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Abstract We establish the possibility of Landau damp-
ing for gravitational scalar waves which propagate in a non-
collisional gas of particles. In particular, under the hypothesis
of homogeneity and isotropy, we describe the medium at the
equilibrium with a Jiittner—Maxwell distribution, and we ana-
lytically determine the damping rate from the Vlasov equa-
tion. We find that damping occurs only if the phase velocity
of the wave is subluminal throughout the propagation within
the medium. Finally, we investigate relativistic media in cos-
mological settings by adopting numerical techniques.

1 Introduction

One of the most surprising features of a plasma, consid-
ered as a dielectric medium, is the attenuation of electro-
magnetic waves even when collisions can be neglected. This
phenomenon, known as the “Landau damping” [1], is essen-
tially due to the presence of a long range interaction, which
affects a large number of particles contained in the so called
Debye sphere [2]. This situation resembles to some extent the
interaction of gravitational waves with a material medium,
despite two basic properties are here missing with respect
to the electromagnetic counterpart. In particular, we refer to
the neutralization of the background, which for a plasma is
provided by the ion distribution, and to longitudinal excita-
tions, which appear by virtue of the effective mass acquired
by photons when crossing a plasma [3,4]. The first of these
discrepancies can be locally overcome, since the role of the
neutralizing background can be played by inertial forces.
Nearby a spacetime event, indeed, Christoffel symbols asso-
ciated to the background, which enter the Vlasov equation,
can be made almost vanishing by choosing a local inertial
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frame. In the linear theory considered below, this fundamen-
tal point of view is enclosed by applying the model to aregion
of space where homogeneity and isotropy of the medium
can be assumed (see [5-7] for pioneering treatments). By
other words, we only consider gravitational perturbations
far smaller than the characteristic spatial scale of the back-
ground. Concerning the absence of longitudinal modes for
gravitational waves, instead, we observe that when gravita-
tional subsystems are properly treated as molecular media
[8,9] or following a hydrodynamic and kinetic approach
[10-14], additional polarizations can be typically excited.
Although this effect is conceptually very relevant, it is in
reality very small and associated to peculiar wavelengths.
More intriguing, therefore, is to look at the large number of
modified theories of gravity which allow for the emergence of
an additional massive scalar mode, as for instance Horndeski
gravity [15-18], hybrid metric-Palatini approaches [19-25]
or massive gravity [26-29]. In this case, in fact, together with
a breathing polarization in the transverse plane, scalar fields
are responsible for a longitudinal polarization as well, that
we expect could interact with particles of the medium.
Now, it is a well established result that transverse gravi-
tational waves are not absorbed by non-collisional massive
media [30-33]. Damping is indeed only possible in the pres-
ence of viscosity [10,34,35], or when a medium of massless
particles is considered [36—38]). Then, having in mind that
the presence of longitudinal modes could imply the gravita-
tional analog of Landau damping, we adopt a kinetic theory
approach and we analyze the interaction of scalar waves with
a collisionless particle distribution. Then, we calculate the
gravitational Langmuir dispersion relation, denoting self-
consisting fluctuations in the medium, and we determine
the damping from the imaginary part of the frequency. In
this respect, we show that the damped scalar mode naturally
decouples from the non-damped transverse tensor polariza-
tions. Furthermore, we find that the phase velocity of the
scalar mode must be subluminal, otherwise the typical poles
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inducing the Landau damping fall out the allowed domain. In
particular, this condition reflects in a specific phenomenolog-
ical inequality, relating the traversed medium with parame-
ters describing the model taken into account. Especially, we
show that this is just the reason for which standard transverse
gravitational wave are not absorbed, violating the condition
above.

The paper is structured as follows. In Sect. 2 we intro-
duce the theoretical framework and the fundamental equa-
tions describing the propagation of the gravitational modes.
In Sect. 3 we derive, starting from the Vlasov equation, the
damping rate, showing as the tensor modes decouple from the
scalar excitation. In Sect. 4 we implement a numerical inves-
tigation for relativistic media, and we explicitly evaluate the
damping for a cosmological scenario. Finally, considerations
are drawn in Sect. 5.

2 Decoupling of gravitational modes

We are interested in wave propagation for extended theo-
ries of gravity, where the settling of a scalar mode is pre-
dicted besides standard tensor excitations. It seems reason-
able, therefore, to look at the so called Horndeski mod-
els, which represent the most general class of scalar ten-
sor theories endowed with higher order derivative terms in
the action which preserve second order equation of motions.
That indeed assures ghost instabilities be prevented,! so that
just one additional scalar degree ¢ is allowed to propagate.
Specifically, let us consider the action:

5
! 4
S=Z/dx¢—g§u, (1)

where contributions L; are given by

Ly = K(p, X)
L3 = —G3(p, X)Ug
Ly = Ga(p, X)R + G4 x(Op)* — @, 0"")
Ls = Gs(¢, X)G @'+
F LG x(@p)* —30p B @M 120,07, 07,
®)

Here R, G, are the Ricci scalar and the Einstein tensor,
respectively, and we introduced the notation

1
= —EVMgoV“go, D, =V, Vi, 3)

1 We note that second order equation is not mandatory, see for instance
Degenerate Higher Order Scalar—Tensor (DHOST) theories [39,40].
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We note that by suitable choices of the function K, G; we can
easily reproduce well-knows results, as for instance General
Relativity (G4 = 1 and others vanishing) or metric f(R)
theories (K = —V (p) and G4 = ¢). Now, since we want
to analyze wave propagation on Minkowski background, we
decompose metric as g, = Nuv + My, along with the scalar
perturbation ¢ = ¢o + ¢. Then, as explicitly discussed for
vacuum in [18] (see also [16] for details), we can rearrange
linearized equations in the form

G4.4(0)
Gl(tlg - G4¢(O) (auav - nuvD) ¢ = KHT,E};) 4)
O—-MHp=«'TD, Q)

with the effective mass of the scalar mode given by

M2 = — K 4y (0) (6)
3G;, 0
K’X(O) — 2G3,¢;(0) + T(O)

and where we also introduced with respect to [18] the cou-
pling with matter, described by the effective gravitational
constants

e G4(0)k
" G4(0) (K x(0) — 2G3,4(0)) + 3G, (0)
" o_ K
= G0

(N
®)

where the function are all evaluated in ¢ = ¢9, X = 0.
Here T,EL), T represent the perturbations of &'(h) induced
on stress energy tensor by &, and ¢, which as clear from
(4) turn out to be dynamically coupled. Now, in order to
disentangle truly tensor polarizations from the scalar mode,
it is useful to define the generalized trace reversed tensor

1 2G 0
S (h + “'—“”()qs) : ©9)

P = s = G4(0)

with b = n*'h,,. This allows us to rearrange (4) in the
well-known form

Oh;j = —ZKNTi(j]), (10)
where we imposed transverse and traceless conditions (TT-
gauge), i.e. B,Jl/” = 0 and & = 0, which enable us to
restrict the analysis to spatial indices. Therefore, even in
this extended dynamical framework we can still fully recover
standard tensor TT-modes, described by the perturbation h v
and carrying known plus and cross polarizations of General
Relativity. Remnant of the coupling with the additional mas-
sive mode ¢ is then limited to the coupling x”, which keeps
information about the background value ¢q. In the following,

therefore, we will focus on (10) and (5), setting for the sake
G4.,4(0)

of simplicity o = G0 -
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3 Evaluation of the damping rate

The medium is described by the distribution function
f(x,p, 1), which evolves in time according to the Vlasov
equation

Df _af  dx af

dpw 0f _
dr ot dr 9x™ -

dt Opm

0, an

that we write in terms of the covariant spatial components of
the momentum p,,, following [33]. The variation in time of
Pm 1s simply given by

B2 (i (5B =B ) —a (p2s + ikpsp®) %9 + ap’6®(0))

namely
Sf(x,p,t)
T = 2 [ty LEPD (1)
pipj
) = [ ap i arpn, (16)

where d>p = dpidp,dps. Then, choosing the z axis to be
coincident with the direction of propagation of the gravita-
tional wave, we pursue the analysis in the Fourier—Laplace
space. Specifically, we perform a Fourier transform on spa-
tial coordinates accompanied with a Laplace transform on
time coordinate 7. This allows us to solve algebraically the
Vlasov equation for the perturbation § f (x, p, 1), i.e.

7)

(S (k,.&‘) —
S s+ ik
P
dpm 1 dhij 2 3¢
m L s , 12
dt 2,0 (P:P/ I +ou FyeT (12)

being p® = ,/u? + g p;p; the particle energy and  the

particle mass. Then, in the absence of the gravitational wave,
we assume the distribution function be some isotropic equi-
librium solution fy (p) of the unperturbed equation, where

p =,/8 pipj. Attheinitial time 7 = O we take f(x, p, 0) =

fo(,/8" (x,0)p;p;j) which at the first order results in

f(x,p,0) = fo(p)
_ fop) (Pipj
p

) ﬁij(X,O)—Otp(l)(X,O)),

13)

where fj(p) = ‘fi—];’. At any later time, the gravitational
wave induces a dynamical perturbation 6 f (x, p, ¢), which we
assume to be small with respect to the equilibrium configura-
tion, i.e. ‘;—J; = O'(h). Therefore, in the following we deal with
the perturbed distribution function f(x, p, ) + 6f (X, p, 1).
By ignoring all contributes of &(h?), we obtain the linearized
Vlasov equation for the perturbation 6 f (x, p, 7):

38f  p™ asf
ot p0 axm
folp) dhij 200 0.m 00
— L A v ) =o.
2p \PIPiTg TP 5 TP ym

(14)

The dynamical system is now fully determined once the
sources of (5) and (10) are evaluated in terms of f(x, p, 1),

where the Fourier and Fourier-Laplace components of the
fields are displayed as ¢ (¢) and ¢%9), respectively.? Sim-
ilarly, considering the Fourier—Laplace transform for (5) and
(10) we get?

ks
s¢(k)(0) + MzK/fd3P8f(po)(p)

(k,s) 18
¢ 2+ k2 +m? (18)
i (k) 3 PiPj ¢ r(k,
k) _ shij () + 2" [ &> p=5tof“) (p) (19)
T SRy :

Now, even if §f (k:5)(p) actually depends both on ¢**) and
on hgf’s), calculations show that the solutions of (18) and
(19) are indeed uncoupled, i.e.

/
(s +amp’c’ [dpdps p Ofo(&) ® (0)
pk) = p°s +ikps
2+ k2 +mDHe@ (k, s)
(20)
i s fop) ) = ()
) _ (S s L dpdps 0 0 vty ) ' ©
1 (2 4+ ke (k, 5) ’
21

where integrals have been conveniently restated in cylindri-
cal coordinates by performing the substitution (py, p2) —
(p, x), with p? = p% + p% and tan(y) = %. By analogy

2 Analogously for the fields ﬁ,-j (z,t) and 8f (z, p, 1).

3 Without loss of generality, we set the initial conditions ¢* (0), ﬁl(f) )
and 8 ®(0) vanishing.
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with the electromagnetic theory we introduced the complex
dielectric functions

2,7 / 2. ik 0

@ (k,5) = 1 + K /dd Jop) ps + ikp”ps

e (k, ) Y e | drse s+ ikps
(22)

e® (k, 5)
K" folp) s

=l——— [ dpdps p? 202~ 23
2(s2+k2)/ papsp P95 + ikps (23)

and the settling of damping can be inferred by the behaviour
of the real and imaginary part* of ¢ ") (k, w) = @M (k, s =
—iw), where we defined the complex frequency w = w, +
iw;. In particular, when the condition |w,| > |w;| holds
(i.e. weak damping scenario [1,41]), the oscillation period is
much smaller than the damping time, and we properly deal
with a damped wave rather than a transient. In this case, thus,
the dispersion relation w, = w, (k) can be derived by solving

e PN (k, w,) =0, 24)

while the damping coefficient is obtained from

ek, w)

36" (k)
w w=w,

(25)

We assume that the equilibrium distribution function is the
Jiittner—-Maxwell distribution

_Nu?4p?
2]

fop) = ——— e (26)

AT plOK, (5)

where n is the density of particles, ® is the temperature in
units of the Boltzmann constant kg and K> (-) is the modified
Bessel function of the second kind. Then, in the presence of
such a distribution function, the dielectric functions (22) and
(23) assume the form:

ak'n /+°°d
22+ m?— ) 072K, (B) Jo

2 Y% 2
P P3—q0

Pk, w)=1-—

+oo N s
« / dps . T 27)
0 P% - 71_];‘% (l‘«z + 92)
" 2 400
) _ k"'n vy /’
eM (K, wp) =1— d
) 42— ) 202K, (E) -2 Jy
400 5 ST
x / dps p T (28)
0 2

J UZ
R (1> + p?)

4 In the following real and imaginary part are denoted by subscript r
and i, respectively.
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where v, = 9t is the phase velocity. Now, by virtue of
the condition |w,| > |w;| and provided v, < 1, integrals
in (27) and (28) are featured by a pair of poles on the real

= (u? + p?). That
guarantees the existence of the imaginary part for dielectric
functions, stemming from the integration around poles and
evaluable with the residue theorem, ultimately responsible
for the appearing of the damping coefficient (25). We note,
however, that condition v, < 11is not a priori ensured and its
attainability has to be indeed verified by calculating w, from
(24). Asusually done in plasma physics [41], we calculate the
Langmuir dispersion relation by expanding the denominator
contained in the integrals up to the second order in p3, under

p3y/1-v2 .
—V_ " « 1, which corresponds to the
vp«/u2+pz

requirement of having a phase velocity for the wave much
greater than the thermal velocity of the medium.
Then, explicit calculations for tensor modes lead to

2
axis, located at the points p3 = + %

the assumption

2 _
X 1 vy, vy

1202 X X
eM(k, ) =1+ —2 ( S+ y(2)> =0, (9
where we introduced the dimensionless quantity x = %, in

- K () 2 _ @ _ knp
terms of which y (x) = Kz(x).Here, vy, = 75 = gz canbe

seen as the proper phase velocity of the medium for tensor
excitations (see [9] for a comparison). Now, the solution of
(29) is given by

2
R \/ (14 12075520 ) " 4 407 1
) ——

; 5 . (30)

which can be easily demonstrated to be identically greater
than unity, implying that tensor modes cannot be damped
when travelling throughout the medium. We stress that is in
agreement both with their purely transverse nature, and with
the absence of coupling with the scalar mode in linearized
equations (20) and (21). Therefore, in the following we will
restrict our analysis to scalar perturbations. In this case the
dielectric function real part turns out to be

1—302

k,w)=1+3 z P, 31
8}’( Cl)) + y(x)wovlz)(k2+m2_w2) ( )

with a)(z) defined by analogy with the tensor case, i.e. a)(z) =

ak'np
6

, and v, referring solely to the scalar polarization.
Hence, solving (24) for (31), we obtain

L R m? =9y} ) (€ +m? — 9yed) + 12y k2
r = 2 ’
(32)

(0)
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and in order to have v, < 1 the following constraint must
hold

m?* < 6y wj. (33)

This condition, by relating model depending parameters with
physical quantities describing the medium, allows to select
theories of gravity sensitive to damping from non-interacting
ones.

It has to be noticed that dispersion relations (30)—(32) imply
superluminal group velocities in specific regions of k. In
many contexts group velocity is associated with energy
and information transport, therefore a superluminal behavior
would imply causality violation, but this is not our case: we
recall that we have perturbed the medium with a wave which
is non-null at the initial time # = O but identically vanishes
for any negative time. The discontinuity at the initial time
causes the emergence of a front wave, namely a high fre-
quency Sommerfeld precursor [42], propagating at the speed
of light. It is a well established result [43] that, in such cases,
energy and information transport is associated to the front
wave propagation.

Then, we calculate by means of the residue theorem the imag-
inary part of the dielectric function, resulting in

k. o) 3rwdx vpe 1=vp (34)
& ) = - )
i wr 2K (x) K2+ m2 — ?
which inserted in (25) gives us finally w;, that is
4 m? 2 - A/ lx—vz,
Txk vp<1+k—2—vp)e ;
P = (35)

4K (x 4 2 2
1 308 — 202 + (14 25)

We emphasize that by virtue of (32) the condition w; < 0
identically holds, and the theory is devoid of instabilities
attributable to enhancement phenomena. It must be stressed
that the analysis is pursued under the hypothesis that the
phase velocity of the wave is much greater than the thermal
velocity of particles, so that it does not apply satisfacto-
rily when highly relativistic media are considered. Indeed,
in the cases in which the parameter x approaches the unity
or smaller values, the particles are characterized by a ther-
mal velocity almost equal to the speed of light, therefore the
aforementioned ansatz is not viable. In order to have predic-
tive power also in these scenarios we treat the problem with
numerical techniques. In particular we calculate (27) through
a numerical integration, assuming that the result of the lat-
ter corresponds to the real part of the dielectric function,
whilst we retain the imaginary part (34), exactly calculated
as a residue around the pole. The analysis is carried out
under the ulterior hypothesis that the quantity § = 1 — v, be

0.00
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‘IJ,
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-0.03

-0.04

-0.05

Fig. 1 Normalized damping coefficient @; vs normalized wavenumber
k for different values of the parameter x: x = 1 (dashed curve), x =2
(dotted curve), x = 5 (dot-dashed curve)

positive and much smaller than unity. We obtain a damping
coefficient @; = @; (k; x, m), where barred quantities are
intended as normalized with the proper frequency wy, e.g.
w; = Z)’—;) and equivalently for the others.? It shows remark-
able analogies with the damping coefficient calculated with
the analytic treatment, as for instance to be negative for any
value of the wavenumber and to be identically null when
m exceeds the bound (33). We report in Fig. 1 the curves
obtained for three different values of the parameter x, keep-
ing the normalized mass m fixed to 1. A qualitative analysis
shows that the minimum, i.e. the maximum damping, is local-
ized at k ~ . Moreover, the effect is rapidly suppressed if
relativistic conditions are not fulfilled, i.e. when the param-
eter x becomes larger than few tens, as clearly observable in
Fig. 2. The need to look at relativistic media, characterized
by a high density, suggests the application of our formulae to
a cosmological scenario. This will be the objective pursued
in the subsequent section.

4 Cosmological implementation

Before we apply our findings to a cosmological setting, some
explanations about the feasibility of such an implementation
are needed. Itis worth noting that our model must be intended
as referred to a local inertial frame, where Vlasov equation is
properly defined and where the curvature of the background
can be neglected. In a practical sense, such an hypothesis
corresponds to consider gravitational waves having a wave-
length much smaller than the background curvature. Locally,
the medium appears enough homogeneous and isotropic, and
the longitudinal massive mode exhibits a non-zero decaying
rate, i.e. Landau damping settles down. A typical effect of

> In the following we will set, for the sake of simplicity, « = 1 and
k" = K in the expression of the proper frequency.
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Fig. 2 Normalized damping coefficient @; vs normalized wavenumber
k for different values of the parameter x: x = 30 (dashed curve), x = 40
(dotted curve), x = 50 (dot-dashed curve)

the Universe expansion on gravitational waves consists in the
redshift of their amplitude, as a consequence of the time scal-
ing of each spatial length, including their wavelength. More
specifically, the rate of expansion acts as a friction term
on the gravitational wave propagation [44,45]. Additional
damping effects, due to the neutrino anisotropic stress and
associated to the electro-weak transition phase, has been dis-
cussed in [37,46]. Clearly, the spatial curvature of a cosmo-
logical background is essentially negligible and our hypoth-
esis of local homogeneity and isotropy for the medium can
be very well satisfied. Nonetheless, the spacetime curvature
is still present via the non stationary character of the cos-
mological space. This feature could appear in contrast with
the physical scheme above, since no expanding background
or non-stationary effect are included in the Vlasov equation.
However, it is a well-known fact that any physical process
which takes place on a physical scale much smaller than the
Hubble micro-physical scale Ly ~ H~' (H being the Hub-
ble function), it is not significantly affected by the Universe
expansion. This is just the reason because well-inside the
scale Ly, the dynamics of the cosmological density fluc-
tuations can be treated on a Newtonian level, leading to the
concept of Jeans length [44,45]. The same situation holds for
the tensor perturbations, associated to cosmological gravita-
tional waves. Actually, the physical condition to be satisfied
in order the Universe expansion rate could be neglected in
the wave propagation, corresponds to require that the phys-
ical wavelength of the propagating mode Ay, i.€. scaled
for the cosmic scale factor, be much smaller than the Hubble
scale L. On a cosmological level, this requires the space-
time curvature be much greater than the propagating wave-
length. By other words, the cosmological background grav-
ity must be much smaller than the gravitational field due to
the waves themselves. At this level, therefore, the so-called
Jeans swindle is overcome because the spatial distribution
of matter is really homogeneous and infinite. That is to say,

@ Springer

the Newtonian gravitational field within the Hubble scale
can be properly considered as a vanishing contribution, as
Jeans assumed in its original formulation (the Jeans swindle
has a value when the matter distribution is homogeneous,
but with a finite extension). However, it is worth noting that
Vlasov equation does not apply to the cosmological medium,
for which the collision term is far from being zero, since
the collisions must preserve the equilibrium of the thermal
bath. Thus, our analysis must be applied to species which are
already decoupled from the cosmological thermal bath, and
having a sufficient temporal range of interaction with longi-
tudinal massive modes in order its effect on the amplitude
attenuation be appreciated. Taking the Cosmic Microwave
Background Radiation (CMBR) as the observational setting
for seeking effects of such a longitudinal mode, the maxi-
mum temporal range of interaction of a decoupled species
with the waves is the recombination age. It is rather immedi-
ate to recognize that the most natural decoupled component
of the Universe to be considered is then the so-called cold
dark matter, composed of weakly interacting particles which
decouple from the thermal bath in the very early Universe.

Before applying our formulae to a defined dark matter
model, it has to be outlined that in the cosmological imple-
mentation the quantities involved acquire a dependence from
the redshift z, i.e.

k=k@1 +2)
wo = ol (1+2)2 (36)
X = x(o)(l + Z)_l,

where we indicate with the superscript (0) present-day val-
ues. Hence, by fixing the masses m and p together with
the current density n©@ it is possible to trace back in time
the behavior of the damping coefficient as a function of the
wavenumber. As previously stated, the maximum damping
occurs around k ~ 1, therefore it is possible to set k© in
order to have k = m at some privileged z and maximize the
effect at that redshift. As a result, we obtain an expression
for the damping coefficient which solely depends on z. Fur-
ther, the wavenumber must obey the bound kL gy > 1 during
the entire time of interaction, together with the constraint of
being observable with recent CMBR measurements, which
roughly results in k¥ < 0.5 Mpc~! [47]. The request to look
at sub-horizon modes is more easily satisfied by considering
redshifts which are as close as possible to the recombination.
Hence, we analyze the case of an interaction ending right
before z ~ 1100, with its peak around z ~ 2000. We choose
kO =56x1073 Mpc*1 and m = 2.5 x 10728 ¢V, so that
k = m is realized at z ~ 2000, while keeping m below the
current constraints on the graviton mass [48]. Moreover, we
fix 4 = 1.75 eV in order to have x & 5 at the same redshift
and n©) by imposing the present-day value of dark matter
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2000 4000 6000 8000
z

10000

Fig. 3 Damping coefficient w; (in 1010 Hz) vs redshift z

2000 4000 6000 8000 10000
z

0.9

Fig. 4 Phase velocity v, vs redshift z

density, i.e. un©@ = 10?7 I];T%. We report the plot of the
damping coefficient as function of the redshift for the chosen
values of the physical parameters in Fig. 3.

It can be observed that the effect is negligible when z 2>
10, whereas it is strictly null if z < 1500. The cause of
this latter fact is that, for decreasing redshifts, the normalized
mass m grows more rapidly than x. Therefore, for any defined
model of massive medium traversed, there exists a redshift
below which inequality (33) does not hold anymore, causing
the phase speed be superluminal and the vanishing of the
damping effect. This can be further appreciated by evaluating
the phase velocity as a function of the redshift, as done for the
damping coefficient. We report the plot obtained in Fig. 4.

The expression of the damping coefficient as a function
of the redshift is also useful to obtain the magnitude of the
time-integrated effect. If we normalize the amplitude of the
wave to unity at some time fo, then the amplitude at any time
t > to is given by

" wi () dt’

() = o 37)

If we consider z > 3400, i.e. we look at the radiation-
dominated era, the relation between the coordinate time and

the redshift is

2(t) ~ (2H0 szo,ﬂ)_% , (38)

with Hy and 2y, the present-day values® of Hubble con-
stant and radiation density, respectively, which we set as
Hp=2.19aHz and §2p, = 9.2 x 1075. During the matter-
dominated expansion, namely for z < 3400, we can instead
assume

3
z(t) ~ <§H0\/.Q(),mt> , (39)

where in this case £2¢ ,, = 0.315 is the present-day value of
matter density. By performing the change of variables t —
z in (37), we integrate from zo9 = 10* to z = 1450. The
departure from unity of the amplitude, i.e. the absorption,
turns out to be in this case

IR

1 — /() =82 x 107*. (40)

The value of relative absorption that we obtain with this sim-
ple model is small enough to claim that Landau damping
does not significantly affect the observability of longitudinal
scalar modes on the CMBR perturbation spectrum. However,
it must be pointed out that the absorption we calculated is
pertaining to a specific value of the wavenumber: by consid-
ering a different k), sufficiently close to that one we chose
in our example, the absorption rate would acquire a value
close to that reported in (40). Conversely, by looking to a
ten-times larger wave number kX =5 x 1072 Mpc™!, one
would obtain an extremely small relative absorption of order
10739, Hence, a specific model of massive medium acts as a
filter on a narrow ranges of wavelengths, depending on the
chosen values of the physical parameters which characterize
it. The implications of this peculiar feature are to be taken
into account when analyses of scalar perturbations are per-
formed in the spirit of highlighting departures from General
Relativity.

5 Concluding remarks

Our analysis clearly establishes a new point of view on the
interaction of gravitational waves with astrophysical media:
longitudinal scalar modes can be damped by non collisional
ensembles of massive particles. In particular, even if analytic
estimations can be pursued only in the specific regime of
low relativistic media, i.e. for gravitational waves with phase
velocity greater than the thermal velocity of particles, numer-
ical studies can be easily extended to deal with properly rel-

6 The values of the cosmological parameters involved in our analysis
are taken from [47].
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ativistic frameworks. The application to a simplified cosmo-
logical settings shows that, at the physical scales for which
our treatment holds valid, Landau damping effect is unable
to significantly suppress cosmological longitudinal modes.
In principle, that should not prevent the observability of such
additional scalar modes on the CMBR radiation, at least for
the range of wavenumbers taken into account. Despite this,
we highlighted the possibility of a relative absorption of order
1073, if a medium compatible with viable dark matter mod-
els is considered at a redshift between 103 and 10*. This
effect, in particular, is associated to wavelengths satisfying
the condition of being sub-horizon during the entire time of
interaction, and inside the sensitivity curves of recent CMBR
observations. We claim, therefore, that the damping due to
the interaction with the decoupled dark matter medium can
act as a filter on specific wavelengths, giving rise to a possi-
ble modification of the original power spectrum. We remark,
however, that our treatment does not apply in the presence
of the cosmological bath, where collisions must be properly
included. Moreover, the situation can be significantly differ-
entif larger longitudinal modes are considered. In the case of
Hubble sized scalar fluctuations, indeed, the present analy-
sis must be deeply revised since the non-stationary character
of the cosmological background can be no longer neglected.
We refer, in particular, to the need of quantifying the relative
amount of the Landau damping with respect to the damping
coming from the cosmological redshift.

To conclude, we note also that our analysis relies on a per-
turbative approach, and the inclusion of higher order effects
can significantly alter the outcomes. We refer, especially, to
the settling of quasi-linear interactions between longitudinal
gravitational waves and massive media [49-51], which in
plasma lead to appreciable modifications of the medium dis-
tribution function, for velocities which are comparable with
the phase velocity of the wave.
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