

Titolo

Prove di CREEP-RUPTURE su materiali strutturali ricoperti per applicazioni in sistemi refrigerati a metallo liquido pesante

Descrittori

Tipologia del documento:	Rapporto tecnico
Collocazione contrattuale:	Accordo di programma ENEA-MSE su sicurezza nucleare e
	reattori di IV generazione
Argomenti trattati:	Generation IV reactors
	Reattori nucleari veloci
	Tecnologia dei metalli liquidi

Sommario

In accordo con il rapporto tecnico dal titolo "Messa a punto di prove meccaniche in piombo liquido stagnante per la caratterizzazione di materiali strutturali ricoperti per applicazioni nucleari" relativo al PAR2012 LP2 B1 dell' ADP ENEA-MSE, che aveva come obiettivo di caratterizzare con prove termomeccaniche a lungo termine "CREEP-RUPTURE" materiali strutturali convenzionali (acciai austenitici e acciai ferritici/martensitici) ricoperti a base di FeAI, FeCrAI e TiN simulando le condizioni operative tipiche del sistema LFR. ENEA ha lavorato per la progettazione finale dell'attrezzatura di prova per i test in metallo liquido: sono stati realizzati i particolari dei disegni CAD. Avendo individuato come materiale prioritario il [15-15 Ti(Si)], sono state eseguite delle prove preliminari nelle seguenti condizioni:

- 550°C; 300MPa; in aria;
- 550°C: 400MPa: in aria.

I risultati delle prove sono stati quindi elaborati e confrontati con i dati di un acciaio austenitico analogo, disponibili in letteratura. Alla luce dei dati ottenuti e dei campioni attualmente in nostra dotazione, è stata modificata la tabella relativa alla campagna di prove. Individuata una criticità nell'esecuzione dei test in metallo liguido, dovuta alla presenza di vapori di Pb in ambiente di volume limitato dannosi l'operatore, come richiesto da normativa vigente, si è provveduto a identificare un adeguato sistema di aspirazione.

Note:

Autori:

A. Coglitore, G. Raiteri, M. Scafè, A Strafella (ENEA)

Copia n.

In carico a: NOME 2 FIRMA NOME 1 **FIRMA** M. Tarantino A. Coglitore M. Angiolini NOME 0 26/09/2014 EMISSIONE aupolin trane **FIRMA** DATA REDAZIONE CONVALIDA APPROVAZIONE REV. DESCRIZIONE

ENEN Ricerca Sistema Elettrico

Indice

1.	Intro	duzioneí	í í í	íí	íí	íí	í	íí	íí	í	íí	í	íí	í	íí	í	íí	íí	í	íí	3
2.	Diseg	ni definiti	vi dela	attre	ezzat	tura	di p	orova	ní í	í	íí	íí	í	íí	íi	íí	.í	íí	íí	í .	3
3.	Verif	ica dei tra	sdutto	ri di s	spos	tam	ento	utili	zzat	i pe	r i te	est í	íi	íí	íí	í	í.	.í í	íí	í	4
4.	Prove	e tenuta d	elle ca	mere	da v	vuot	oí í	íí	íí	íí	íí	í	í	íí	í	íí	í	í.	í í	í 1	10
5.	TEST	Г CREEP-	RUPT	URE	su 1	5-15	5 Ti	(Si)í	í	íí	íí	íí	í	íí	í	íí	í	íí	íí]	12
	5.1	Paramet	ri dell	a pro	va í	íí	í	íí	íí	íí	í	íí	íí	í	íí	í	í	íí	íí	í	12
	5.2	Test di c	reep s	ul car	npio	ne [202]] PM	511	12 í	í	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	16	
	5.2 5.3	Test di c Test di c	reep s	ul car ul car	npio npio	one [one [202] 201]] PM] PM	511 511	12 í 12 í	í í	 í í	íí	í	 í í	 í	í	.ííí	í í	16 í 1	18
6.	5.2 5.3 Confr	Test di c Test di c ronto con	reep s reep s AISI 3	ul car ul car 16L()	npio npio N)í	one [one [í í	202] 201] í í] PM] PM	511 511 í í	12 í 12 í í í	í í : í í	í í í	í í í í	í í í	í í í í í	í í í 1	í í í	ííí íí	íí íí	16 í 1 í 2	18 22
6. 7.	5.2 5.3 Confr	Test di c Test di c ronto con lusionií í	reep s reep s AISI 3 í í í	ul car ul car 16L() í í í	npio npio N)í í i	one [one [í í í í	202] 201] í í í í	PM PM í í í í í	511 511 í í í í	12í 12í íí íí	í í : í í í í	 í í í í í	í í í í í í	í í í í í	····· í í í í	í í : í :	í í í í	.íí íí íí	í í í í í í	16 í 1 í 2 í .2	18 22 26
6. 7. 8.	5.2 5.3 Confr Conc Alleg	Test di c Test di c ronto con lusionií í ato Aí í	reep s reep s AISI 3 í í í í í í	ul car ul car 16L() í í í í í	npio npio N)í í i í í	one [one [í í í í í í	202] 201] í í í í í í] PM] PM 〔 í 〕 〔 í 〔	511 511 í í í í í í	12í 12í íí íí íí	í í í í í í í í í	í í í í í í í	í í í í í í í	í í í í í í	í í í í í í í	í í : í í í í	í í í í í í	ú í í í í í …í	í í í í í í í í	16 í 1 í 2 í . í .	18 22 26 27

1. Introduzione

Nelløambito del PAR2012 in accordo con il rapporto tecnico dal titolo õMessa a punto di prove meccaniche in piombo liquido stagnante per la caratterizzazione di materiali strutturali ricoperti per applicazioni nucleariö relativo al PAR2012 LP2 B1 dellø ADP ENEA-MSE, che aveva come obiettivo di caratterizzare con prove termomeccaniche a lungo termine õCREEP-RUPTUREö materiali strutturali convenzionali (acciai austenitici e acciai ferritici/martensitici) ricoperti a base di FeAl, FeCrAl e TiN simulando le condizioni operative tipiche del sistema LFR, ENEA ha lavorato per la progettazione finale delløattrezzatura di prova per i test in metallo liquido: sono stati realizzati i particolari dei disegni CAD.

Nelløattesa della realizzazione delløattrezzatura di prova, avendo individuato come materiale prioritario il [15-15 Ti(Si)], sono state eseguite delle prove preliminari nelle seguenti condizioni:

- 550°C; 300MPa; in aria;
- 550°C; 400MPa; in aria.

I risultati delle prove sono stati quindi elaborati e confrontati con i dati di un acciaio austenitico analogo, disponibili in letteratura.

Alla luce dei dati ottenuti e dei campioni attualmente in nostra dotazione, sarà successivamente modificata la tabella relativa alla campagna di prove riportata nel PAR2012 LP2 B1 dellø ADP ENEA-MSE.

Individuata una criticità nellesecuzione dei test in metallo liquido, dovuta alla presenza di vapori di Pb in ambiente di volume limitato che può essere dannoso per løperatore, come richiesto da normativa vigente, si è provveduto a identificare un adeguato sistema di aspirazione.

2. Disegni definitivi della attrezzatura di prova

Inizialmente si è provveduto alla realizzazione dei disegni particolareggiati della attrezzarura di prova, vedi allegato A.

Una volta terminati i disegni sono stati inviati alloofficina tecnina Enea presente presso il C.R. Brasimone per la realizzazione ed ultimizzazione, di quanto già previsto nel PAR2012 LP2 B1 dellø ADP ENEA-MSE di tutta løattrezzatura necesaria per la realizzazione della facilty di prova per poter effettuare i test di creep-rupture in piombo.

35

3. Verifica dei trasduttori di spostamento utilizzati per i test

Sono stati selezionati 10 trasduttori di spostamento del tipo SLVC della ASL (range 0-5 mm), da impiegare a coppie per le prove di creep sulle macchine dalla n°6 alla n°10. La taratura di ogni trasduttore è stata effettuata su 10 valori, a passi di 0.5 mm, mediante apposito set di blocchetti pian-paralleli di riferimento. Si riportano nel seguito i risultati ottenuti.

La stima delløerrore relativo di accuratezza (o scostamento relativo rispetto ai campioni di riferimento interno) è risultata essere inferiore allo 0.5% per ognuno dei trasduttori considerati.

n°macchina	1	0		Э		8	7	7		6
canale	10-A	10-B	9-A	9-B	8-A	в	Α	в	A	В
matricola trasduttore		7018017	706068	8500/5	71000B	708012	850019	708045	708015	850023
quota reale	lett	ure	lett	ure	lett	ure	lett	ure	lett	ure
mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm
0.0	0.1187	0.1921	0.3130	0.2180	0.5174	0.3938	0.3844	0.2834	0.3577	0.3381
0.5	0.6164	0.6921	0.8110	0.7188	1.0173	0.8934	0.8847	0.7835	0.8573	0.8377
1.0	1.1228	1.1928	1.3093	1.2195	1.5194	1.3938	1.3849	1.2841	1.3574	1.3381
1.5	1.6249	1.6937	1.8117	1.7194	2.0200	1.8935	1.8861	1.7845	1.8578	1.8384
2.0	2.1238	2.1946	2.3107	2.2194	2.5210	2.3941	2.3870	2.2850	2.3575	2.3381
2.5	2.6243	2.6951	2.8099	2.7202	3.0225	2.8933	2.8878	2.7852	2.8568	2.8378
3.0	3.1225	3.196	3.3104	3.2208	3.5244	3.3939	3.3884	3.2855	3.3575	3.3382
3.5	3.6237	3.6966	3.8108	3.7216	4.0244	3.8937	3.8897	3.7859	3.8576	3.8388
4.0	4.1202	4.1975	4.3108	4.2245	4.5263	4.3941	4.3907	4.2849	4.3533	4.3376
4.5	4.6234	4.6956	4.8109	4.7215	5.0290	4.8885	4.8882	4.7838	4.8546	
5.0	-	5.1969	5.3114	5.2187	5.5327	5.3891	5.3883	5.2826	5.3567	

-9-A – 9-B

5.0

4.0

6.0

3.0

spostamento con blocchetti pp [mm]

0.0

1.0

2.0

4. Prove tenuta delle camere da vuoto

Le camere che dovranno essere utilizzate per eseguire le prove di creep sui campioni metallici immersi in piombo in atmosfera controllata leggermente riducente si sono effettuate delle prove di tenuta (in vuoto ed in pressione).

Inizialmente sono state condotte delle prove in vuoto (tabella 1) e successivamente delle prove in pressione utilizzando azoto come gas riempitivo (tabella 2). Per questøultime la pressione iniziale in camera è stata portata ad 1 bar sopra la pressione atmosferica. I dati in tabella 2 sono stati riportati nel diagramma di figura 1, con il quale si può stimare løandamento della pressione in camera al variare del tempo. La camera che ha evidenziato la peggior tenuta (sia in vuoto che in pressione) è la camera 1.

Eø stato infine valutato che il volume di una delle camere da vuoto risulta pari a circa 4.62 litri, non considerando lo spazio occupato dal campione e dalle barre interne di afferraggio.

27/09/2013	_		_
	Prove in 15' pump		
	n° camera	p _{vuoto} [mbar]	
	1	0.080	
	2	0.040	
	3	0.001	
	4	0.001	
	5	-	

Tabella 1 ó Prove di tenuta in vuoto.

fine prove	Prove in pressione											
07/10/2013	n° camera	p₁ [bar]	p₂ [bar]	p₃ [bar]	p₄ [bar]	p₅ [bar]	p ₆ [bar]					
	1	1.00	0.65	0.20	0.05	-	-					
	2	1.00	0.90	0.60	0.50	0.40	0.30					
	3	1.00	0.80	0.40	0.30	0.20	0.15					
	4	1.00	0.80	0.45	0.35	0.25	0.20					
	5	-	-	-	-	-	-					
	Tempo	t ₁	t ₂	t ₃	t ₄	t ₅	t ₆					
	[s]	0	2700	9000	14400	21600	28800					

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEN Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	11	35

Figura 1 ó Diagramma prove di tenuta in pressione (piniziale maggiore di 1 bar rispetto alla patmosferica)

35

5. Test di CREEP-RUPTURE su 15-15 Ti (Si)

I test di creep sono stati eseguiti con lo strumento MAYER & SON T.C. 20 che ha le seguenti caratteristiche:

- Carico max applicabile: 20kN
- T_{max} é 1000 °C

Di seguito alcune foto che illustrano il posizionamento del campione nello strumento (figura 2,3,4 e 5).

Figure 2,3,4 e 5: montaggio campioni

5.1 Parametri della prova

I parametri utilizzati per i test, in particolare temperatura e carico, sono stati scelti a partire da dati significativi disponibili in letteratura; è stata fatta infatti una ricerca bibliografica su test di creep effettuati su materiali analoghi a quello di interesse, 15-15Ti(Si).

In particolare, data la scarsità di dati disponibili inerenti le proprietà meccaniche del materiale di interesse, si è partiti dalla sua composizione chimica ed è stato individuato un acciaio austenitico analogo (tabelle 3 e 4).

Element Type	¢	a	Nİ	Мо	Si	Mn	Π	Nb	v	P	в	Reactor/Facil ity
316	0.05	17	13	2.0	0.6	1.8					20(ppm)	Phenix JOYO EBR-II FFTF
316 Ti	0.05	16	14	2.5	0.6	1.7	0.4			0.03		Phenix
1.4970	0.10	15	15	1.2	0.4	1.5	0.5				50(ppm)	Phenix (SNR- 300)
15-15 Ti	0.10	15	15	1.2	0.6	1.5	0.4			0.03	50(ppm)	S- Phenix Phenix
15-15 Ti _{opt}	0.10	15	15	1.2	0.8	1.5	0.4				50(ppm)	S- Phenix Phenix
D9	0.04	13.5	15.5	2.0	0.75	2.0	0.25					
PN C316	0.06	14.2	15.6	2.30	0.50	1.80	0.24			0.0 30		ULNOM UVOL
PN C1520	0.06	15.0	20.0	2.5	0.80	1.90	0.25	0.1	0.1-0.3	0.025		OYOL
ChS68	0.05- 0.08	15.5- 17.0	14.0- 15.5	1.9-2.5	0.3-0.6	1.3-2.0	0.2- 0.5			<0.02	0.002-0.005	BN-350 BN-600 BN-800

Tabella 3: Composizione acciai austenitici usati come rivestimento nel settore nucleare; in evidenza quella del 15-15Ti(Si)).^[1]

						Acci	ai inox au	steniti	ci più comuni				
AISI				Co	mposizi	one, %	in peso			Caratt	eristiche m	eccanic	he
	С	Mn	Si	P	s	Cr	Ni	Mo	Altri	σ _R , MPa	σ _S , MPa	A,%	HRB
301	0.15	2.0	1.0	0.045	0.030	16-18	6-8	-	-	758	276	60	85
302	0.15	2.0	1.0	0.045	0.030	17-19	8-10	-	-	620	276	50	85
303	0.15	2.0	1.0	0.20	>0.15	17-19	8-10	0.60	-	620	241	50	76
304	0.08	2.0	1.0	0.045	0.030	18-20	8-10.5	-	-	586	241	55	80
304L	0.03	2.0	1.0	0.045	0.030	18-20	8-12	-	-	517	193	55	79
304N	0.08	2.0	1.0	0.045	0.030	18-20	8-10.5	-	N=0.10-0.16	620	331	50	85
305	0.12	2.0	1.0	0.045	0.030	17-19	10.5-13			586	262	50	80
308	0.08	2.0	1.0	0.045	0.030	19-21	10-12	-	-	586	241	50	80
309	0.20	2.0	1.0	0.045	0.030	22-24	12-15	-	-	620	310	45	85
310	0.25	2.0	1.5	0.045	0.030	24-26	19-22	-	-	655	310	45	85
314	0.25	2.0	1.5-3	0.045	0.030	23-26	19-22	-	-	690	345	40	85
316	0.08	2.0	1.0	0.045	0.030	16-18	10-14	2-3	-	620	276	50	76
316L	0.03	2.0	1.0	0.045	0.030	16-18	10-14	2-3	-	517	220	50	79
316N	0.08	2.0	1.0	0.045	0.030	16-18	10-14	2-3	N=0.10-0.16	620	331	48	85
317	0.08	2.0	1.0	0.045	0.030	18-20	11-15	3-4	N=0.10-0.16	620	276	45	85
321	0.08	2.0	1.0	0.045	0.030	17-19	9-12	-	Ti=5xC	620	241	45	80
330	0.08	2.0	0.75-1.5	0.040	0.030	17-20	34-37	-	-	586	310	40	80
347	0.08	2.0	1.0	0.045	0.030	17-19	9-13	-	Nb+Ta=10xC	655	276	45	85
348	0.08	2.0	1.0	0.045	0.030	17-19	9-13	-	Nb+Ta=10xC Ta=0.1; Co=0.2	655	276	45	85
384	0.08	2.0	1.0	0.045	0.030	15-17	-	-	-	517	241	55	70

Tabella 4: (da Cigada&Re, p.162) ó Composizione e caratteristiche meccaniche dei principali acciai inox austenitici della serie AISI 300.^[2]

È stata quindi focalizzata løttenzione sullø acciaio AISI 316. La ricerca bibliografica ha infatti permesso di individuare le curve sperimentali di creep (stress - steady state creep rate)^[3] relative allø acciaio 316L

(N) che sono state utilizzate come confronto con i test effettuati. Si riportano di seguito la composizione chimica delløacciao AISI 316 L(N) (tabella 5) e le curve sterimentali **-sscr** (figura 6).

Alloy	С	Si	Mn	Ρ	s	Cr	Ni	Мо	Cu	N	AI	в
CRM 11477	0.02	0.32	1.80	0.02	0.006	17.34	12.50	2.40	0.12	0.08	0.018	0.0014
SUS 316-B ADA	0.06	0.46	1.49	0.03	0.026	17.43	12.48	2.49	0.15	0.019	0.025	0.0008
SUS 316-H TB AAL	0.07	0.61	1.65	0.03	0.007	16.60	13.6	2.33	0.26	0.025	0.017	0.0011

Tabella 5: composizione chimica di differenti tipologie di AISI 316 L(N) (percentuali in peso)^[3]

Figura 6: curve steady-state creep rate / stress delløAISI 316L (N) per differenti temperature interpretate in termini di legge di potenza di creep^[3]

È utile riportare anche i punti sperimentali, disponibili nelløarticolo^[3], da cui sono state ricavate le curve.

		Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEL	Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	15	35

Test	T	σ	t _m	E 0	A _u	Zu	Ė _{min}
NO.	500		n 5000	70	70	-76 - 05 5	10 °/h
2986	550	400	0308	16.2	30.3	30.0	4.8
2982	000	380	24	20.7	40.3	70.8	660
2981		360	146	21.3	36.0	05.9	20
3023		340	560	16.0	26.0	35.8	51
3028		320	410	13.0	33.7	35.5	159
2984		300	2610	12.7	18.3	29.4	3.2
3029		260	5785	8.7	19.7	26.3	3.9
3105		240	15558	- 7.5	18.0	22.5	1
2974	600	300	61	11.0	33.7	38.6	1/49
2976		280	83	10.0	41.3	38.9	1525
2979		260	164	8.8	40.3	38.9	733
3026		240	584	7.0	44.0	39.2	150
2977		220	1738	5.3	47.3	45.0	48
3038		200	5481	3.7	52.7	51.0	19
3041		180	11605	3.5	48.0	61.4	9.3
3184		150	50324	1.2	42.3	50.6	1.2
2980	650	240	23	8.3	45.7	53.6	5333
2978		200	116	6.0	69.7	61.4	1240
ZSV1911		160	1089	1.83	85.3	70.7	157
ZSV1944		140	2700	0.87	88.3	71.0	60
ZSV1941		120	7629	0.33	49.7	63.9	13.5
3046		100	16124	0.23	34.0	42.2	3.8
ZSV1943	700	170	59	2.07	52.3	63.8	3680
ZSV1917		150	125	1.80	62.0	75.0	1653
ZSV1925		120	626	0.50	77.3	78.8	293
ZSV1919		100	1383	0.15	76.3	80.7	102
ZSV1960		80	4208	0.13	62.7	59.1	19
ZSV2085		60	aborted	0.03			2.6
ZSV1939	750	100	152	0.13	97.7	80.6	1760
ZSV1940		80	440	0.23	79.7	82.8	318
ZSV1921		60	2650	0.04	77.0	64.0	60
ZSV1913		40	15692	0.03	29.6	32.9	10

Test No.	7 °C	σ MPa	aborted after h	ε . %	<i>Ė</i> _{min} 10 ⁻⁶ /h
3495	550	250	6100	7.5	2.1
3458		210	60000	4.83	0.8
3433		180	85000	2.85	0.115
3434		150	85000	1.18	0.073
3514		135	70006	0.34	0.018
3442		120	85000	0.16	0.0099
3443		100	85000	0.09	0.0036
3478	600	170	7500	3.03	5.0
3437		120	41015	0.32	0.2
3438		100	85000	0.07	0.04
3445		80	85000	0.06	0.01
3450		70	85000	0.055	0.005
3451		60	85000	0.04	0.0025

 Tabella 7: Risultati dei test di Creep õlow-stress long termö per

 Image: Imag

¹ løacciaio inossidabile AISI 316L(N)

Tabella 6: Risultati dei test di Creep per løacciaio inossidabile AISI 316L(N); \mathbf{Z}_{u} :

riduzione dell'aria; $\mathbf{A}_u\!\!:$ allungamento totale; $_0\!\!:$ deformazione iniziale; $t_m\!\!:$ tempo di

rottura

A partire dai dati e dalle curve delløacciaio AISI 316L (N) e avendo individuato la temperatura di prova (550°C), il carico per i test sulløacciaio 15-15Ti(Si) è stato scelto in modo da individuare distintamente i tre stadi del creep ma anche da avere tempi di test accettabili. In prima analisi è stato scelto uno stress di 300MPa. I risultati del test sono riportati di seguito.

5.2 Test di creep sul campione [202] PM 51112

Il primo test è stato effettuato nelle seguenti condizioni:

- $T = 550^{\circ}C$
- = 300MPa
- nome campione: [202] PM 51112

La curva risultante è riportata nella figura seguente (figura 7).

Come si può notare il test ha avuto un¢interruzione a 1400 h; ciò è stato causato da problemi tecnici. Tuttavia, rielaborando i dati, è stato possibile fare importanti considerazioni. In particolare, grazie allo smoothing sulla curva stress-creep strain (figure 8), si è potuto <u>ipotizzare</u> che:

• Tra le 325 e le 1000 ore la curva assume approssimativamente un andamento lineare

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
NED Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	17	35

• Oltre le 1000 ore, il creep strain subisce un incremento repentino attribuibile alla fase di creep terziario

Figura 8

È stato quindi calcolato uno dei parametri più importanti del test di creep: la <u>steady state creep rate</u> (**sscr**), ossia la velocità di deformazione del creep secondario, che è costante; per una maggiore validità del risultato, sono state utilizzate varie metodologie :

- individuazione del punto minimo della derivata della curva time/creep strain
- pendenza della retta interpolante il tratto lineare tra lei 325 e le 1000 ore
- pendenza della retta interpolante <u>il tratto lineare</u> nel range compreso tra le [325;1000] ore.

I risultati ottenuti sono di seguito riportati:

Ε

[MPa]	Sscr [1/h]	Metodologia calcolo
300	2,51E-7	derivata
300	2,99E-7	Fit lineare 1
300	3,31E-7	Fit lineare 2
300	2,70E-7	Fit lineare 3
300	2,80E-7	Fit lineare 4

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEN Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	18	35

Come si può notare i valori calcolati sono del tutto analoghi e appartenenti allo stesso ordine di grandezza.

È stata anche valutata la possibilità che, a causa dell*i* interruzione del test, non si fosse giunti ancora nella fase del creep terziario; il valore di sscr sarà quindi:

[MPa]	Sscr [1/h]
300	1,68E-7

Tabella 9

Si sottolinea anche come a causa dell*ø*interruzione non programmata del test, le conclusioni e i dati forniti costituiscono una probabile prima <u>ipotesi che potrà essere confermata nei successivi test</u>.

Figura 9: curva di smoothing relativa al campione [202]

5.3 Test di creep sul campione [201] PM 51112

Al fine di avere una curva completa in tempi misurabili e più brevi rispetto al test precedente e tale da potesse essere usata come confronto sia con essa e sia con i dati di acciai analoghi disponibili in letteratura, si è scelto di aumentare il carico a 400 [MPa], carico massimo applicato sulløacciaio 316L(N) per la sua caratterizzazione a creep.

I parametri utilizzati per il test sono stati:

- **T**= 550°C
- = 400MPa
- nome campione: [201] PM 51112

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEN Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	19	35

La curva risultante è riportata nella figura seguente (figura 10).

Figura 10

Come nel caso precedente, sono stati depurati i dati attraverso lo smoothing (figure 11 e 12).

Figura 11: curva di smoothing relativa al campione [201]

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	20	35

E

Figura 12: curva di smoothing relativa al campione [201]

Anche in questo caso, per problemi tecnici la prova si è interrotta (270h).

Tuttavia possono essere fatte importanti considerazioni: mettendo a confronto le curve dei due test (a 300 e 400MPa) si può osservare come la forma della curva sia la stessa e in particolare si ripeta løandamento dopo il tratto lineare; si ha infatti un abbassamento dei valori di creep strain e un seguente innalzamento repentino. Ciò fa ipotizzare che si tratti del creep terziario.

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	21	35

E

Figura 13: curve - dei test effettuati

Come fatto per il primo test, è stata calcolata la sscr (con differenti metodologie).

[MPa]	Sscr [1/h]	Metodologia calcolo
400	9,69E-7	fit lineare
400	8,29E-7	fit lineare
400	8,3941E-7	fit lineare
400	8,4658E-7	fit lineare
400	7,1524E-7	Derivata

Tabella 10

Come si può notare i valori calcolati sono del tutto analoghi e appartenenti allo stesso ordine di grandezza.

È stata anche valutata la possibilità che, a causa delløinterruzione del test, non si fosse giunti ancora nella fase del creep terziario; il valore di sscr sarà quindi:

[MPa]	Sscr [1/h]	Metodologia calcolo
400	8,1E-7	assenza terziario

Pag.

22

L

di

35

Anche in questo caso, a causa dell'anterruzione del test non programmata, le conclusioni e i dati forniti costituiscono delle ipotesi.

6. Confronto con AISI 316L(N)

Come ultima analisi, si è voluto fare un confronto fra la curva stress/ steady state creep rate del AISI 316L(N) e le sscr del 15-15Ti(Si) ottenute. In particolare, delløacciaio AISI 316L(N) è stata considerata la curva azzurra di figura 14, relativa a 550°C.

Figura 14: curve steady-state creep rate / stress per differenti temperature interpretate in termini di legge di potenza di creep e relativa tabella di valori^[3]

Si è quindi riportata la curva delløacciaio AISI 316L(N) su un grafico ORIGIN, a partire dai punti riportati nelløarticolo^[3].

Sullo stesso grafico sono stati fittati i valori di sscr ricavati per i campioni di 15-15Ti(Si) denominati [201] e [202].

La figura 15 illustra quanto detto.

Figura 15: curva di creep delløacciaio AISI 316L(N) e punti sperimentali dei test effettuati

Si può notare come i punti sperimentali sembrano seguire løandamento dei punti relativi ai test effettuati sulløacciaio 316L(N).

Occorre considerare che nelløacciaio analizzato vi è la <u>presenza di Ti</u>; løaggiunta di questo elemento in un acciaio genericamente viene prevista per aumentare la resistenza alla corrosione del materiale; si hanno però ulteriori vantaggi, fra cui løaumento della resistenza a creep; a titolo esemplificativo, si riportano le curve a creep delløacciaio austenitico AISI 302 tal quale e stabilizzato con Ti (figura 16).

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEN Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	24	35

Figura 16: variazione dello stress alløl % creep in 1000h con la temperatura^[4]

Si può notare come la resistenza a creep delløAISI 302 contenente Ti è di circa il doppio rispetto a quella delløAISI 302 tal quale, alla stessa temperatura.

In più, analizzando la tabella 12 che riporta un confronto fra la composizione chimica delløacciaio AISI 302 stabilizzato e Ti e quella del 15-15 Ti(Si), si può constatare che i due materiali hanno stessa percentuale di Ti oltre che percentuali degli altri elementi equiparabili

AISI	С	Mn	Si	Р	S	Cr	Ni	Мо	Ti
302	0,10	2,0	1,0	0,045	0,030	18	9	-	0,4
stabilizzato									
15-15 Ti	0,10	1,5	0,6-	(0,03)		15	15	1,2	0,4
			0,8						

 Tabella 12^{[1][2]}: composizione chimica AISI 302 stabilizzato e 15-15 Ti(Si).

Da quanto detto, si può desumere che presumibilmente le curve del 15-15Ti(Si) siano shiftate verso valori più alti di stress rispetto al 316L(N), che non ha nella sua composizione chimica il Ti. Si potrebbe quindi ipotizzate che la curva per il 15-15Ti(Si) sia analoga a quella delløAISI 316L(N), ma traslata verso valori più elevati di stress.

Le curve -sscr delløacciaio 15-15 Ti(Si) ottenute a partire dai dati sperimentali e dalle ipotesi fatte sono state riportate in figura 17.

	Sigla di identificazione	Rev.	Distrib.	Pag.	di
ENEN Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	25	35

35

7. Conclusioni

Nel periodo compreso si è proceduto con le seguenti azioni di intervento presso il laboratorio ENEA di Faenza con le seguenti interventi:

- progettazione dei particolari della facility di prova per realizzazione dei test di CREEP-RUPTURE in metallo liquido pesante;
- verifica e taratura dei trasduttori di spostamento;
- verifica della tenuta delle camere di prova;
- test di CREEP in aria di un acciaio austenitico 15-15 Ti (Si) a due differenti livello di carico;
- confronto dei risultati ottenuti con i dati di un acciaio austenitico noto, AISI 316L(N). •

ENEN Ricerca Siste		Sigla di identificazione	Rev.	Distrib.	Pag.	di
	Ricerca Sistema Elettrico	ADPFISS . LP2 . 066	0	L	27	35

8. Allegato A

35

ENEN Ricerca Sistema Elettrico

di

35

9. Bibliografia

- [1] New improved steel grades for the future nuclear energy production . P.Gimondocongresso Vilnius 17 October 2013
- [2] bomet.fci.unibo.it/pal/Doc_6.PDF
- [3] Creep of Austenitic Steel AISI 316 L(N)-Experiments and models- M. Rieth, A. Falkenstein, P. Graf, S. Heger, U.Jäntsch, M. Klimiankou, E. Materna-Morris, H. Zimmermann- Institut für Materialforschung Programm Kerfusion
- [4] Atlas of creep and Stress-rupture curves. ASTM International-Howard E. Boyer
- [5] ASTM E139-11 Standard Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials
- [6] ASTM E8-13a Standard Test Methods for Tension Testing of Metallic Materials