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Abstract In this paper, we analyze the dynamics of an
isotropic closed Universe in presence of a cosmological con-
stant term and we compare its behavior in the standard
Wheeler–DeWitt equation approach with the one when a
Lagrangian fluid is considered in the spirit of the Kuchar–
Brown paradigm. In particular, we compare the tunnelling
of the Universe from the classically forbidden region to
the allowed one, showing that considering a time evolution
deeply influences the nature of the model. In fact, we show
that in the presence of the Lagrangian fluid, the cosmologi-
cal singularity is restored both in the classical and the quan-
tum regime. However, in the quantum regime the singular-
ity is probabilistically suppressed for some energy eigenval-
ues and in the case the latter is equal to zero one recov-
ers the standard WDW case. Finally, we introduce a cut-off
physics feature in the Minisuperspace by considering a Poly-
mer quantum mechanical approach limiting our attention to
the semi-classical dynamics mainly (the quantum treatment
is inhibited by the non-local nature of the Hamiltonian oper-
ator). We show that the singularity is again removed, like in
the fluid-free model, and a bouncing cosmology emerges so
that the present model could mimic a cyclic cosmology.

1 Introduction

One of the most puzzling questions of the canonical quan-
tization of gravity is the so-called frozen formalism, i.e.
the absence of an external time parameter for the quantum
dynamics of the 3-metric field [1–4]. Furthermore, while the
Loop Quantum Gravity implementation to cosmology leads
to the existence of a Big-Bounce [5], the Wheeler–DeWitt
equation, associated to a metric approach, seems, in general
unable to remove the cosmological singularity on a quantum
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level [6,7]. The main reason for the quantum survival of the
cosmological singularity consists of the time-like character
of the Universe volume in the Wheeler Super-space [8,9].
In fact, the Wheeler–DeWitt equation resembles a functional
Klein–Gordon equation for which the 3-metric determinant
behaves like an internal clock. As a result, all the values of
this quantity are available to the dynamics, including its van-
ishing character, associated to the singularity. This feature is
deeply altered in Loop Quantum Gravity since the 3-volume
acquires a discrete spectrum.

A non-singular Universe can be easily obtained in the Ein-
steinian dynamics if we include a positive cosmological con-
stant into the evolution of an isotropic Universe [1]. In this
respect, a very intriguing no boundary proposal has been for-
mulated in [10], see also [11], which argues the possibility of
a tunnelling effect from the classically forbidden vanishing
scale factor to a finite volume region, living also on a classi-
cal level (for a simple canonical representation of this idea,
see [12]).

A delicate question concerning the point of view that
the quantum primordial Universe could have undergone a
tunnelling procedure comes from the absence of time in
the canonical quantum dynamics, which makes this notion
heuristic. In addition, it seems also in contradiction that, for
more general models, the Universe volume is itself a time-
like variables, while the real degrees of freedom are identified
in the Universe anisotropy [1].

A viable methodology for introducing a good time variable
in quantum gravity is the “Kuchar–Brown” method, proposed
in [13], see also [14]. In [15], this procedure has been imple-
mented to a Lagrangian fluid representation, as presented
in [16], by the analysis in [15], where the fluid entropy has
been promoted to be the proper clock of a Schrödinger-like
functional equation.

Here, we apply the results of the study mentioned above
[15] towards a quantum picture for the early isotropic Uni-
verse. We consider a closed Robertson–Walker geometry
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whose dynamics includes a cosmological constant term and
a Schutz Lagrangian fluid.

We first study the classical dynamics of this cosmo-
logical model, for which the presence of a singularity is
restored because the Lagrangian fluid takes the morphol-
ogy of radiation-like component of the Universe. Then, we
analyze the quantum behavior, studying the configurational
properties of the scale factor quantum behavior, especially for
what concerns the possibility of a tunnelling effect through
the potential barrier.

We show that the cosmological singularity is, in general,
present in such a model, although it seems to be probabilis-
tically suppressed for wave packets associated to eigenstates
having the “energy-like” quantum number smaller than the
potential peak. Thus, the typical configuration for a Universe
tunnelling scenario becomes a singular quantum cosmology,
as soon as the notion of time is properly restored for the
classical and quantum dynamics.

In order to remove the obtained singularity in the con-
sidered cosmological model we introduce a notion of cut-
off physics in the Minisuperspace via the Polymer quantum
mechanics approach [17–19].

Actually, the implementation of a semi-classical Polymer
approach shows how the singularity is removed and a Big-
Bounce emerges also in the presence of a radiation-like fluid,
playing the role of a clock. The pure quantum treatment of this
revised scenario is not viable, due to the non-local character
of the associated Hamiltonian operator.

The paper is structured as follows. In Sect. 2, we introduce
the Schutz formalism for a relativistic perfect fluid and we
derive its Hamiltonian theory coupled with gravity. Before
studying it, we discuss what are the physical motivations
behind the choice of such a model (Sect. 3) and then we dis-
cuss the Wheeler–DeWitt approach seen in [10,11] (Sect. 4).

The classical and quantum dynamics that arise when the
Kuchar–Brown method is applied to a Universe in which
there is a Schutz fluid will be discussed in Sect. 5. Finally, the
Polymer representation will be introduced and its dynamics
will be approached.

2 The Schutz fluid as a viable clock in quantum gravity

In this paper, the problem of time is approached through
a canonical quantization. The direct canonical quantization
implementation of the Hamiltonian constraints leads to a
well-known non-evolutive theory;

HG =
∫

d3x(NHG + NaHG
a ) (1)

where HG and HG
a are respectively the “Super-hamiltonian”

and the “Super-momentum” constraints and N and Na are
the Lapse function and the Shift vector of the ADM splitting.

One of the many attempts to solve this problem is con-
sidering a theory coupled to gravity and searching for a time
parameter out of the inner variables of the theory.

In this paper, it will be followed an approach in which is
added a Schutz fluid to gravity [16,20] and the Entropy per
baryon will be chosen as time variable.

A Schutz fluid is a relativistic perfect fluid whose four
velocity Uμ is written as a combination of five scalar poten-
tial

Uν = 1

μ
(φ,ν +αβ,ν +θ S,ν ) := 1

μ
vν, (2)

where S is the entropy per baryon and μ = (ρ + p)/ρ0 is the
specific enthalpy of the fluid. Such a choice is considered for
the fact that the Schutz fluid can better approximate the pri-
mordial thermal bath. The latter is not properly characterized
by an ultra-relativistic fluid but, it could be better described
by a Schutz fluid whose equation of state p = αρ is such that
α = α(μ, S) is thermodynamical-variable dependent.

The fluid’s equations of motion are derived as usual from
a variational principle varying the lagrangian density

LADM
F = √−g p = N

√
−3gρ0

(√
(vn)2 − vava − T S

)
(3)

with respect to the fields that compose the four-velocity. In
the fluid’s lagrangian ρ0 is the density of rest mass and T is
the temperature.

The coupled theory is given by deriving the fluid’s Hamil-
tonian in the ADM formalism as usually done for the gravi-
tational counterpart.

For what regards the Schutz Hamiltonian, it has to be
derived in a Dirac manner [21] given that from (3) one obtains
a number of second class constraints φα = 0. Solving those
constraints, as prescribed by the Dirac theory, leads to the
fluid’s Hamiltonian [15]

HF = N
(√

(π2 − ρ2
0h)V + ρ0

√
hT S

)
+ Naπva . (4)

where π is the momentum conjugated to φ,
√−3g = √

h
and V = vμvμ.

The coupling with gravity comes natural and does not
change the constrained nature of the theory. The secondary
constraints will appear as usual in the total Hamiltonian as
the multiplication of functionals with the lapse function and
the shift vector:

HF+G =
∫

d3x(NHF+G + NaHF+G
a ) (5)
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where

HF+G =
√

(π2 − ρ2
0h)V + ρ0

√
hT S + HG (6)

HF+G
a = πva + HG

a . (7)

Being the constraint nature unaffected, a canonical quantiza-
tion of the “Super-Hamiltonian” constraint leads to a time-
less Schrödinger equation.

A time evolution can be established through the “Kuchar–
Brown” method [13] using the Schutz fluid as a clock.

The method consists in choosing an inner variable of the
theory as a new time variable and expliciting the dynam-
ics with respect to the chosen one. In doing so, one gets an
equivalent “Super-Hamiltonian” constraint whose canonical
quantization leads to an evolutive Schrödinger equation.

This is achieved solving the “Super-momentum” con-
straint with respect to the momentum relative to the chosen
variable and inserting it into the “Super- Hamiltonian” con-
straint.

The latter reads as a request of a gradient-free Hamiltonian
(a good time parameter is always the same everywhere) and
leads to an equation for π

π − h̃ = 0. (8)

Finally it has to be checked that {h̃, h̃} = 0 strongly; this way
the new Hamiltonian h̃ can be interpreted as the generator of
time translations and the four-diff invariance is preserved.

If the Kuchar–Brown method is applied to the case in
analysis one gets

h̃ =
√

dρ2
0h

Ξ2 − d
(9)

where Ξ = √
hρ0ST + HG and d = HG

a HG
b qab.

The role of entropy as a time variable emerges when the
particular comoving reference frame is chosen.

In this setting the conjugated momentum reduces to π =
−√

qρ0 and the Hamiltonian constraints become

Ξ = √
hρ0ST + HG = 0 (10)

Ξa = HG
a = 0. (11)

Recalling the relation between π and the momentum conju-
gated to S (φα → pS − θπ = 0) and applying the discussed
method, one gets

SpS = θHG

T
= h̄. (12)

The canonical quantization of the latter leads to a Schrödinger
equation for the Hamiltonian h̄ where the time parameter is
given by the logarithm of the entropy per baryon log S.

The study of the latter will be performed in Sect. 5.

3 Physical motivations

The idea of Kuchar and Brown in [13] is to define a rig-
orous procedure to eliminate spatial gradients of the quan-
tity designed to be a time coordinate (time can not actually
have spatial gradient by definition) and then to construct a
consistent Hamiltonian formulation in the form of a natural
Schrödinger equation.

In [15] such a methodology was applied to the dynamics
of a fluid in the Schutz formulation, showing how its spe-
cific entropy turns out to be a suitable time variable. In this
scenario the full Hamiltonian constraint can be restated as a
viable Schrödinger quantum dynamics for the gravitational
system (actually the real time variable is the logarithm of the
fluid specific entropy).

The interest for such a restated gravity-fluid dynamics
relies on two related aspects: (i) the phenomenological ori-
gin of time is often identified with the irreversible nature of
the thermodynamical processes characterizing complex sys-
tems; (ii) in the macroscopic representation of the cosmo-
logical primordial bath, the complexity of the microscopic
phenomena is described via a fluid. Therefore this idea of the
cosmological quantum clock can be used to build a consistent
Hamiltonian formulation in the form of a natural Schrödinger
equation.

In the next section, we apply this general idea to the case of
a minisuperspace model, that one corresponding to a closed
isotropic model in the presence of a cosmological constant.
We make this choice motivated by the important role that this
model played in the history of quantum cosmology, espe-
cially in view of the possibility of a tunnelling effect from
a zero value of the cosmic scale factor, which is classically
forbidden, to the classically allowed region, throughout a
potential barrier. This model contains some of the funda-
mental features of the so-called no-boundary proposal in the
Euclidean spacetime, see [10]. The physical motivations to
address the study of this simple, but absolutely non-trivial,
model in the evolutionary quantum picture provided by the
presence of the external fluid specific entropy relies in the
irreversible character of the tunnelling process.

In fact, the crossing of a potential barrier by the point-
Universe through the barrier is naturally associated to a
Schrödinger picture with a “previous” state of the quan-
tum system, compared to a “later” stage of the same quan-
tum Universe. This idea appears immediately unapplicable if
the quantum dynamics is represented via a Wheeler–DeWitt
equation, characterized by the so-called “frozen-formalism”
problem where there is the absence of an external time param-
eter. Therefore, the fundamental motivation of the present
analysis consists of studying the physics of the tunnelling
process across the potential barrier, when a Schrödinger
dynamics has been restored in quantum cosmology. The lat-
ter is obtained by using the specific entropy of a radiation-
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like fluid, well representing a primordial thermal bath of
ultra-relativistic particles. Having restored a time dependent
Schrödinger equation makes possible a correct interpretation
of the tunnelling process across the still present barrier but, it
has the non-trivial implication that now the initial singular-
ity is re-introduced in the classical dynamics of the isotropic
Universe.

In fact, the radiation-like fluid, which plays the role of a
clock for the quantum dynamics, diverges asymptotically for
vanishing value of the scale factor, dominating the cosmo-
logical constant terms.

In what follows, we study the tunnelling process, follow-
ing two different and complementary approaches: (i) firstly
we adopt a semi-classical method to calculate the transition
amplitude in correspondence to a fixed value of the energy-
like eigenvalue; (ii) then, we analyze the behavior of wave-
packets, by using the exact Schrödinger dynamics when the
real penetration of the probability distribution across the bar-
rier is evaluated in detail.

The first approach is important in order to compare the
present study with the one originally pursued in [10] and actu-
ally discover that for the zero value of the energy-like eigen-
value (i.e. the case when the fluid is removed from the dynam-
ics), we get exactly the same transition probability of the
Euclidean path integral approach. This is an important con-
firmation that the present study is the natural generalization
of the previous approaches, developed in the vacuum case
with a cosmological constant. We also stress that the depen-
dence of the probability of the transition across the barrier
as a function of the energy-like eigenfunction, as calculated
in the semi-classical limit, is coherent with the behaviour of
the wave packets, as constructed around a given region of
the energy-like spectrum. This issue suggests that the semi-
classical study is predictive and that when the energy of the
fluid is sufficiently large, the singularity, in correspondence
to zero values of the scale factor is restored, because it is
no longer a classically forbidden region as in the absence of
the fluid. The attempt of restoring a non-singular cosmology
is the physical motivation for the analysis of the considered
model in the framework of Polymer Quantum Mechanics,
developed in Sect. 6.

4 The Wheeler–DeWitt approach

The Kuchar–Brown method allows to restore a time evolu-
tion for the Hamiltonian of gravity. However, it is possible
to perform a direct canonical quantization of the “Super-
Hamiltonian” constraint. In doing so, the “Wheeler–DeWitt”
equation (Ĥψ = 0) is given. The attempt of studying what
could be the dynamics descending from such an approach has
been already attempted [10,11] but, in this scenario, one has
to think how to deal with a time-less Schrödinger equation.

Fig. 1 The figure shows the comparison between the solutions of the
Friedman equation with (continuous line) or without (red dotted line)
the presence of a Schutz fluid. Both the cases describe a closed Universe
in which there is a cosmological constant ( Λ

3 ∝ 10−1Epl )

This approach will be briefly presented in order to compare
it with the one that will be shown in the following sections.

Firstly, an isotropic and homogeneous Universe, described
by the Robertson–Walker metric, is considered,1

ds2 = dt2−a(t)2
(

dr2

1 − kr2 + r2dδ2 + r2sen2δdφ2
)

(13)

where a(t) is the scale factor and k is the curvature parameter.
In both the Wheeler–DeWitt case and the studied one, a

spatially closed Universe (k > 0), in which there is a Cos-
mological constant, will be taken into account.

Its classical dynamics is the one of a bouncing Universe
(Fig. 1); a Universe characterized by a minimal value for the
scale factor aMI N (τ ) at a given time. The latter is given by
the solution of the Friedmann equation

H̃2 =
(
ȧ

a

)2

=
(

Λ

3

)
− k

a2 (14)

for the Universe in analysis. The Friedmann equation is
derived considering the Hamilton equations associated to the
Hamiltonian

HG
FRW = − G

3π

p2
a

a
− 3π

4G

(
ka − Λ

3
a3

)
. (15)

The corresponding WDW equation for a closed FRW Uni-
verse, when a factor ordering j = 0 (p2

a = − ∂2

∂a2 ) is given,
is

(
∂2

∂a2 − 9π2

4G2

(
ka2 − Λ

3
a4

))
ψ(a) = 0. (16)

1 In this paper we will use natural units. So c = h̄ = 1.
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If the latter is expressed via dimensionless quantities at
Planck scales such as a0 = (Λ/3)−1/2 = G1/2, the
unbounded potential

U (a) = 9π2a2
0

4G2

[(
a

a0

)2

−
(
a

a0

)4
]

(17)

will determine two different regions: there is a classically
not-allowed one (0 < a < a0) and a classically allowed one
(a > a0). Despite the under barrier region, there is always a
probability different from zero that a particle could emerge
from the barrier into the allowed region. This model has been
firstly discussed in a path integral approach [10], and the
tunnelling probability has been computed. This probability
can be obtained through the WKB approximation and it is
given by

P = e−2
∫ √

U (x) ≈ e−SE (18)

where SE = − 3π
ΛG is the Euclidean action. The WKB method

can be used when one is searching for the eigenfunctions of
the WDW approach as done for the probability. Different
solutions can be derived when different boundary conditions
are considered. In doing so, the eigenfunctions of (16) are

ψ
(1)
± (a) = e

±i
∫ a
a0

|p(a′)|da′∓i π
4 (19)

in the classically allowed region and, in the classically for-
bidden one,

ψ2±(a) = e± ∫ a0
a |p(a′)|da′

, (20)

where p(a′) = √−U (a). If an outgoing wave solution is
chosen [11], one has

ψOUT (a > a0) = ψ
(1)
− (a) (21)

ψOUT (a < a0) = ψ
(2)
+ (a) − i

2
ψ

(2)
− (a) (22)

whereas, if an expanding and contracting Universe is chosen
[10]

ψE+C (a > a0) = ψ
(1)
+ (a) + ψ

(1)
− (a) (23)

ψE+C (a < a0) = ψ
(2)
− (a). (24)

Those solutions can be combined through the WKB connec-
tion formula in order to obtain a sole eigenfunction valid
everywhere (Fig. 2).

Whatever solution is considered, both of them show that
in the classical forbidden region one has a non-null eigen-
function and so, a non-null tunnelling probability. However,
even though the tunnelling probability obtained through the
WKB method is non null, the time-less nature of the theory
does not allow a proper “tunnelling effect” as we know from

Fig. 2 The figure displays the solutions to the WDW equation when
the factor ordering j = 1 is chosen and different boundary conditions
are considered. This choice will not affect the semi-classical dynamics.
In the figure we display the potential U (a)/3 (black curve), the wave
functions for Hartle–Hawking (red curve) and for Vilenkin’s approach
(dashed and dotted curves). For the Vilenkin’s boundary conditions both
the real and the imaginary part are shown and indicated with R and I
respectively. The Hartle Hawking’s one is real [12]

standard quantum mechanics. In fact, the absence of a time
means the absence of a time ordering of the events. So, the
introduction of a proper time parameter becomes a key factor
in describing the quantum dynamics.

5 A specific model for the isotropic Universe dynamics

The Kuchar–Brown method allows to establish a time param-
eter, avoiding the problems that a time-less approach carries
with. At the same time, the introduction of a fluid, represent-
ing the primordial thermal bath, changes both the quantum
and the classical dynamics.

From the classical perspective, adding a Schutz fluid is
equivalent to adding an ultra-relativistic component to the
Hamiltonian first, and to the Friedmann equation then.

In fact, the new Hamiltonian is

HG+F = √
hρ0T S− χ

24π2

p2
a

a
− 3π

4G
ka+2π2ρa3 = 0 (25)

and the first term can be considered as an energy density
ρ(a) = ρ0a−3(1+ω) with ω = 1

3 as anticipated.
The Friedmann equation will be then

H̃2 =
(
ȧ

a

)2

=
(

8πG

3

1

a4 − k

a2 + Λ

3

)
, (26)
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whose solutions now represent a singular Universe (Fig. 1).
The latter could not be true when a quantum analysis is
approached. One could say that the dynamics will be in accor-
dance with the classical one only if a well peaked wave packet
can be achieved in the spirit of the Ehrenfest theorem.

Passing to the proper quantum analysis, the Eq. (12)
becomes

−i
∂ψ(x, τ )

∂τ
= θ

T
HG

FRWψ(x, τ ) (27)

where an FRW Universe is considered. Here τ = log S and
θ
T is a function to be determinated.

This ratio could be fixed; in fact from the Schutz’ model
is known that θ is one of the potentials which is connected to
a physical quantity via ∂θ

∂t = T , where the derivative is taken
with respect to the proper time.

It is then possible to compute this integral and get a func-
tion θ = θ(a) by “guessing” which is the functional depen-
dence of ȧ(t).

For the case in analysis one will take ȧ(t) as given by a
Friedmanian dynamics ruled by radiation as it was confirmed
from the classical dynamics shown above.

If one does so, the integral obtained is:

θ(a) =
∫

∂θ

∂τ
dτ =

∫
T (a)

ȧ
da =

∫
T (a)

aH
da

=
√

3

8πG
a (28)

and then the ratio will be θ
T =

√
3

8πG a
2.

In order to study the Eq. (27), one may take the wave
function’s time dependence to be given by

ψ(a, τ ) = ψ(a)e−i Eτ ; (29)

this way one gets the Schrödinger equation:

a
∂2

∂a2 ψ(a, τ ) =
(

9π2

4G2 (ka3 − Λ

3
a5) −

√
24π3E

)
ψ(a, τ ).

(30)

Now, if the equation is expressed via dimensionless quantities
at Planck scales as done for the WDW case and a canonical
transformation is performed, one gets

∂2

∂x2 ψ(x) = (U (x) − Ẽ)ψ(x) (31)

where Ẽ = √
24π3E , x = ( a

a0
)2 and

U (a) = 9πa4
0

4G2

[(
a

a0

)3

−
(
a

a0

)5
]

. (32)

Fig. 3 The figure shows the energy dependence of the probability. As
expected for a tunnelling process in a potential (32) (P(E) → 1, E →
UMAX ) meanwhile (P(E) → 0, E → −∞)

5.1 Quantum FRW analysis

Before going deep into the quantum dynamics, one recalls
that the introduction of a time parameter gives the chance of
properly describing a tunnelling effect.

The identification of the logarithm of the entropy with a
time allows to define the tunnelling probability with respect
to the eigenvalue Ẽ

P ≈ e−2
∫ √

U (x)−Ẽ . (33)

As it is showed by (Fig. 3) the probability P(E) goes to
P(E) → 1 when the energy approaches the potential max-
imum (VMAX ≈ 4.1Epl), meanwhile P(E) → 0 when the
energy parameter is such that E → −∞.

In addition, it is worth noting that the probability P(E =
0) = e−π it’s the same one could have got from a stan-
dard WDW approach [10,11] confirming the coherence of
the model and its generality.

Furthermore, the tunnelling probability exponentially
decreases with the decrease of the eigenvalue Ẽ .

It is then possible to find the eigenfunctions of (31) and
their time evolution. The latter is done by building a wave
packet peaked at the eigenvalue chosen and studying its time
evolution with respect to the changes in the eigenvalue cho-
sen.

Both those processes are done numerically. In order to
underline the different features of the eigenfunctions, differ-
ent solutions of (31) will be compared.

From those functional form one will be able to anticipate
the features that the wave packet’s time evolution will have
for each energy that will be treated next.

At first glance it is clear their common high oscillatory fea-
ture; all the Schrödinger equation’s solutions (Fig. 4a) have
this characteristic on the right side of the potential. This is
given by the potential form; in fact, whatever the energy Ẽ∗
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Fig. 4 The panel shows the numerical analysis done for the quantum
FRW model. The first figure shows the solution of the Schrödinger equa-
tion (31) taken for different energy eigenvalues: E = −3Epl , E = Epl ,
E = 3Epl and E 
 VMax = 50Epl . Then, in the other three figures, the

evolution of a wave packet peaked at different energies has been stud-
ied (σ = 1.5), plotting the wave packet at different times. The potential
plotted is U (x)/4; this is done in order to help the understanding of the
wave packet’s behavior

is, there will be a point where it can not be comparable with
the potential which rapidly decreases to infinity. So, the solu-
tion will be an eigenfunction which increases its oscillatory
frequencies as the “x-coordinate” increases.

What is interesting is their different behavior when the
energy eigenvalue changes. In fact, as it can be seen, the
more Ẽ increases, the more the eigenfunction is peaked on
the left-side of the potential.

This feature will be a key one when the wave packet anal-
ysis will be performed. In fact, it can be anticipated that for
energies low enough it will not be possible to peak a wave
packet on the left side of the potential; this would be possible
only for some energy eigenvalue such Ẽ = 3Epl .

The solutions’ time evolution is done, as anticipated, by
studying the evolution of a well peaked wave packet. The
latter is given by

ψẼ∗(x, τ ) =
∫

d Ẽg(Ẽ, Ẽ∗)ψ(x, Ẽ)e−i Eτ (34)

where ψ(x, Ẽ) is the numerical solution of (31) for a given
energy Ẽ and g(Ẽ, Ẽ∗) is a gaussian distribution centered in
Ẽ∗

g(E, E∗) = 1√
2πσ

e− (E−E∗)2

2σ2 . (35)

Starting from negative eigenvalues (Fig. 4b), one finds that
the more Ẽ∗ is negative the more the wave packet is peaked
on the right side of the potential and the probability of finding
the Universe near the singularity exponentially decreases.

So, the more the eigenvalue increases, the more proba-
bility of finding the Universe near the singularity exponen-
tially increases. From a certain value E∗ onwards, |ψ(x, τ )|2
will be represented by a wave packet initially peaked on
the left-potential. However, as long as the energy eigenvalue
increases, the tunnelling probability does so (Fig. 3).

So, even though at the initial time the Universe wave func-
tion is left-peaked, as time goes by the Universe will tunnel
through the potential barrier. Once the potential barrier is
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crossed, for all the energy eigenvalues, the wave packet will
rapidly spread and the Universe will expand.

So, the introduction of the time parameter gives a proper
“tunnelling effect” characterization. The Kuchar–Brown
method allows to solve the Super-Hamiltonian constraint and
describe the quantum dynamics via the choice of a Schutz
fluid as a clock.

However, having introduced a fluid changes both of the
classical and quantum Universe dynamics. In fact, the quan-
tum dynamics describes a “Bounce-less” Universe in which
the singularity is probabilistically suppressed.

This, even though it is a great achievement for the model’s
sake of completeness, does not assure the existence of a
singularity-free Universe. In addition to that, for the case
E 
 VMAX (Fig. 4d) one has the dynamics of a free wave
packet which can be peaked near the singularity.

This issue can be solved by having a natural process that
lets the Universe having a bouncing dynamics and so, one
may suggest to take into account a Polymer dynamics sce-
nario.

6 Polymer quantum mechanics

Let us introduce then the Polymer quantum mechanics
which is a different mechanical scheme from the standard
Schrödinger one. It is an independent quantization procedure
which has been introduce for its analogy with Loop Quan-
tum Cosmology (LQC) which is given by the possibility of
deriving both the Loop’s Hilbert space and the semi-classical
dynamics. The Polymer mechanics is a particular represen-
tation in which the Stone–Von Neumann theorem is not sat-
isfied, providing a unitarily inequivalent representation and,
as a consequence, different physical predictions [17].

In order to appreciate the freedom in choosing the repre-
sentation, one considers the Weyl Algebra given by the expo-
nentiation of the operators position and momentum, that will
be indicated with q̂ and p̂ respectively. The construction of a
“Fock space” can be done defining the complex structure J
which acts on the phase space Γ = R

2 such that J 2 = −1.
The Hilbert space can be obtained from the Weyl algebra

via the GNS Construction (Gel’fand–Naimark–Segal). What
is subtle is that considering the Weyl algebra there are some
choices of J for which the Stone–Von Neumann theorem is
not satisfied and thus, are not equivalent to the Schrödinger
one. In those cases the Polymer representation arises.

The result of such an approach is the inability of properly
defining both the q̂ and p̂ operators.

In order to study the Polymer representation, one can
start considering an Hilbert space H and some abstract
kets |μ〉 with με R and some subsets defined by μi ε R

with i = 1, . . . , N . Taking those kets to be orthonormal
〈μ|ν〉 = δμν it defines a Hilbert space Hpoly on which two

different operators act, a label and a displacement one

ε̂|μ〉 = μ|μ〉 (36)

ŝ(λ)|μ〉 = |μ + λ〉. (37)

The shift operator s(λ) will be discontinuous since all the
kets are orthonormal and so, it cannot be obtained from the
exponentiation of any Hermitian operator.

In order to connect this abstract representation to physical
systems and physical operators one may consider a Hamilto-
nian system with canonical variables q and p. If the momen-
tum polarization is chosen, the fundamental states are

ψμ(p) = 〈p|μ〉 = eipμ. (38)

So, according to what has been previously said the label oper-
ator ε̂ will be identified with the position operator q̂

q̂ψμ := −i∂pψμ = μψμ (39)

whereas the shift operator role will be taken by the multi-
plicative operator V (λ)

V̂ (λ)ψμ := eiλpeipμ = ψμ+λ (40)

from which becomes clear that p̂ cannot be taken as the
generator of translations. In this case can be shown that the
Hilbert space for a generic representation is given by

Hpoly = L2(RB, dμH ) (41)

which is the set of square-integrable functions defined on
the Bohr compactification of the real line RB with a Haar
measure dμH .

Things do not change if the position polarization ψ(q) =
〈q|ψ〉 is chosen. In this case it can be shown that the wave
functions are Kronecker deltas, the translation operator is
discontinuous and so the momentum operator can not be well
defined.

In this scenario it can be demonstrated the Hilbert space
to be Hpoly = L2(Rd , dμc) where Rd is the real axis with
discrete topology and dμc is the counting measure [17].

In order to overcome the problems stemming from the
definition of both q̂ and p̂, one introduces the graph γμ0 =
{q ∈ R |q = nμ0 ∀n ∈ Z}, where μ0 is the scale introduced
in the Polymer representation.

The Hilbert space that arises taking into account the graph
γμ0 is such that Hγμ0

⊂ Hpoly and it will contain the states

|ψ〉 =
∑
n

bn|μn〉 (42)

where μn = nμ0 and
∑

n |bn|2 < ∞.
The displacement operator will change according to the fact
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that now the shift is set by the lattice spacing μ0, leading to
the result

V̂ (μ0)|μn〉 = |μ0 + μn〉 = |μn+1〉 (43)

Knowing how the shift operator acts one can build a regulated
operator p̂μ0 .

Considering the case when p � 1/μ0 the momentum can
be approximated by

p ≈ 1

μ0
sin(μ0 p) = 1

2iμ0

(
eiμ0 p − e−iμ0 p

)
(44)

and then the regulated operator will be

p̂μ0 |μn〉 = 1

2iμ0
(V̂ (μ0) − V̂ (−μ0))|μn〉 (45)

= 1

2iμ0
(|μn+1〉 − |μn−1〉). (46)

Different approximations are possible when the regulated
squared momentum operator is considered.

One may consider to compose the operator p̂μ0 with itself.
This leads to an operator which shifts to two steps the states
in the graph

p̂2
μ0

|μn〉 = 1

4μ2
0

(2 − V̂ (2μ0) − V̂ (−2μ0))|μn〉 (47)

and so

p̂2 ≈ 1

μ2
0

sin2(pμ0). (48)

On the other hand, if an operator which shifts only once is
considered one has

p̂2
μ0

|μn〉 = 1

μ2
0

(2 − V̂ (μ0) − V̂ (−μ0))|μn〉 (49)

and so

p̂2 ≈ 2

μ2
0

(1 − cos(pμ0)). (50)

With these considerations one can take into account the
Hamiltonian operator which lives on the space Hγμ0

Hγμ0
= 1

2m
p̂2
μ0

+ V̂ (q̂) (51)

where V̂ (q̂) is the potential.
The dynamics that comes from the Hamiltonian can be

studied in the momentum polarization where the momentum

operator acts like a multiplicative operator

p̂2ψ(p) ≈ 1

μ2
0

sin2(pμ0)ψ(p) (52)

whereas the q̂ operator is represented by the derivative oper-
ator

q̂ψpψ(p) = i∂pψ(p). (53)

This ends the process of building the polymer dynamics.
What is interesting is how to recover the physical Hilbert

space HS = L2(R, dp) from the Polymer one Hγ0 .
It is not possible to embedHS inHγ0 , in factHS cannot be

obtained by dividing μ0 into smaller and smaller intervals.
However one can try to approximate a continuous wave

function with a function defined on Hγ0 . Once the real line
R is decomposed in n intervals which defines a scale Ck , the
wave function will be represented by a function constant in
each of those intervals. As a result, at any given scale Ck , the
kinetic term of the Hamiltonian operator can be approximated
as in (44) and effective theories at given scales are related by
coarse-graining maps [17].

6.1 Semi-classical polymer dynamics

It must be said that in this section some features of the Poly-
mer quantum mechanics will be given to the standard Fried-
mann dynamics without developing the full quantum theory.
This will be in fact done at a semi-classical level, in the spirit
of the Ehrenfest theorem, searching for which are the main
changes in the classical dynamics when the Polymer quan-
tum mechanics is considered.

The new Hamiltonian obtained starting from (15), consid-
ering the momentum approximation, will be

Hpoly
FRW = −3G

π

sin2(μ0PV )

μ2
0

V + 2π2ρT OT (V )V

− 3π

4G
kV

1
3 = 0 (54)

where ρT OT takes into account the fluid’s presence. In order
to derive the latter, the canonical transformation a3 → V has
been performed; one chooses the volume V as the preferred
Polymer variable because with this choice the critical den-
sity ρc will be scale factor independent [18]. The Polymer
approximation will then change the Friedmann equation

H̃2 =
(

1

3

V̇

V

)2

= χ

3
ρ

(
1 − ρ

ρμ

)
, ρμ = B

4π2

1

μ2
0

(55)

(where B = 3χ

4π2 ) adding the term
(

1 − ρ
ρμ

)
to the standard

Friedmann equation.
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This equation represents the semiclassical equation at
scale μ0. It is worth noting that for μ0 → 0, and therefore
ρμ → ∞, one obtains the standard Friedmann equation. In
order to see how the Polymer approximation changes the
semiclassical dynamics (seen in Sect. 4), one uses (54) and
expresses it via dimensionless quantities at Planck scales.
This way one obtains

H2 =
(

1

3

˙̃V
Ṽ

)2

= χ

3
Q

(
1 − Q

Qμ

)
(56)

where Ṽ (l3pl) is the dimensionless volume, Q is

Q =
(

ρT OT (Ṽ )

ρpl
− 3

8π

k

Ṽ
2
3

)
(57)

and

Qμ = 3

2π3μ2
0

G

ρpl
, (58)

which, given the fact that μ0 = [E]−3, G = [E]−2 and
ρpl = [E]4, is dimensionless. Moreover the simple request
Qμ = 1, which done in order to simplify the calculation
automatically fixes the Polymer parameter

μ0(l
3
pl) =

√
3

2π3 ≈ 0.22, (59)

and so the Polymer lattice parameter L poly = 3
√

μ0l pl ≈
0.60l pl .

The momentum approximation acts on the Friedmann
equation introducing a cut-off density and so, a cut off on
the volume. In fact, since H̃2 can now be zero for a finite
value of the density ρ = ρμ, the evolution of the volume
as a function of time will have a critical point, hence the
solution of the modified Friedmann equation will represent
a Big-Bounce Universe (Fig. 5).

6.2 Quantum polymer dynamics

Finally, it is possible to approach the Polymer quantum
mechanics analysis of the model. Starting from (25) and
recalling the value of the fluid’s momenta, it is possible to
obtain the equation

ps S = θ

T

(
− B

2
P2
V V + 2π2ρΛV − 3π

4G
kV

1
3

)
. (60)

In Sect. 4, in order to study the quantum dynamics, the ratio
θ/T was set and then a canonical transformation was per-
formed.

Fig. 5 The figure shows the classical dynamics behavior for a flat
Universe (solid line) with Cosmological constant Λ �= 0 versus the
semi-classical Polymer one (red-dashed line). Two different cases are
displayed the one for Λ = 10−1Epl (first picture), and the one for
Λ = 10−4Epl . As it can be seen, in the second case the semi-classical
dynamics tends to the classical one

Following the same procedure, this ratio can be obtained
through dynamical considerations, where now ȧ is no longer
given by the standard Friedman equation but from the Poly-
mer modified one (56). In so doing one gets

θ(a) =
∫

dθ

da

1

ȧ
da =

∫
T (a)

1

ȧ
da (61)

which, if one considers that the dynamical polymer variable
is the volume V, becomes

∫
1

V̇
V− 1

3 dV = θ(V ) (62)

where the relation ȧ = 1
3

(
V̇
V

)
V

1
3 has been used. Then con-

sidering that V̇ is given by the semi-classical Polymer dynam-
ics of a flat Universe with Λ = 10−1Epl �= 0

(
1

3

˙̃V
Ṽ

)2

= 8π

3
(QF + QΛ)

(
1 − QF + QΛ

Qμ

)
(63)
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Fig. 6 The figure shows the function F(V ) = θ(V )
T (V )

obtained through
a numerical integration

is then possible to numerically integrate (62) and obtain the
function F(V ) = θ(V )

T (v)
(Fig. 6).

It is clear that F(V = Vmin) = 0 by construction, in fact

F(V ) =
∫ V
Vmin

1
V̇
V− 1

3 dV

T (V )
(64)

but, what arises is that F(V) has infinite derivative in V =
Vmin .

So, it is not possible to fix the ratio θ
T through the semiclas-

sical dynamics as done for the non-Polymer case (Sect. 4).
It is then possible to try to put a cut-off on F(V ), this

way one could take into account the bouncing feature of the
dynamics. One of the possible choices is trying to put a cut-
off on the temperature T = TMAX this way,

F(V ) =
∫ t

0 T (τ )dτ

T (t)
≈ TMAX tpl

TMAX
= tpl . (65)

So, taking the Eq. (60) and performing the substitution (44)
one will have

ps S = θ

T

(
−B

(
sin2(μ0PV )

μ2
0

)
V + 2π2ρΛV − 3π

4G
kV

1
3

)
.

(66)

After having performed a canonical Polymer quantization
and expressed it via dimensionless quantities at Planck
scales, becomes

Eψ(PV ) = (2π2QΛ − 4π2sin2(μ0PV ))
∂

∂PV
ψ(PV ) (67)

where the relation μ0 =
√

3
2π3 l

−3
pl was used and it was con-

sidered a flat Universe.
This equation has been solved for different energies and

then its Fourier transform has been studied (Fig. 7).

Fig. 7 The figure shows the function |ψ(V )|2 solution of (67) for dif-
ferent energy eigenvalues. The more the energy grows the more |ψ(V )|2
is broadened

As it can be seen, it is not possible to have a well peaked
wave packet in a Volume’s value other than V = 0. In addi-
tion it is not even possible to talk about a localized Universe
at all.

Therefore, in such a model the Universe will not have a
Big-Bounce dynamics but it will not have a semi-classical
dynamics at all.

This is not what one should expect from the Polymer quan-
tum approach of a model which semiclassically has a Bounce
dynamics. The reason why this happens is because one has
chosen a particular value for F(V ) and each different choice
leads to a different Polymer dynamics.

In fact the natural way of determining it gives a singular
function in V = VMI N (Fig. 6), and the cut-off one leads to
a non-Bounce dynamics.

However this does not mean that the Polymer quantum
dynamics implementation is not able to reproduce its semi-
classical feature. This means that the F(V ) choice must be
worked out and the possibility of working with non-local
operators has to be taken into account. In fact the path fol-
lowed in determining the ratio θ/T led to the numeric inte-
gration (Fig. 6)

θ

T
(V ) ∝ √

V − VMI N (68)

which operational implementation leads to a non-local theory
and its Taylor expansion is not useful as said before.

This point has to be clarified in order to derive a coherent
dynamic and it will be objective of future works.

7 Concluding remarks

We analyzed a revised version of the simplest canonical for-
mulation for the so-called no-boundary proposal, regulariz-
ing it by the inclusion of a matter clock in the spirit of the
Kuchar–Brown prescriptions.
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We consider the cosmological implementation of a previ-
ous analysis in which a Lagrangian Schutz fluid is properly
addressed to identify its specific entropy as a viable clock
for a quantum gravity theory. In particular, we considered
an isotropic closed Universe, in the presence of a cosmolog-
ical constant, adding a Schutz fluid to get an evolutionary
quantization of its dynamics.

We demonstrated that the Schutz fluid behaves, on a clas-
sical level, as a radiation-like component of the Universe and
therefore it restores a singularity in the past, absent when only
the cosmological constant term is present.

Our quantum analysis demonstrates that such a singularity
is still present on a quantum level, but its probabilistic weight
strongly depends on the range of the energy-like eigenvalue
we are considering. The probability of finding the scale fac-
tor in the classically forbidden region is strongly suppressed
when the energy-like parameter is significantly smaller than
the potential maximum or it is negative.

The merit of this analysis consists in showing how the
regularization of a tunnelling of the Universe by including
time into the quantum dynamics produces a removal of the
classical bounce due to the cosmological constant alone. This
result suggests that conjectures based on a frozen quantum
dynamics are not necessary valid once matter is included to
make evolutionary the dynamics. However, its introduction
clarifies the meaning of the tunnelling process, restoring the
concept of “before” and “after”.

We also demonstrated that a bouncing cosmology is imme-
diately recognized when cut-off physics features are intro-
duced via a Polymer quantum mechanical approach. Our
study has precise validity in the semi-classical regime only,
since a pure quantum analysis in the Polymer framework is
inhibited by the non-local nature of the resulting Hamiltonian
operator.

It must be regarded as an interesting topic for further
investigations to discuss the present paradigm in more gen-
eral dynamical contexts, like the homogeneous Bianchi Uni-
verses. The aim of such a generalization of the present study
could be clarifying if the tunnelling procedure of the Uni-
verse is systematically affected by the nature of the consid-
ered clock and therefore conjectures like the no-boundary
proposal must be properly addressed and revised in an evo-
lutionary framework.
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