

areas. 

The rain erosivity map was drawn by interpolating R factor values calculated on the basis of rainfall 

data records in 20 gauging stations located at different elevations. It shows the presence of a split 

nucleus of major erosivity, located on the central mountain ridge, surrounded by lower erosivity belts 

corresponding to the coastal plains and the interior valleys.   

The slope length and steepness map (LS factor) was compiled on the basis of a 20 m resolution 

DEM by applying an automatic computational procedure at each cell of the DEM. The resulting map 

shows that, on average, the area is characterized by low LS values but with high variability, the lowest 

values being obviously on the flat portions and the highest ones on the hillsides.  

The land cover and management map (C factor) was drawn by means of a point-in-polygon method 

on the basis of the 3rd level classification of the Corine Land Cover 2000 map of Latium. The C factor 

values here employed were not derived from field observations but from general data available in the 

literature. By the way, the areal extent requires utilizing a simplified method different from the RUSLE 

handbook procedure. To this aim, it is controversial which methodology is more appropriate for 

assigning C factors in small scale applications of RUSLE. Even though simplified annual values are 

available in the literature for main cultivation types, they are commonly inconsistent between different 

authors. The methodology to derive the land cover factor from remote Earth observation appears 

promising, but the attempt made in the present study showed the need to develop a correlation model 

more robust than those proposed in the literature so far, based on NDVI (or other vegetation indices) 

from high-resolution imageries. Furthermore, analysis of NDVI changes in the 2000-2013 data series 

for southern Latium encourages additional investigations on both rainfall and NDVI patterns on multi-

temporal scale.  

The soil erosion map obtained by combining the different RUSLE factor maps shows that most of 

the area is characterized by very low or negligible soil erosion rates, on average. Major soil loss affects 

areas on the central mountain ridge and inland areas with major relief. In order to provide a more 

useful map for policy makers, a classification criterion emphasizing soil erosion severity has been 

utilized.  

Notwithstanding the lack of observation data in support of the modeled soil loss rates, the work here 

presented has the worth to demonstrate that the problem of erosion can have relevant effects on the 

investigated area. This item seems to be not perceived by decision makers, so, the present work points 

out the need to address field activities and further investigations to better understand the erosion 

processes underway. 
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